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1. Introduction
Let F be a field and F [x] be the algebra of univariate polynomials in x over F . Suppose

m, n ∈ N, f(x) = amxm + · · · + a1x + a0 ∈ F [x] and g(x) = bnxn + · · · + b1x + b0 ∈ F [x] of
degrees m and n respectively with all ai, bj ∈ F . The Sylvester matrix of f and g, denoted
by Syl(f, g; x) or simply Syl(f, g), is defined as

Syl(f, g) =



am bn

am−1 am bn−1 bn
...

... . . . ...
... . . .

...
... am

...
... . . .

...
... am−1 b0

... bn

a0
...

... b0
...

a0
... . . . ...

. . . ... . . . ...
a0 b0



,

with n columns of ai’s and m columns of bj ’s, and all entries outside the two “parallelo-
grams” are zero. The determinant of the Sylvester matrix Syl(f, g) is called the resultant
of f and g, denoted by res(f, g) = det(Syl(f, g)). It has been well known that the resultant
is a basic tool in the study of polynomials (see, for example, [16]).

Suppose f, g ∈ F [x]. Then there exist s, t ∈ F [x] (called Bézout coefficients) such that
sf + tg = gcd(f, g), where gcd(f, g) denotes the greatest common divisor of f and g. The
gcd and Bézout coefficients can be computed by the (Extended) Euclidean Algorithm.
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However, the bad news is that the coefficient growth in the Euclidean Algorithm is very
rapid (see, for example, Section 6.1 of [16]). To overcome this difficulty, resultants are used
to control the Bézout coefficients (and it yields a modular algorithm for gcd calculations),
mainly due to the following property of resultants.

Theorem 1.1 ([16, Corollary 6.17]). Let F be a field and f, g ∈ F [x] be nonzero. Then
the following are equivalent:

(i) gcd(f, g) = 1,
(ii) res(f, g) ̸= 0,
(iii) there do not exist s, t ∈ F [x] \ {0} such that

sf + tg = 0, deg s < deg g, deg t < deg f.

Another application of resultants in computer algebra is that, working with Gröbner
bases, the resultant is one of the main tools of effective elimination theory (see, for example,
[2]). For this purpose, we need the following result.

Theorem 1.2 ([2, Proposition 9 of Section 3.5]). Given f, g ∈ F [x] of positive degrees,
there exist polynomials s, t ∈ F [x] such that sf + tg = res(f, g).

Quaternion algebra H was introduced by W. R. Hamilton in 1843. The quaternions H
is an associative (but noncommutative) division algebra generated by four basic elements
1, i, j and k over the reals R with Hamilton relations i2 = j2 = k2 = ijk = −1. It holds a
special place in mathematics since, by Frobenius theorem, H is one of the only three finite
dimensional division algebras over the real numbers (the other two are real numbers R and
complex numbers C). Quaternions H is also the first noncommutative division algebra to
be discovered. Beyond mathematics, quaternions are also widely used, for example, in elec-
tromechanics and quantum mechanics. Since the group of unit quaternions is isomorphic
to the group of the involving three dimensional (3D) rotations, the primary application
of quaternions in these fields is in calculations 3D rotations such as in 3D computer ani-
mation, computer vision and orbital mechanics, see, for example, [12, 15]. Besides, many
physical laws in classical, relativistic, and quantum mechanics can be written nicely using
quaternions, see, for example [11].

Our goal in this paper is to extend Theorems 1.1 and 1.2 to (noncommutative) poly-
nomials over quaternions H. The main difficulty here is how to define a determinant for
a square matrix with entries in H (or more generally, in a noncommutative ring). Sev-
eral noncommutative determinants have been formulated, e.g., Dieudonné determinant [3],
Condensed Cramer rule [13, 14], quasideterminant [6], double determinant [7]. In [4], it
is shown that, for polynomials f, g ∈ H[x], Theorem 1.1 is still true if gcd is replaced by
gcrd (greatest common right divisor) and (ii) is replaced by

(ii)’ res(f, g) = Ddet(S) ̸= 0 in the factor group H∗/[H∗,H∗], where S is the Sylvester
matrix (Definition 4.1) of f and g, Ddet(S) is the Dieudonné determinant of S,
and H∗ denotes the multiplicative group of H.

The disadvantage to use the Dieudooné determinant is that Ddet(S) takes a value in the
factor group H∗/[H∗,H∗] instead of H. In this paper, we will extend Theorems 1.1 and
1.2 to H[x] by using double determinants (in the sense of Kyrchei [7]), which take values
in H.

The paper is organized as follows. Basic notations on quaternion and quaternion poly-
nomials are introduced in Section 2, followed by the definition and properties of double
determinant in Section 3. Our main results, the generalization of the above two theorems
and their application on repeated roots, are in Section 4.



1306 X. Zhao, Y. Zhang

2. Quaternions and quaternion polynomials
Let H = {a + bi + cj + dk : a, b, c, d ∈ R} be the algebra of real quaternions, i.e., the

associative unital R-algebra generated by i, j and k with the Hamilton relations
i2 = j2 = k2 = ijk = −1,

which implies that
ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Given h = a + bi + cj + dk ∈ H where a, b, c, d ∈ R, the conjugate of h is defined as
h = a − bi − cj − dk.

Let H[x] = {amxm + · · · + a1x + a0 : ai ∈ H, 0 ≤ i ≤ m, m ∈ N} be the polynomial
ring in one variable x over H, where x commutes element wise with H. Suppose f(x) =
amxm + · · · + a1x + a0 ∈ H[x] and r ∈ H. We define f(r) (the evaluation of f at r) to be
f(r) = amrm + · · · + a1r + a0 ∈ H. Note that, with the above notation, f(x) = g(x)h(x) ∈
H[x] does not imply that f(r) = g(r)h(r) (see Section 16 of [8] for a counterexample),
that is, evaluation at r is not a ring homomorphism from H[x] to H in general.

Suppose f, g ∈ H[x]. If f = pq for p, q ∈ H[x], then q is called a right divisor of f . A
common right divisor of f and g is a polynomial in H[x] which is a right divisor of both
f and g. A greatest common right divisor of f and g, denoted by gcrd(f, g), is a common
right divisor h of f and g such that any common right divisor of f and g is a right divisor
of h. A quaternion polynomial is monic if the coefficient of the highest power of x is
one. By the Euclidean Algorithm for noncommutative polynomials (see, for example, [10],
Section 2 of Chapter I), we can prove the following lemma.

Lemma 2.1. Suppose f, g ∈ H[x].
(i) There exists a unique, monic, greatest common right divisor of f and g, denoted

by gcrd(f, g).
(ii) There exist polynomials p, q ∈ H[x] such that pf +qg = gcrd(f, g), deg(p) < deg(g),

and deg(q) < deg(f).

3. Double determinants
Row and column determinants were introduced by Kyrchei [7], based on which a double

determinant (cf., Chen’s double determinant [1]) was defined. Let us recall from [7] some
definitions and properties related to double determinants. All statements without proofs
in this section are taken from [7].

Let Mn be the set of n × n square matrices with entries from H and let Sn be the
symmetric group on the set {1, 2, . . . , n}. Suppose A = (aij) ∈ Mn. Then, for 1 ≤ i ≤ n,
the ith row determinant of A is defined as

rdeti(A) =
∑

σ∈Sn

(−1)n−raiik1
aik1 ik1+1 · · · aik1+l1 i · · · aikr ikr+1aikr+1ikr+2 · · · aikr+lr ikr

(3.1)

where σ ∈ Sn is written as a product of disjoint cycles
σ = (i ik1ik1+1 · · · ik1+l1)(ik2ik2+1 · · · ik2+l2) · · · (ikr ikr+1 · · · ikr+lr )

such that
ik2 < ik3 < · · · < ikr , ikt < ikt+s, 2 ≤ t ≤ r, 1 ≤ s ≤ lr.

Column determinants cdeti(A) can be defined in a similar way, see Definition 2.5 of [7]. In
particular, if A ∈ Mn is a Hermitian matrix (i.e., A∗ = A, where A∗ = ĀT is the transpose
of the conjugate of A), then

rdet1(A) = · · · = rdetn(A) = cdet1(A) = · · · = cdetn(A) ∈ R.

Definition 3.1 ([7, Definition 8.2]). Suppose A ∈ Mn. Then the double determinant of
A is defined as ddet(A) = rdet1(A∗A).
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Since A∗A is Hermitian for any A ∈ Mn, we have that
ddet(A) = rdet1(A∗A) = · · · = rdetn(A∗A)

= cdet1(A∗A) = · · · = cdetn(A∗A) ∈ R.

The double determinant enjoys some familiar properties of ordinary determinants. For
example, ddet(AB) = ddet(A) ddet(B) for any A, B ∈ Mn.

Double determinants are also closely related to solving quaternion linear equations.

Lemma 3.2. Suppose A ∈ Mn. Then the following statements are equivalent.
(i) The columns of A are not right linearly independent, i.e., there exists one column

of A that is a right linear combination of the other columns of A.
(ii) The rows of A are not left linearly independent.
(iii) ddet(A) = 0.

Using the above lemma, we can prove the following lemma (where we use 0 to denote
both zero row (0, . . . , 0) and zero column (0, . . . , 0)T ).

Lemma 3.3. Suppose A ∈ Mn, x = (x1, . . . , xn)T and y = (y1, . . . , yn). Then the
following are equivalent.

(i) The right system Ax = 0 of linear equations has nontrivial solutions.
(ii) The left system yA = 0 of linear equations has nontrivial solutions.
(iii) ddet(A) = 0.

Proof. Note that the right system Ax = 0 has nontrivial solutions if and only if the
columns of A are not right linearly independent and that the left system yA = 0 has
nontrivial solutions if and only if the rows of A are not left linearly independent. Thus
the lemma follows from Lemma 3.2. �
Lemma 3.4 (Cramer’s Rule). Let xA = y be a left system of linear equation with co-
efficient matrix A ∈ Mn, constant row y = (y1, . . . , yn) of quaternions, and unknowns
x = (x1, . . . , xn). If ddet(A) ̸= 0, then the system has a unique solution in H given by

xi = rdeti((AA∗)i.(yA∗))
ddet(A)

, 1 ≤ i ≤ n,

where (AA∗)i.(yA∗) is the matrix obtained from AA∗ by replacing the ith row by the row
vector yA∗.

4. Resultants, gcrd and repeated roots
In this section, we define a resultant of two quaternion polynomials and investigate the

relationships among resultants, gcrd and repeated roots of quaternion polynomials.
First of all, as for commutative case in the Section 1, we can define Sylvester matrices

for two polynomials in H[x].

Definition 4.1 (Sylvester matrix and resultant). Suppose p(x) = amxm + · · ·+a1x+a0 ∈
H[x] and q(x) = bnxn + · · ·+b1x+b0 ∈ H[x] of degrees m and n respectively. The Sylvester
matrix Syl(p, q) ∈ Mn of p and q is defined as
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Syl(p, q) =



am bn

am−1 am bn−1 bn
...

... . . . ...
... . . .

...
... am

...
... . . .

...
... am−1 b0

... bn

a0
...

... b0
...

a0
... . . . ...

. . . ... . . . ...
a0 b0



,

with n columns of ai’s and m columns of bj ’s, and all entries outside the two “parallel-
ograms” are zero. The double determinant of the transpose of Sylvester matrix is called
the resultant of f and g, denoted by res(f, g) = ddet(SylT (f, g)), where SylT (f, g) is the
transpose of the Sylvester matrix Syl(f, g). If m = n = 0, then SylT (f, g) is the “empty”
0×0 matrix with double determinant res(f, g) = 1. It is convenient to define the resultant
with the zero polynomial as

res(f, 0) = res(0, f) =
{

1 if f is a nonzero constant
0 if f is zero or nonconstant

.

Remark 4.2. In general, ddet(A) ̸= ddet(AT ) for A ∈ Mn, e.g., if A =
(

1 i
j k

)
, then

simple computation gives that ddet(A) = 4 ̸= 0 = ddet(AT ). Thus, in order for desired
properties, a definition of resultants of quaternion polynomials must be carefully chosen.
For our purpose in this paper, we define the resultant as res(f, g) = ddet(SylT (f, g))
instead of ddet(Syl(f, g)). That is mainly because we consider right divisors and right
roots rather than the left ones.

The following theorem together with Lemma 2.1 generalizes Theorem 1.1.

Theorem 4.3. Suppose f, g ∈ H[x] are nonzero. Then gcrd(f, g) = 1 if and only if
res(f, g) ̸= 0.

Proof. Suppose f and g are of degrees m and n respectively, m, n ∈ N. Let

f = amxm + · · · + a1x + a0,

g = bnxn + · · · + b1x + b0,

s = un−1xn−1 + · · · + u1x + u0,

t = vm−1xm−1 + · · · + v1x + v0,

where each ai, bj , ui, vj ∈ H and am, bn ̸= 0. Then sf + tg = 0 if and only if
(un−1, . . . , u0, vm−1, . . . , v0) is solution of the left system of linear equation yA = 0 where
y = (y1, . . . , ym+n) and A = SylT (f, g).

By Theorem 2.4 of [4] (cf., [16, Lemma 6.13 ]), gcrd(f, g) ̸= 1 if and only if there exist
nonzero polynomials s, t ∈ H[x] such that sf + tg = 0, deg s < deg g and deg t < deg f .
Thus gcrd(f, g) ̸= 1 if and only if the left system yA = 0 has nontrivial solutions.
Therefore, by Lemma 3.3, gcrd(f, g) ̸= 1 if and only if res(f, g) = ddet(A) = 0. �

Recall that a polynomial in H[x] is called integer polynomial if its coefficients are inte-
gers. Now we can give a generalization of Theorem 1.2.
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Theorem 4.4. Suppose f, g ∈ H[x] with deg f > 0 and deg g > 0. Then there exist
polynomials p, q ∈ H[x] such that pf + qg = res(f, g). Furthermore, the coefficients of p
and q are integer polynomials in the coefficients of f and g.

Proof. First note that if res(f, g) = 0 then we can simply choose p = q = 0. Now assume
that res(f, g) ̸= 0. Then, by Theorem 4.3, gcrd(f, g) = 1. Hence, by Lemma 2.1, there
exist p′, q′ ∈ H[x] such that deg(p′) < deg(g), deg(q′) < deg(f) and p′f + q′g = 1. Suppose

f = amxm + · · · + a0, (4.1)
g = bnxn + · · · + b0, (4.2)
p′ = cn−1xn−1 + · · · + c0, (4.3)
q′ = dm−1xm−1 + · · · + d0. (4.4)

where the coefficients ai, bj , ci, dj ∈ H and am ̸= 0, bn ̸= 0. Substituting (4.1)–(4.4) into
the equation p′f +q′g = 1 and equating the coefficients of powers of x, we get the following
left system of linear equations

(cn−1, . . . , c0, dm−1, . . . , d0)A = (0, . . . , 0, 1) (4.5)

with unknowns ci, dj and coefficient matrix A = SylT (f, g).
Since ddet(A) = res(f, g) ̸= 0, by Cramer’s Rule (Lemma 3.4), System (4.5) has a

unique solution in H given by, for example,

cn−1 = rdet1(AA∗)1.(z)
ddet(A)

,

where z = (0, . . . , 0, 1)A∗ is the last row of A∗.
Note that, by the definition (Equation (3.1)), a row determinant of a matrix B = (bij) ∈

Mn is a polynomial in the entries bij with integer coefficients. Thus it follows that

cn−1 = pn−1
ddet(A)

, (4.6)

where pn−1 is a polynomial in ai and bj (1 ≤ i, j ≤ n) with integer coefficients. Similarly,
all ci and dj (1 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1) have the same form as cn−1 in (4.6). Hence

p′ = cn−1xn−1 + · · · + c0 = p

ddet(A)
,

where p ∈ H[x] and the coefficients of p are polynomials in ai and bj , 0 ≤ i ≤ m, 0 ≤ j ≤ n.
Similarly, we can write

q′ = q

ddet(S)
,

where q ∈ H[x] has the same properties as p. Since p′ and q′ satisfy p′f + q′g = 1,
multiplying by ddet(A) gives pf + qg = ddet(A), where p and q are integer polynomials
in the coefficients of f and g as required. �

Studying the roots of quaternion polynomials is quite different from that in commutative
polynomial case, see for example, [5] and [8]. As an application of our main theorem, we
will consider repeated roots of a quaternion polynomial.

Let f = amxm + · · · + a1x + a0 ∈ H[x], m ∈ N. Sometimes we write f as f(x) to
emphasis the variable x. We use both f and f(x) without any difference in the paper.
The (formal) derivative of f is defined as f ′ = mamxm−1 + · · · + a2x + a1. In particular,
if m = 0, then f ′ = 0. Then we have the following lemma, whose proof is straightforward.
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Lemma 4.5. Suppose f(x), g(x) ∈ H[x] and c ∈ H. Then
(i) [cf(x)]′ = cf ′(x).
(ii) [f(x) + g(x)]′ = f ′(x) + g′(x).
(iii) [f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x).
(iv) [(x + c)n]′ = n(x + c)n−1.

Remark 4.6. The Chain Rule does not hold for derivatives of quaternion polynomials in
general. For example, if f(x) = ax + b ∈ H[x], then

[[f(x)]2]′ = [a2x2 + (ab + ba)x + b2]′ = 2a2x + ab + ba

and
2f(x)f ′(x) = 2(ax + b)a = 2a2x + 2ba.

Hence [[f(x)]2]′ ̸= 2f(x)f ′(x) if ab ̸= ba.

Lemma 4.7. Suppose f(x) has a right factor (ax + b)n, where n ≥ 2, a, b ∈ H, a ̸= 0 and
ab = ba. Then res(f, f ′) = 0.

Proof. First we suppose f(x) = g(x)(x + b)n for some g(x) ∈ H[x]. Then, by Lemma 4.5,

f ′(x) = g′(x)(x + b)n + ng(x)(x + b)n−1

= [g′(x)(x + b) + ng(x)](x + b)n−1.

Both f and f ′ have right factor (x + b)n−1, which is not a unit since n ≥ 2. Hence, by
Theorem 4.3, res(f, f ′) = 0.

For general case, since ab = ba, we have f(x) = g(x)an(x+a−1b)n. Then it follows from
the last paragraph that res(f, f ′) = 0. �

Remark 4.8. The condition ab = ba in the above lemma is necessary. Otherwise, for
example, let f(x) = (ix + j)2. Then f ′ = (−x2 − 1)′ = −2x. Thus

A = SylT (f, f ′) =

−1 0 −1
−2 0 0
0 −2 0


which is a 3 × 3 matrix over R. Hence, res(f, f ′) = ddet(A) = det(AT A) = (det A)2 =
16 ̸= 0.

Definition 4.9 ([8, §16]). An element r ∈ H is said to be a right root of a nonzero
polynomial f(x) ∈ H[x] if x − r is a right divisor of f(x). Furthermore, if (x − r)n for
n ≥ 2 is a right divisor of f(x), then we call r a repeated right root of f(x).

Now we are in a position to prove the following theorem.

Theorem 4.10. Let 0 ̸= f ∈ H[x]. Then f has a repeated right root if and only if
res(f, f ′) = 0.

Proof. If r is a repeated right root of f(x), i.e., f(x) = g(x)(x − r)n for some g(x) ∈ H[x]
and n ≥ 2, then, by Lemma 4.7, res(f, f ′) = 0.

Now we suppose res(f, f ′) = 0. Then, by Theorem 4.3, gcrd(f, f ′) ̸= 1. It is well known
that every polynomial in H[x] can be factorized into a product of linear factors (see, for
example, [9], Section 2). Hence we can write gcrd(f, f ′) = h(x)(x−r) for some h(x) ∈ H[x]
and r ∈ H. Then x−r is a right divisor of both f and f ′. Suppose f(x) = f1(x)(x−r) and
f ′(x) = f2(x)(x − r). Then, by Lemma 4.5, f2(x)(x − r) = f ′(x) = f ′

1(x)(x − r) + f1(x).
Hence f1(x) = (f2(x) − f ′

1(x))(x − r) and thus f(x) = (f2(x) − f ′
1(x))(x − r)2. Therefore,

r is a repeated root of f(x). �
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