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Abstract
A module M is called a simple continuous module if it satisfies the conditions (min − C1)
and (min − C2). A module M is called singular simple-direct-injective if for any singular
simple submodules A, B of M with A ∼= B | M , then A | M . Various basic properties
of these modules are proved, and some well-studied rings are characterized using simple
continuous modules and singular simple-direct-injective modules. For instance, it is shown
that a ring R is a right V -ring if and only if every right R-module is a simple continuous
modules, and that a regular ring R is a right GV -ring if and only if every cyclic right
R-module is a singular simple-direct-injective module.
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1. Introduction and Preliminaries
Throughout this paper, R is an associative ring with identity and all modules are unital
right R-modules. For a module M , we denote by Soc(M) and E(M) the socle and the
injective hull of M , respectively. We write N ≤ M if N is a submodule of M , N ≤e M if
N is an essential submodule of M , N | M if N is a direct summand of M , and N ≤c M
if N is a closed submodule of M .

Recall the following conditions for a module M :
(C1) If each submodule A of M is essential in a direct summand of M ;
(C2) If a submodule A of M is isomorphic to a direct summand of M , then A is a direct

summand of M ;
(C3) K ⊕ L is a direct summand of M whenever K and L are direct summands of M

with K ∩ L = 0;
(min − C1) If each simple submodule A of M is essential in a direct summand of M ;
(min − C2) If a simple submodule A of M is isomorphic to a direct summand of M ,

then A is a direct summand of M .
Let M be a module. M is called a CS module if it satisfies the condition (C1); M is

called a direct-injective module if it satisfies the condition (C2); M is called a continuous
module if it satisfies the conditions (C1) and (C2); M is called a simple-direct-injective
module [5] if it satisfies the condition (min − C2).
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Extending modules (CS-modules) play important roles in rings and categories of mod-
ules, their generalizations and related modules have been studied extensively by many
authors. The concept of simple-direct-injective modules was introduced by V. Camillo, Y.
Ibrahim, M. Yousif and Y. Q. Zhou [5], and some well-studied rings are characterized using
simple-direct-injective modules. Motivated by this, simple continuous modules are given
in Section 2 and V -rings are characterized in terms of simple continuous modules. It is
shown that a ring R is a right V -ring (i.e., every simple right R-module is injective) if and
only if every right R-module is a simple continuous module. In [5], the authors proved that
a ring R is a right V -ring if and only if every right R-module is a simple-direct-injective
module. As a proper generalization of V -rings, the notion of GV -rings was posed by V. S.
Ramamurthi, K. M. Rangaswamy [14]. A ring R is called a right GV -ring if every singular
simple right R-module is injective. Inspired by those, singular simple-direct-injective mod-
ules are introduced in Section 5. It is shown that a ring R is a right GV -ring if and only if
every right R-module is a singular simple-direct-injective module and a regular ring R is a
right GV -ring if and only if every cyclic right R-module is a singular simple-direct-injective
module. For standard definitions we refer to [3, 4, 6–12,15–17].

2. Simple continuous modules
In this section, the notion of simple continuous modules are introduced and some basic

properties of simple continuous modules are proved.

Definition 2.1. A module M is called a simple continuous module if it satisfies the
conditions (min − C1) and (min − C2).

Example 2.2.

(1) ZZ is a simple continuous module, but not a continuous module.
(2) Let M = Zp ⊕ Q, where p is a prime. Then M is a simple continuous Z-module,

but not continuous.
We do not know whether a direct summand of a simple continuous module is a simple

continuous module. We have the following.
Recall that a submodule X of M is called fully invariant if for every h ∈ S, h(X) ⊆ X,

where S = End(M), [13].

Proposition 2.3. Any fully invariant direct summand of a simple continuous module is
a simple continuous module.

Proof. Let M be a simple continuous module and K a fully invariant direct summand of
M . It is easy to see that K satisfies the condition (min − C2). Next we shall show that K
satisfies the condition (min − C1). Let S be a simple submodule of K. Since M satisfies
the condition (min − C1), there is a direct summand H of M such that S ≤e H. Write
M = H ⊕ H ′, then S ⊕ H ′ ≤e M , and hence S ⊕ (H ′ ∩ K) ≤e K. So S ≤e H ∩ K. Since
K is a fully invariant direct summand of M and M = H ⊕ H ′, K = (H ∩ K) ⊕ (H ′ ∩ K)
by [13, Lemma 2.1], as required. �

Recall that a module M is called a (weakly) duo module if any (direct summand)
submodule is a fully invariant submodule of M , [13].

Corollary 2.4. Any direct summand of a simple continuous (weakly) duo is a simple
continuous module.

A module M is said to be a UC-module if every submodule of M has a unique closure
in M , [16].

Proposition 2.5. Let M be a simple continuous UC module. Then any summand of M
is a simple continuous module.
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Proof. Let M be a simple continuous UC module and K a direct summand of M . It
is easy to see that K satisfies the condition (min − C2). Next we shall show that K
satisfies the condition (min − C1). Let S be a simple submodule of K. Since M satisfies
the condition (min − C1), there exists a direct summand H of M such that S ≤e H.
Let L denote the closure of S in K. So that S ≤e L ≤c K, and hence L ≤c M . Thus
S ≤e L ≤c M and S ≤e H ≤c M . Since M is a UC module, L = H. Since H is a direct
summand of M , L is a direct summand of K. Therefore S is essential in a direct summand
L of K, as desired. �
Example 2.6. Z2 and Z8 are simple continuous Z-modules, but Z2 ⊕ Z8 is not a simple
continuous Z-module because the non-summand 0 ⊕Z(4 + 8Z) is isomorphic to the simple
summand Z2 ⊕ 0.

Example 2.7. ([11, Example 2.9]) Let R =
(

F F
0 F

)
, where F is any field. Let A =(

F F
0 0

)
and B =

(
0 0
0 F

)
. It is clear that A and B are simple continuous as R-

modules. However R = A ⊕ B is not simple continuous.

The above two examples show that a direct sum of simple continuous modules need not
be a simple continuous module, so we have the following.

Proposition 2.8. Let M = M1 ⊕ M2, where M1 and M2 satisfy the condition (min − C1)
and M1 is M2-injective, then M satisfies the condition (min − C1).

Proof. Let S be a simple submodule of M . We shall prove that S is essential in a direct
summand of M by considering two cases.

Case 1: S∩M1 = 0. In this case, since M1 is M2-injective, there exists a direct summand
N of M such that N ∼= M2, S ≤ N and M = M1 ⊕ N . Then N satisfies the condition
(min − C1), and so there is a direct summand K of N such that S ≤e K, as required.

Case 2: S ∩ M1 ̸= 0. Since S is simple, S ≤ M1. The rest is obvious.
�

Lemma 2.9 ([5, Lemma 3.3]). If M is an indecomposable module that is not simple, then
M ⊕ E(M) is simple-direct-injective.

Corollary 2.10. If M is a uniform module that is not simple, then M ⊕E(M) is a simple
continuous module.

Proof. It follows by Proposition 2.8 and Lemma 2.9. �
The following examples reveal the relationships among simple-direct-injective modules,

modules satisfying the condition (min − C1) and modules satisfying the condition (C1).

Example 2.11.

(1) Let p be any rational prime and M1 = Zp, M2 = Z∞. Then M = M1 ⊕ M2 satisfies
the condition (min − C1), but not the condition (C1).

(2) Let R =
(

Z2 Z2
0 Z

)
be the upper triangular generalized triangular matrix ring.

Then RR satisfies the condition (min − C1), but not the condition (C1).
(3) Z2 ⊕ Z8 satisfies the condition (min − C1), but it is not a simple-direct-injective

module because the non-summand 0 ⊕ Z(4 + 8Z) is isomorphic to the simple summand
Z2 ⊕ 0.

(4) Let R =
(

F F
0 F

)
, where F is any field. Then RR satisfies the condition (min −

C1), but it is not a simple-direct-injective module. As Soc(RR) is projective, if RR is a
simple-direct-injective module, then R is a mininjective ring by [5, P44]. It is impossible.
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(5) (Björk example) Let F be a field and assume that a 7→ ā is an isomorphism F →
F̄ ⊆ F , where the subfield F̄ ̸= F . Let R denote the left vector space on basis {1, t}, and
make R into an F -algebra by defining t2 = 0 and ta = āt for all a ∈ F . Then R is a right
mininjective ring, and hence RR is a simple-direct-injective module. However, RR does
not satisfy the condition (min − C1).

3. Simple continuous modules and V-rings
In this section, some connections between right V -rings and simple continuous modules

are presented.

Theorem 3.1. The following conditions are equivalent for a ring R:
(1) R is a right V -ring.
(2) Every right R-module is a simple continuous module.
(3) Every finitely cogenerated right R-module is a simple continuous module.
(4) Direct sums of simple continuous modules are simple continuous modules.
(5) Every 2-generated right R-module is a simple continuous module.

Proof. (1) ⇒ (2) ⇒ (3) and (1) ⇒ (5). They are clear.
(3) ⇒ (1) Let S be a simple right R-module. Since S ⊕E(S) is finitely cogenerated, it is

a simple continuous module by hypothesis. Thus S ⊕ E(S) is simple-direct-injective, and
hence S = E(S) by [5, Proposition 2.1]. Therefore S is injective and R is a right V -ring.

(4) ⇒ (1) Let S be a simple right R-module. Since S and E(S) are simple continuous
modules, S ⊕E(S) is a simple continuous module by hypothesis. Thus S ⊕E(S) is simple-
direct-injective, and hence S = E(S) by [5, Proposition 2.1]. Therefore S is injective and
R is a right V -ring.

(5) ⇒ (1) Let S = xR be a simple right R-module and 0 ̸= y ∈ E(S). Then xR ≤e yR.
By hypothesis, xR⊕yR is a simple continuous module, and so it is simple-direct-injective.
Thus, xR = yR by [5, Proposition 2.1] and hence S = E(S). Therefore S is injective and
R is a right V -ring. �

It is well known that a ring R is semisimple if and only if every right R-module is
a continuous module. From Theorem 3.1, if a ring R is a right V -ring which is not
semisimple, then there is a simple continuous module which is not a continuous module.
See the following example.

Example 3.2. Let F be a field and J be an infinite index set. Let R = Πi∈JFi, where
Fi = F for each i ∈ J. Then R is a right V -ring which is not semisimple, and hence there
is a simple continuous module which is not a continuous module.

Proposition 3.3. A regular ring R is a right V -ring if and only if every cyclic right
R-module is a simple continuous module.

Proof. “ ⇒ ”. This is clear by Theorem 3.1.
“ ⇐ ”. Since every cyclic right R-module is a simple continuous module, it is simple-

direct-injective. The rest is obvious by [5, Theorem 4.4]. �
Lemma 3.4. Any direct sum of injective modules is a simple continuous module.

Proof. It is clear by [5, Lemma 3.1]. �
A module M is called strongly soc-injective if for any module N and any semisimple

submodule K of N , every homomorphism f : K → M extends to N , [2].

Lemma 3.5 ([2, Proposition 16]). A module M is strongly soc-injective if and only if
M = E ⊕ T , where E is injective and Soc(T ) = 0.
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Proposition 3.6. The following are equivalent for a ring R:
(1) R is a right noetherian right V-ring;
(2) Every simple continuous module is strongly Soc-injective.

Proof. Similar to [5, Proposition 4.3]. �

4. When are simple continuous modules continuous?
We characterize the rings whose simple continuous modules are continuous.

Lemma 4.1 ([1, Corollary 2.4 and 2.6]). (1) If M = A1 ⊕ A2 is a C3-module and
f : A1 → A2 is an R-monomorphism, then Imf is a direct summand of A2.

(2) If M ⊕ M is a C3-module, then M is a C2-module.

A module is uniserial if the lattice of its submodules is totally ordered under inclusion.
A ring R is called left uniserial if RR is a uniserial module. A ring R is called serial if
both modules RR and RR are direct sums of uniserial modules.

A ring R is said to satisfy the condition (∗) if every finitely generated right R-module
satisfies the condition (min − C1). For instance, a dedekind domain satisfies the condition
(∗).

Theorem 4.2. The following are equivalent for a ring R with the condition (∗):
(1) Every simple continuous right R-module is a C3-module.
(2) Every simple continuous right R-module is continuous.
(3) Every simple continuous right R-module is quasi-injective.
(4) Every right R-module is a direct sum of a semisimple module and a family of

injective uniserial modules of length 2.
(5) R is an artinian serial ring with J(R)2 = 0.

Proof. (3) ⇒ (2) ⇒ (1) They are clear.
(1) ⇒ (4) We claim that R is right artinian. First we show that R is right semiartinian.

Assume on the contrary that M is a right R-module with Soc(M) = 0. If 0 ̸= N ≤ M ,
then Soc(N ⊕ M) = 0 and N ⊕ M is a simple continuous module. Thus N ⊕ M is a
C3-module by hypothesis, and the inclusion map i : N ↪→ M splits by Lemma 4.1. This
shows that M is semisimple, a contradiction. Thus Soc(M) ̸= 0 for every right R-module
M , and hence R is right semiartinian. Next we show that R is right noetherian. It suffices
to show that, for any family Ki(i ∈ I) of simple right R-modules, M = ⊕i∈IE(Ki) is
injective. By Lemma 3.4, M ⊕ E(M) is a simple continuous module, so M ⊕ E(M) is a
C3-module by hypothesis. By Lemma 4.1, the inclusion map i : M ↪→ E(M) splits, and
hence M = E(M) is injective, as required. So R is right noetherian, and hence R is right
artinian.

We next show that every indecomposable injective right R-module E has a unique
composition series of length at most 2. Note that E has a simple socle X and E = E(X).
If E = X, we are done. Suppose that X ⊂ Y ⊆ E. It suffices to show that Y = E. Let
M = Y ⊕ E. Then M is a simple continuous module by Corollary 2.10, and hence M is a
C3-module. So Y = E by Lemma 4.1, as desired.

We now show that every finitely generated indecomposable right R-module has a unique
composition series of length at most 2. To see this, let M be a finitely generated inde-
composable right R-module. If M is simple, we are done. If M is not simple, since R
satisfies the condition (∗), M satisfies the condition (min − C1), and hence M ⊕ E(M)
satisfies the condition (min − C1) by Proposition 2.8. Therefore M ⊕ E(M) is a simple
continuous module by Lemma 2.9. Thus M ⊕ E(M) is a C3-module by hypothesis, and
so M = E(M) is injective by Lemma 4.1. Thus M is an indecomposable injective right
R-module, and, as above, it has a unique composition series of length at most 2.
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Finally, consider an arbitrary right R-module M . Since R is right noetherian, M
contains a maximal injective submodule N . Write M = N ⊕ K, where K contains no
nonzero injective submodules. The injective module N is a direct sum of indecomposable
injective modules each of which has a unique composition series of length at most 2. Thus
there is a decomposition N = E1 ⊕ E2, where E1 is semisimple and E2 is a direct sum
of injective uniserial modules of length 2. So, to finish the proof, it suffices to show that
K is semisimple. Without loss of generality, we may assume that K is a cyclic module.
Since R is right artinian, K is artinian, so it is a direct sum of indecomposable modules.
Therefore we can further assume that K is a cyclic indecomposable module. As above, K
is a uniserial module of length at most 2. If K is of length 2, then K = E(K) because
E(K) is a uniserial module of length at most 2. This contradicts the fact that K contains
no nonzero injective submodules. Hence K is simple, as desired.

The rest follow by [5, Theorem 3.4]. �
Corollary 4.3. A dedekind domain R is semisimple artinian if and only if every simple
continuous module is injective.

Proof. “ ⇒ ” is clear.
“ ⇐ ” if every simple continuous module is injective, then R is a V-ring. But R is

artinian by Theorem 4.2, so R is semisimple artinian. �

5. Singular simple-direct-injective modules and GV-rings
In [5], the authors proved that a ring R is a right V -ring if and only if every right

R-module is a simple-direct-injective module. As a generalization of V -rings, the notion
of GV -rings was posed by V. S. Ramamurthi, K. M. Rangaswamy [14]. A ring R is called
a right GV -ring if every singular simple right R-module is injective. Inspired by those,
singular simple-direct-injective modules are introduced in this Section. It is shown that a
ring R is a right GV -ring if and only if every right R-module is a singular simple-direct-
injective module and a regular ring R is a right GV -ring if and only if every cyclic right
R-module is a singular simple-direct-injective module.

Definition 5.1 ([14]). A ring R is a right GV-ring if each simple right R-module is either
projective or injective if and only if every singular simple right R-module is injective.

Proposition 5.2. The following are equivalent for a module M :
(1) For any singular simple submodules A, B of M with A ∼= B | M , A | M .
(2) For any singular simple summands A, B of M with A ∩ B = 0, A ⊕ B | M .
(3) If M = A1 ⊕ A2 with A1 singular simple and f : A1 → A2 an R-homomorphism,

then Imf | A2.

Proof. (1) ⇒ (2) Let A, B be singular simple summands of M with A ∩ B = 0. Write
M = A ⊕ T for a submodule T ≤ M , and let π : A ⊕ T → T be the canonical projection.
Clearly A ⊕ B = A ⊕ π(B). Since π(B) ∼= B and B is a singular simple summand of M ,
π(B) | M by hypothesis, and so π(B) | T . Thus M = A⊕T = A⊕π(B)⊕K = A⊕B ⊕K
for a submodule K ≤ T ≤ M . Therefore A ⊕ B | M .

(2) ⇒ (3) Without loss of generality we may assume that f ̸= 0. This means that f is
an R-monomorphism. Let T = {a + f(a) : a ∈ A1} be the graph submodule of M . We
claim that M = T ⊕ A2. For, if x ∈ M , then x = a + b, where a ∈ A1, b ∈ A2. Now
x = a + f(a) − f(a) + b ∈ T + A2, and so M = T + A2. If x ∈ T ∩ A2, then x = a + f(a)
for some a ∈ A1, and consequently a = x − f(a) ∈ A1 ∩ A2 = 0. This shows that x = 0,
so M = T ⊕ A2, and T | M . Next we show that A1 ∩ T = 0. For, if x ∈ A1 ∩ T , then
x = a + f(a) for some a ∈ A1, and consequently x − a = f(a) ∈ A1 ∩ A2 = 0. Now, since
f is monic, a = 0, and hence x = 0. Since T ∼= M/A2 ∼= A1 is singular simple, A1 ⊕ T | M
by hypothesis. Finally we show that A1 ⊕ T = A1 ⊕ Imf . For, if x ∈ Imf , then x = f(a)
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for some a ∈ A1, and so x = −a + a + f(a) ∈ A1 + T , and hence A1 ⊕ T = A1 ⊕ Imf .
Since A1 ⊕ T | M , A1 ⊕ Imf | M , and so Imf | A2, as required.

(3) ⇒ (1) Let A, B be singular simple submodules of M with B
σ∼= A | M . We need

to show that B | M . If A ∩ B ̸= 0, there is nothing to prove. Otherwise, assume that
A ∩ B = 0, and write M = A ⊕ T for some submodule T of M . If π : A ⊕ T → T
be the canonical projection, then clearly A ⊕ B = A ⊕ π(B) and π(B) ∼= B is singular
simple. Now, since A is singular simple, M = A ⊕ T , and π |B σ−1 : A → T is monic with
Im(π |B σ−1) = π(B). By hypothesis, π(B) | T . If T = π(B) ⊕ K for some submodule K
of T , then M = A ⊕ T = A ⊕ π(B) ⊕ K = A ⊕ B ⊕ K and B | M , as desired.

�
Definition 5.3. A module M is called singular simple-direct-injective if M satisfies the
equivalent conditions of Proposition 5.2.

Theorem 5.4. The following conditions are equivalent for a ring R:
(1) R is a right GV -ring.
(2) Every right R-module is a singular simple-direct-injective module.
(3) Every finitely cogenerated right R-module is a singular simple-direct-injective mod-

ule.
(4) Direct sums of singular simple-direct-injective modules are singular simple-direct-

injective modules.
(5) Every 2-generated right R-module is a singular simple-direct-injective module.

Proof. Similar to Theorem 3.1. �

Example 5.5. Let R =
(

F F
0 F

)
, where F is any field. Then R is a right GV -ring

and not a right V -ring. Since a ring R is a right V -ring if and only if every right R-
module is simple-direct-injective, there is a singular simple-direct-injective module is not
simple-direct-injective by Theorem 5.4.

Theorem 5.6. A regular ring R is a right GV -ring if and only if every cyclic right R-
module is singular simple-direct-injective.

Proof. “ ⇒ ” is clear by Theorem 5.4.
“ ⇐ ” Let S be a singular simple right R-module and E = E(S) the injective hull of

S. Assume to the contrary, there is a nonzero element x ∈ E such that x∈̄S. Clearly,
S ≤e xR. Define the epimorphism f : R → xR by f(r) = xr, r ∈ R, and set X = Kerf .
Now the map f induces an isomorphism σ : xR → R/X. If T/X = σ(S) is singular simple,
then T/X = (tR+X)/X for some nonzero element t ∈ R. Since R is regular, there is s ∈ R
such that tst = t. If we set e = ts, then e2 = e and T/X = (tR + X)/X = (eR + X)/X.
Inasmuch as S ≤e xR, we infer that T/X is a minimal essential right ideal of R/X. If
M = {r ∈ R : er ∈ X}, then R/M ∼= T/X and M is a maximal right ideal of R.

Now we claim that, for N = M ∩ X, X/N ∼= R/M . To see this, observe first since
(eR + X)/X is a singular simple essential submodule of R/X and ((1 − e)R + X)/X is a
nonzero submodule of R/X, it follows that (eR + X)/X ⊆ ((1 − e)R + X)/X, and hence
e + X = (1 − e)(−r) + X for some r ∈ R. Therefore y = e + (1 − e)r ∈ X, and if we
multiply on the left by e, we get ey = e. Now N = M ∩ X ⊆ X ⊂ T , and if y ∈ N , then
y ∈ M , which implies that ey ∈ X, and so e ∈ X, a contradiction. Thus y∈̄N , and it
follows that X is not contained in M . Now X/N = X/(M ∩ X) ∼= (X + M)/M = R/M .

Next we show that (eR + N)/N ∼= R/M . If g : R → (eR + N)/N is given by g(r) =
er + N , where r ∈ R, then g is a well-defined R-epimorphism. Since M is a maximal right
ideal of R and M ⊆ Kerg, we infer that M = Kerg and (eR+N)/N ∼= R/M , as required.

Next we show that ((1 − e)yR + N)/N ∼= R/M . Observe first that if m ∈ M , then it
follows, from the definition of M and the fact ey = e, that em = eym ∈ X, and hence
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ym ∈ M . Therefore ym ∈ M ∩ X = N , and so yM ⊆ N . Since eM ⊆ N and ey = e, it
follows that eyM ⊆ N , and consequently (1 − e)yM ⊆ yM + eyM ⊆ N . Now if we define
h : R → ((1−e)yR+N)/N by h(r) = (1−e)yr+N , where r ∈ R, then h is a well-defined R-
epimorphism. Since (1−e)yM ⊆ N , it follows that R/M ∼= ((1−e)yR+N)/N , as desired.
Therefore ((1 − e)yR + N)/N ∼= (eR + N)/N ∼= R/M ∼= X/N ∼= (eR + X)/X ∼= T/X ∼= S
are singular simple.

As eM ⊆ N , eN ⊆ eM ⊆ N and N is invariant under left multiplication by e. Therefore
R/N = (eR + N)/N ⊕ ((1 − e)R + N)/N . Since ((1 − e)yR + N)/N ∼= (eR + N)/N and
(eR + N)/N is a singular simple summand of R/N , ((1 − e)yR + N)/N is a singular
simple summand of R/N by hypothesis, and hence ((1−e)yR +N)/N is a singular simple
summand of ((1 − e)R + N)/N . Thus R/N = (eR + N)/N ⊕ ((1 − e)yR + N)/N ⊕ A/N ,
where A/N ≤ R/N .

Finally, we only need to show that R/N = (eR + N)/N ⊕ X/N . Since if this happens,
then (R/N)R has uniform dimension 2. So A/N must be zero and R/N = (eR + N)/N ⊕
((1 − e)yR + N)/N , and consequently R/X ∼= (eR + N)/N is singular simple, a contra-
diction. First, we have (eR + N)/N ∩ X/N = 0. To see this, let er + N = x + N ∈
(eR + N)/N ∩ X/N, r ∈ R, x ∈ X, then er − x ∈ N , and since N ⊆ X, it follows that
er ∈ X. This means r ∈ M , and hence er ∈ N . Therefore (eR + N)/N ∩ X/N = 0. Since
(eR + N)/N and X/N are singular simple submodules of R/N and X/N ∼= (eR + N)/N |
R/N , (eR + N)/N ⊕ X/N is a direct summand of R/N by hypothesis. Hence it suffices to
show that (eR + N)/N ⊕ X/N ≤e R/N . Now, let (aR + N)/N be a nonzero submodule
of R/N . If a ∈ X, then 0 + N ̸= a + N ∈ X/N ⊆ (eR + N)/N ⊕ X/N . Otherwise,
assume that a∈̄X. In this case (aR + X)/X is a nonzero submodule of R/X. Conse-
quently, since (eR + X)/X is a singular simple essential submodule of R/X, it follows
that (eR + X)/X ⊆ (aR + X)/X. Therefore, e + X = ar + X, r ∈ R. Thus ar = e + l for
some l ∈ X and 0+N ̸= ar +N = (e+N)+(l +N) ∈ (eR+N)/N ⊕X/N , as desired. �
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