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Abstract
This paper is devoted to study the stability analysis of some finite difference schemes for
an inverse problem with unknowns time-dependent coefficients subject to extra measure-
ments. We prove that the popular forward time centered space scheme is a conditional
method. But the backward time centered space and Crank Nicolson methods are suitable
schemes because they are unconditional methods. We justify this advantage of the stabil-
ity analysis versus the some numerical methods with an example. All the results and a
numerical example are in two-dimensional setting.
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1. Introduction
Various types of physical and environmental phenomena such as heat, electrostatic,

electrodynamics, fluid dynamics and pollution could be modelled in the form of partial
differential equations (PDEs) [1, 2, 19, 20]. Usually, in study of these phenomena all data
of problem is available. However, for some practical problems, part of boundary data,
or initial data, or diffusion coefficients, or source term may not be given and we have
to find them by extra measurement data which will yield to some inverse problems like
evolutionary inverse problems, boundary inverse problems, coefficient inverse problems
and source inverse problems, respectively [4, 6, 13,18,22,24,27].

In the past several decades, various numerical techniques have been developed to solve
inverse problems [3, 10, 14, 15, 21]. In these problems extra measurement data are used to
obtain unique solution. Extra measurement of some problems play an important role in
mathematical science, physics and engineering. These problems are widely envisaged in
the modeling of many physical phenomena, namely diffusion and conduction of natural
materials [29].

In this paper, we consider the following coefficient inverse problem with variable coeffi-
cients in a general bounded domain.
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Let Ω ⊆ R2 be a bounded domain with sufficient smooth boundary ∂Ω. The coefficient
inverse problem we considered is to determine unknowns coefficients (ajm(x, t))2

j,m=1 from
the following equations


∂u
∂t (x, t) =

∑2
j,m=1 ajm(x, t)∂2u(x,t)

∂xj∂xm

+ε.∇u(x, t) + d(t)u(x, t), x ∈ Ω, 0 < t ≤ T,
u(x, 0) = f(x), x ∈ Ω̄,
u(x, t) = g(t), x ∈ ∂Ω, 0 ≤ t ≤ T,

(1.1)

subject to extra measurements

u(x∗, t) = E(t), ∇u(x∗, t) = F (t), 0 ≤ t ≤ T, (1.2)

in which x∗ ∈ Ω, d, f , g, E and F are given functions and ε is a constant function. We
assume that (ajm(x, t))2

j,m=1 are sufficiently smooth coefficients.
Certain types of physical problems can be modeled by (1.1) [11, 16, 28]. In recent

decades, various numerical methods have been used to approximate the solution of spacial
case of (1.1). In [6] the author reduced the problem to a nonlinear integral equation. This
approach depends on the explicit form of the fundamental solution of the heat operator
and does not easily extend to the higher dimensional cases. In [4] backward Euler finite
difference method is applied. Also, the discrete version of the maximum principle for
finite difference schemes is used to show the stability of method. The finite element
method is applied by the authors of [7]. Dehghan [8] used several finite difference schemes
for identifying the function u(x, t) and unknown coefficient a(t) in a one dimensional case
of (1.1). It has been shown that these methods are efficient but have not been discussed
about the stability of them.

In this paper, we generalized the problem in [8] and attempt to complete the work
presented in that. We use three finite difference schemes, forward time centered space
(FTCS), backward time centered space (BTCS) and Crank- Nicolson (CN) method for
inverse problem (1.1). Then, we discuss about the stability of them.

Various methods have been constructed for the analysis of stability among them von
Neumann stability analysis is the most common method used to determine the stability.
This method is based on Fourier analysis therefore it is usually limited to linear PDEs
with constant coefficients [23,26]. Although, the condition of linear equation with constant
coefficients are not as restrictive as it might seem. In the case of the equation is nonlin-
ear, we can apply linearization methods and transform it into a linear equation. When
coefficients are not constant, we implement principle of frozen coefficients. According to
this principle, we consider PDEs where coefficients do not change too rapidly. So, such
coefficients can be considered to be almost constant at each point in space and time [9,17].

This paper is organized as follow. In Section 2, we discuss about the von Neumann
stability analysis for some PDEs with variable coefficients. Implementation of FTCS,
BTCS and CN methods for inverse problem (1.1) and determine the stability region of
these methods are presented in Section 3. In Section 4, we give a numerical example to
illustrate our theoretical discussion. Finally, we give a conclusion in Section 5.

2. Von Neumann stability analysis for linear parabolic PDEs with vari-
able coefficients

In this section, we explain how to apply von Neumann stability analysis as presented
in [5] for linear partial differential equations (PDEs) with variable coefficients.

Consider the following problem:
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ut(x, t) = a(x, t)uxx(x, t), x ∈ (0, 1), 0 < t < T,
u(x, 0) = φ(x), x ∈ [0, 1],
u(0, t) = f(t), 0 ≤ t ≤ T,
u(1, t) = g(t), 0 ≤ t ≤ T,

(2.1)

where T is a positive constant, φ(x), f(t), g(t) and a(x, t) are known functions and a(x, t) >
0. In this problem a(x, t) is not constant, so to implement the von Neumann stability
analysis, we use the principle of frozen coefficients. Suppose

QT = {(x, t) | 0 ≤ x ≤ 1, 0 ≤ t ≤ T},

is discretized uniformly into an M ×N mesh with the spatial step size h = 1
M in x direction

and the time step size k = T
N , respectively. Replace the region QT by a set of grid points

(xp, tq) are defined by

{
xp = ph, p = 0, 1, · · · , M,
tq = qk, q = 0, 1, · · · , N,

in which M and N are integers. Assume that φp, f q, gq and uq
p be the notations of finite-

difference approximation of φ(xp), f(tq), g(tq) and u(xp, tq), respectively.
We apply FTCS method to (2.1) (see [25]), so:



uq+1
p − uq

p

k
= a(x, t)

uq
p+1 − 2uq

p + uq
p−1

h2 , p = 1, 2, · · · , M − 1,

q = 0, 1, 2, · · · , N − 1,
u0

p = φp, p = 0, 1, 2, · · · , M,
uq

0 = f q, q = 0, 1, 2, · · · , N,
uq

M = gq, q = 0, 1, 2, · · · , N.

(2.2)

We freeze the coefficient a(x, t) of problem (2.2), on the other hand we assume that a(x, t)
is fixed at each point of space and time. We apply the von Neumann stability analysis to
find the stability region. Also, we assume that the solution is of the form

uq
p := Gqeiβph.

Substitution of the above expression into first equation of (2.2) yields

Gq+1eiβph − Gqeiβph = ra(x, t)[Gqeiβ(p+1)h − 2Gqeiβph + Gqeiβ(p−1)h]. (2.3)
Here G = eiαk is the growth factor such that −π < α < π is the grid wave number and
r = k

h2 . After simplifying equation (2.3), we have

G − 1 = ra(x, t)[eiβh − 2 + e−iβh],
therefore

G = 1 + ra(x, t)[2 cos(βh) − 2]

= 1 − 4ra(x, t) sin2(βh

2
).

The stability condition for (2.2) is |G| ≤ 1. Hence

−1 ≤ 1 − 4ra(x, t) sin2(βh

2
) ≤ 1,

and
r ≤ 1

2a(x, t) sin2(βh

2
)
.



Stability analysis for some numerical schemes... 1327

In order to place the strongest limitation on r, we have to choose βh such that the
right hand side of inequality be minimum. This minimum happens when sin2(βh

2 ) = 1.
Therefore, we have

r ≤ 1
2a(x, t)

. (2.4)

The above relation was achieved by the principle of frozen coefficient [9].
Relation (2.4) can be interpreted in two different ways.

(i) If constant values of k, h and hence r are employed over the entire grid, then we have
to ensure that

r ≤ 1
2 maxx,t a(x, t)

.

(ii) If the time step k changes, then at every time level, k is to be chosen so that

r(t) ≤ 1
2 maxx a(x, t)

.

Let us consider the following problem


ut(x, t) = a(x, t)uxx(x, t) + b(x, t)ux(x, t) + c(x, t)u(x, t), x ∈ (0, 1),

0 < t < T,
u(x, 0) = φ(x), x ∈ [0, 1],
u(0, t) = f(t), 0 ≤ t ≤ T,
u(1, t) = g(t), 0 ≤ t ≤ T,

(2.5)

where T is a positive constant and a, b, c, φ, f and g are given functions, a(x, t) > 0
and c(x, t) ≤ 0 for (0, 1) × (0, T ) . If each of a := a(x, t), b := b(x, t) and c := c(x, t) are
constant, then problem (2.5) has a solution by the form u(x, t) = φ(x) exp(ct).
By applying the FTCS method for (2.5), we have

uq+1
p − uq

p

k
= a

uq
p+1 − 2uq

p + uq
p−1

h2 + b
uq

p+1 − uq
p−1

2h
+ cuq

p,

p = 1, 2, ..., M − 1, q = 0, 1, 2, ..., N − 1.

Substitution of uq
p = Gqeiβph into the above difference equation leads to

G − 1 = ra[eiβh − 2 + e−iβh] + b
k

2h
[eiβh − e−iβh] + ck.

Hence

G ≤ 1 − 4ra sin2(βh

2
) + i(2b

k

h
) sin(βh

2
) cos(βh

2
),

satisfies the von Neumann condition if

| 1 − 4ra sin2(βh

2
) + i(2b

k

h
) sin(βh

2
) cos(βh

2
) |≤ 1.

After simplification above relation, we have

r ≤
2a − b2k cos2(βh

2 )
4a2 sin2(βh

2 )
.

Therefore, the principle of frozen coefficients yields the following stability analysis based
on criterion for the FTCS method to (2.5)

r ≤ 1
2a(x, t)

.
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3. Von Neumann stability analysis for parabolic inverse problem
In this section, we give some theorems on the von Neumann stability analysis based on

different schemes of finite difference for inverse coefficient problem (1.1) in one and two
dimensional case.

Theorem 3.1. If we consider Ω = (0, 1), (ajm(x, t))2
j,m=1 :=

(
a(t) 0
0 0

)
, a(t) > 0,

d(t) ≤ 0 and {εm}2
m=1 := {ε, 0} in (1.1), then the FTCS method for (1.1) is stable

whenever r ≤ 1
2a(t) .

Proof. By using (1.1) and (1.2), we have

a(t) = E′(t) − εF (t) − d(t)E(t)
uxx(x∗, t)

. (3.1)

Thus, problem (1.1) with some tedious manipulation yields the following problem



ut(x, t) = E′(t) − εF (t) − d(t)E(t)
uxx(x∗, t)

uxx(x, t) +εux(x, t) + d(t)u(x, t),

x ∈ Ω, 0 < t ≤ T,
u(x, 0) = f(x), x ∈ Ω̄,
u(0, t) = g1(t), 0 ≤ t ≤ T,
u(1, t) = g2(t), 0 ≤ t ≤ T.

(3.2)

Let v(x, t) = uxx(x, t), then we have



vt(x, t) = E′(t) − εF (t) − d(t)E(t)
v(x∗, t)

vxx(x, t) +εvx(x, t) + d(t)v(x, t),

x ∈ Ω, 0 < t ≤ T,
v(x, 0) = f ′′(x), x ∈ Ω̄,

v(0, t) = g′
1(t) − d(t)g1(t)

E′(t) − εF (t) − d(t)E(t)
v(x∗, t), 0 ≤ t ≤ T,

v(1, t) = g′
2(t) − d(t)g2(t)

E′(t) − εF (t) − d(t)E(t)
v(x∗, t), 0 ≤ t ≤ T.

(3.3)

This problem is nonlinear, therefore if we give the von Neumann stability analysis, then
we have to reduce it to a linear form. For this purpose, we assume w is another solution
of (3.3) that is nearby to v. Their difference satisfies

(vt − wt)(x, t) =
(

E′(t) − εF (t) − d(t)E(t)
v(x∗, t)

vxx(x, t) + εvx(x, t) + d(t)v(x, t)
)

(3.4)

−
(

E′(t) − εF (t) − d(t)E(t)
w(x∗, t)

wxx(x, t) + εwx(x, t) + d(t)w(x, t)
)

.

We linearized (3.4) about w. Define

f(v, vx, vxx) = E′(t) − εF (t) − d(t)E(t)
v(x∗, t)

vxx(x, t) + εvx(x, t) + d(t)v(x, t).

By using an equivalent form of the chain rule for function f(v, vx, vxx), we have
df(v, vx, vxx) = fvdv + fvxdvx + fvxxdvxx. (3.5)

If we replace differentials by small but finite increase, then (3.5) will be

∆f(v, vx, vxx) ≃ fv∆v + fvx∆vx + fvxx∆vxx, (3.6)
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where
∆v = v − w, ∆vx = vx − wx, ∆vxx = vxx − wxx, (3.7)
∆f(v, vx, vxx) = f(v, vx, vxx) − f(w, wx, wxx).

Based on (3.6) and (3.7), the right hand side of (3.5) is as follows:

(d(t) − E′(t) − εF (t) − d(t)E(t)
v2(x∗, t)

vxx)∆v(x, t) (3.8)

+ ε∆vx(x, t) + E′(t) − εF (t) − d(t)E(t)
v(x∗, t)

∆vxx(x, t).

On the other hand, we know that
vt(x, t) = f(v, vx, vxx),

so, we have

∆vt(x, t) ≈ E′(t) − εF (t) − d(t)E(t)
v(x∗, t)

∆vxx(x, t) (3.9)

+ ε∆vx(x, t) +
(

d(t) − E′(t) − εF (t) − d(t)E(t)
v2(x∗, t)

vxx(x, t)
)

∆v(x, t).

Equation (3.9) is linearized of (3.3) and dependent on ∆v. If we compare (3.9) with
equation ut = a(x, t)uxx(x, t) + b(x, t)ux(x, t) + c(x, t)u(x, t), we have

a(x, t) := E′(t) − εF (t) − d(t)E(t)
v(x∗, t)

, b(x, t) := ε,

c(x, t) := d(t) − E′(t) − εF (t) − d(t)E(t)
v2(x∗, t)

vxx(x, t).

According to the principle of frozen coefficients, the necessary condition for stability is

r ≤ v(x∗, t)
2(E′(t) − εF (t) − d(t)E(t))

.

If we replace v(x∗, t) by uxx(x∗, t) and using (3.1), then the proof is complete. �

Theorem 3.2. If we consider Ω = (0, 1), (ajm(x, t))2
j,m=1 :=

(
a(t) 0
0 0

)
, a(t) > 0,

d(t) ≤ 0 and {εm}2
m=1 := {ε, 0} in (1.1), then the BTCS method for (1.1) is uncondition-

ally stable for all r > 0.

Proof. According to the proof of Theorem 3.1, we obtain an equation by the form
ut(x, t) = a(x, t)uxx(x, t) + b(x, t)ux(x, t) + c(x, t)u(x, t). (3.10)

Assume coefficients a(x, t), b(x, t) and c(x, t) are freezed. By applying the BTCS for (3.10),
we have

uq+1
p − uq

p

k
= a(x, t)

uq+1
p+1 − 2uq+1

p + uq+1
p−1

h2 + b(x, t)
uq+1

p+1 − uq+1
p−1

2h
+ c(x, t)uq+1

p , (3.11)

p = 1, 2, ..., M − 1, q = 0, 1, 2, ..., N − 1.

We apply von Neumann stability analysis for (3.11), so

Gq+1eiβph − Gqeiβph =
ra(x, t)[Gq+1eiβ(p+1)h − 2Gq+1eiβph + Gq+1eiβ(p−1)h]
+b(x, t) k

2h [Gq+1eiβ(p+1)h − Gq+1eiβ(p−1)h] + c(x, t)kGq+1eiβph.
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After simplification, we have
G − 1 = ra(x, t)G[eiβh − 2 + e−iβh] + b(x, t) k

2hG[eiβh − e−iβh] + c(x, t)kG

= ra(x, t)G[−4 sin2(βh
2 )] + b(x, t) k

hG[i sin(βh)] + c(x, t)kG.

Thus
G[1 + 4ra(x, t) sin2(βh

2
) − ib(x, t)k

h
sin(βh) − c(x, t)k] = 1.

From above equation, we have

G = 1
1 + 4ra(x, t) sin2(βh

2 ) − ib(x, t) k
h sin(βh) − c(x, t)k

.

So for all r > 0, we have
| G |≤ 1.

We emphasize that if G satisfies | G |≤ 1, then we take c(x, t) ≤ 0. �

Theorem 3.3. If we consider Ω = (0, 1), (ajm(x, t))2
j,m=1 :=

(
a(t) 0
0 0

)
, a(t) > 0,

c(x, t) ≤ 0, d(t) ≤ 0 and {εm}2
m=1 := {ε, 0} in (1.1), then the CN method for (1.1) is

unconditionally stable for all r > 0.

Proof. As seen in the proof of Theorem 3.1, we obtain an equation like (2.5). By imple-
mentation of Crank Nicolson method for (2.5), we have

uq+1
p − uq

p

k
= 1

2a(x, t)
[

uq+1
p+1 − 2uq+1

p + uq+1
p−1

h2 +
uq

p+1 − 2uq
p + uq

p−1
h2

]
+1

2b(x, t)
[

uq+1
p+1−uq+1

p−1
2h + uq

p+1−uq
p−1

2h

]
+ c(x, t)uq

p,

(3.12)

for p = 1, 2, ..., M − 1, and q = 0, 1, 2, ..., N − 1.
If we put uq

p := Gqeiβph in (3.12), we have

G − 1 = 1
2ra(x, t)(2 cos(βh) − 2)(G + 1) + i( k

2h)b(x, t) sin(βh)(G + 1)

+c(x, t)k =
(
−2ra(x, t) sin2(βh

2 ) + i( k
2h)b(x, t) sin(βh)

)
(G + 1) + c(x, t)k.

We put A = −2ra(x, t) sin2(βh
2 ) + i( k

2h)b(x, t) sin(βh), so for all r > 0, we have
G = 1 + A(G + 1) + c(x, t)k ≤ 1 + A(G + 1),

and
| G |≤| 1 + A

1 − A
|

where | 1 − A |≥ 1 and | 1+A
1−A |≤ 1. To prove these inequalities, we have

| 1 − A |2=
(

1 + 2ra(x, t) sin2(βh

2
)
)2

+ 1
4

krb2(x, t) sin2(βh).

It is clear that | 1 − A |2≥ 1 so | 1 − A |≥ 1.
On the other hand

| 1 + A

1 − A
|2 =|

1 − 2ra(x, t) sin2(βh
2 ) + ib(x, t) k

2h sin(βh)
1 + 2ra(x, t) sin2(βh

2 ) − ib(x, t) k
2h sin(βh)

|2

=
(1 − 2ra(x, t) sin2(βh

2 ))2 + rb2(x, t)k
4 sin2(βh)

(1 + 2ra(x, t) sin2(βh
2 )2) + rb2(x, t)k

4 sin2(βh)
.

(3.13)
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Since numerator in (3.13) is less than denominator, therefore | 1+A
1−A |≤ 1, hence (3.12) for

all r > 0 is unconditionally stable. �
Theorem 3.4. Let (ajm(x, t))2

j,m=1 be a symmetric, positive definite 2 × 2 matrix. For
the following problem


ut(x, t) =

∑2
j,m=1 ajm(x, t)∂2u(x,t)

∂xj∂xm

+
∑2

m=1 εmuxm(x, t) + d(t)u(x, t), x ∈ Ω ⊆ R2, 0 < t ≤ T,
u(x, 0) = f(x), x ∈ Ω̄,
u(x, t) = g(t), x ∈ ∂Ω, 0 ≤ t ≤ T.

(3.14)

Subject to extra measurements
u(x∗

1, x∗
2, t) = E(t), ux1(x∗

1, x∗
2, t) = F1(t), (3.15)

ux2(x∗
1, x∗

2, t) = F2(t), 0 ≤ t ≤ T, x∗ ∈ Ω.

If we assume the following conditions, then (3.14) subject to (3.15) has a unique solution
and
u ∈ C4,2(Ω × [0, T ]):
i- f(x) ∈ C4+α(Ω), ∆f(x) > 0 and ∆2f(x∗) > 0, and ∆2f(x) > 0, on Ω.
ii- g(t), E(t), Fj(t) ∈ C2+ α

2 ([0, T ]), Fj(t), E′(t) > 0, d(t) ≤ 0, 0 < gi(t)
E′(t) < 1,

( gi(t)
E′(t))′ > 0 on [0, T ] and here 0 ≤ εm << 0 and j ∈ {1, 2}, i ∈ {1, 2, 3, 4}.

Moreover, if we apply the finite difference methods then
1- The FTCS method is stable whenever r ≤ 1

||(ajm(x,t))2
j,m=1||L∞

.
2- The BTCS method is unconditionally stable for all r > 0.
3- The CN method is unconditionally stable for all r > 0.
Where r = k

||h||2L∞
, h = (h1, h2) the mesh-width in x1 and x2, respectively. Also, k is the

time step size.
Proof. The existence and uniqueness of the solutions to similar of this problem are dis-
cussed in [7]. It is shown [6] that the above conditions lead to [4] an existence and
uniqueness theorem. For the numerical solution of this problem by finite differences one
introduces a grid of mesh points (x1, x2, t) = (xi

1, xj
2, tn). Here xi

1 = ih1, xj
2 = jh2, and

tn = nk, where i, j and n are integers, n ≥ 0. Define h1 and h2 as the mesh width in x1,
x2 direction, respectively and k as the time step. One then seeks an approximate solution
un

ij at these mesh points, determined by an equation obtained by replacing the derivatives
in (3.14) by difference quotients. For functions defined on the grid we introduce thus the
forward, backward and Crank Nicolson methods. By improving the above theorems, we
conclude the results. �

Table 1. L∞ norm for error of u with different methods when r = 0.0001.

t FTCS BTCS CN
0.2 1.7 × 10−3 1.3 × 10−5 2.8 × 10−5

0.4 3.5 × 10−3 4.6 × 10−5 2.4 × 10−6

0.6 4.1 × 10−3 6.7 × 10−5 4.8 × 10−5

0.8 3.9 × 10−3 7.9 × 10−6 3.6 × 10−5

4. Numerical results
In this section, in order to demonstrate the efficiency of our theorems, we apply the

proposed methods that are FTCS, BTCS and CN to solve one example. To show the
accuracy of the methods, we use maximum absolute error.
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Table 2. L∞ norm for error of u with different methods when r = 2.

t FTCS BTCS CN
0.2 4.1 × 10−3 7.1 × 10−5 1.0 × 10−5

0.4 1.1 × 10−2 4.8 × 10−5 1.3 × 10−6

0.6 5.3 × 10−3 1.6 × 10−5 2.8 × 10−5

0.8 2.6 × 10−2 2.3 × 10−6 5.1 × 10−6

Example 4.1. We consider inverse problem (1.1) with

ε = (ε1, ε2)T , ε1 = ε2 = 0.1, d(t) =


−1000t2, 0 < t ≤ T

2 ,

0, T
2 < t ≤ T,

the initial condition
u(x1, x2, 0) = exp(x1 + x2), Ω = [0, 1] × [0, 1],
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Fig. 1. The absolute error of d(t) with L∞ norm for r = 0.0001 related to time .

and the boundary conditions
u(0, 0, t) = g1(t) = exp(t),
u(0, 1, t) = g2(t) = exp(1 + t),
u(1, 0, t) = g3(t) = exp(1 + t),
u(1, 1, t) = g4(t) = exp(2 + t).

We choose x∗
1 = x∗

2 = 0.25, Hence
E(t) = F1(t) = F2(t) = exp(0.5 + t).

Note that the exact solution of this problem is

u(x1, x2, t) = exp(x1 + x2 + t), aj,m(t) = 1
4

(1 − 2ε − d(t)), j, m = 1, 2.

According to Theorem 3.4, we emphasize that d(t) must be non-positive. We solve this
problem at T = 1. Table 1 shows absolute error for u with k = 0.01 and h1 = h2 = 0.001
and hence r = 0.0001. Fig 1 shows the plot of error d(t) for r = 0.0001. We observe that
FTCS, BTCS and CN methods are stable for all positive value of r ≤ 1

∥ajm(x1,x2,t)∥L∞
.

The results obtained for u with k = 0.01, h1 = h2 = 0.07 and hence r = 2 are presented
in Table 2. Also, Table 3 gives the absolute error of u with k = 0.01, h1 = h2 = 0.0025
and r = 40. Figs 2, 3 demonstrate the plot of error d(t), for r = 2 and r = 4, respectively.
In Figs 2, 3 and Tables 2, 3, we observe that for large values of r, BTCS and CN are
stable. On the other hand, the absolute error obtained by applying FTCS is recorded
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Fig. 2. The absolute error of d(t) with L∞ norm for r = 2 related to time .

Table 3. L∞ norm for error of u with different methods when r = 40.

t FTCS BTCS CN
0.2 9.1 × 10−2 2.3 × 10−5 4.6 × 10−5

0.4 7.3 × 10−1 2.8 × 10−6 1.7 × 10−5

0.6 8.1 × 10−2 3.7 × 10−6 3.7 × 10−6

0.8 9.9 × 10−2 5.9 × 10−5 5.6 × 10−6

in the tables. These results of three methods clearly indicate that the value of r is very
important for FTCS and this method is valid only for 0 < r ≤ 1

∥(ajk(x1,x2,t))2
j,m=1∥L∞

.
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Fig. 3. The absolute error of d(t) with L∞ norm for r = 40 related to time .

5. Conclusion
In this paper, we proposed three numerical schemes for solving an inverse problem with

extra measurements. We show that the FTCS scheme is conditional method for solving
an inverse problem. But BTCS and CN methods are suitable schemes because they are
unconditional method. We justified this advantage of the stability analysis versus the
numerical method with an example.
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