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Abstract
Integral representations for a generalized Mathieu series and its companions are used to
obtain bounds for their corresponding series. The bounds are procured mainly using
results pertaining to the Čebyšev functional. The relationship to Zeta type functions are
also examined. It is demonstrated that the Zeta companion relations are a particular case
of the generalised Mathieu companions.
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1. Introduction
The series, known in the literature as the Mathieu series,

S (r) =
∞∑
n=1

2n
(n2 + r2)2 , r > 0, (1.1)

has been extensively studied in the past since its introduction by Mathieu [18] in 1890,
where it arose in connection with work on elasticity of solid bodies. The reader is directed
to the references and the books [4] and [23] for further illustration of various representations
and bounds. The various applications areas involve the solution of the biharmonic equation
in a rectangular two dimensional domain using the so called superposition method and the
interested reader is referred to the work of Meleshko ([19–21]) for excellent coverage and
further references. A Literature search in MathScinet with ’Mathieu series’ results in over
700 hits demnostrates that the area continues to attract many avenues of research and
application. See also some of the recent activity such as in [3, 9, 11,22,26,30].

One of the main questions addressed in relation to the series is obtaining sharp bounds.
Building on some results from [33], Alzer, Brenner and Ruehr [1] showed that the best

constants a and b in
1

x2 + a
< S (x) < 1

x2 + b
, x ̸= 0 (1.2)
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are a = 1
2ζ(3) and b = 1

6 where ζ (·) denotes the Riemann zeta function defined by

ζ (p) =
∞∑
n=1

1
np
. (1.3)

An integral representation for S (r) as given in (1.1) was presented in [10] and [12] as

S (r) = 1
r

∫ ∞

0

x

ex − 1
sin (rx) dx. (1.4)

Guo [15] utilised (1.4) to obtain bounds on S (r) . Alternate bounds to (1.1) were obtained
by Qi and coworkers in [27–29].

Guo in [15] posed the interesting problem as to whether there is an integral represen-
tation of the generalized Mathieu series

Sµ (r) =
∞∑
n=1

2n
(n2 + r2)1+µ , r > 0, µ > 0. (1.5)

In [31] an integral representation was obtained for Sm (r) , where m ∈ N, namely

Sm (r) = 2
(2r)mm!

∫ ∞

0

tm

et − 1
cos

(
mπ

2
− rt

)
dt

− 2
m∑
k=1

[
(k − 1) (2r)k−2m−1

k! (m− k + 1)
(− (m+ 1)m− k)

×
∫ ∞

0

tk cos
[
π
2 (2m− k + 1) − rt

]
et − 1

dt

]
. (1.6)

The challenge of Guo [15] to obtain an integral representation for Sµ (r) as defined in (1.5)
was successfully answered by Cerone and Lenard [8] in which the following two theorems
were proved.

Theorem 1.1. The generalized Mathieu series Sµ (r) defined by (1.5) may be represented
in the integral form

Sµ (r) = Cµ (r)
∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx, µ > 0, (1.7)

where

Cµ (r) =
√
π

(2r)µ− 1
2 Γ (µ+ 1)

(1.8)

and Jν (z) is the νth order Bessel function of the first kind.

Theorem 1.2. For m a positive integer we have

Sm (r) = 1
2m−1 · 1

r2m−1 · 1
m

m−1∑
k=0

(−1)⌊
3k
2 ⌋

k!
rk [δk evenAk (r) + δk oddBk (r)] , (1.9)

where

Ak (r) =
∫ ∞

0

xk+1

ex − 1
sin (rx) dx, Bk (r) =

∫ ∞

0

xk+1

ex − 1
cos (rx) dx, (1.10)

with δcondition = 1 if condition holds and zero otherwise and ⌊x⌋ is the largest integer not
greater than x.

The emphasis as in [8], became the derivation of bounds for the generalized Mathieu
series Sµ (r) . The first approach utilized sharp bounds for the Bessel function |Jν (z)| . To
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this end, in an article by Landau [16], the best possible uniform bounds were obtained for
Bessel functions using monotonicity arguments. Landau showed

|Jν (z)| < bL

ν
1
3

(1.11)

uniformly in the argument z > 0 and is best possible in the exponent 1
3 and constant

bL = 2
1
3 sup

z
Ai (z) = 0.674885 · · · , (1.12)

where Ai (z) is the Airy function satisfying

w′′ − zw = 0.

Landau also showed that for z > 0

|Jν (z)| ≤ cL

z
1
3

(1.13)

uniformly in the order ν > 0 and the exponent 1
3 is best possible with

cL = sup
z
z

1
3J0 (z) = 0.78574687 . . . . (1.14)

The following theorem, based on the Landau bounds (1.11) – (1.14), was obtained in
[8].

Theorem 1.3. The generalized Mathieu series Sµ (r) satisfies are bounded above for µ > 1
2

and r > 0

Sµ (r) ≤ bL

√
π

(2r)µ− 1
2

· 1(
µ− 1

2

) 1
3

·
Γ
(
µ+ 3

2

)
Γ (µ+ 1)

ζ

(
µ+ 3

2

)
, (1.15)

and

Sµ (r) ≤ cL ·
√
π

2µ− 1
2 rµ− 1

6
· Γ
(
µ+ 7

6

)
ζ

(
µ+ 7

6

)
, (1.16)

where bL and cL are given by (1.12) and (1.14) respectively.

The following corollary was also obtained in [8] for S (r) = S1 (r). The first of of these
results is corrected below.

Corollary 1.4. The Mathieu series S (r) satisfies the following bounds

S (r) ≤ 3π
2

13
6
bL · ζ

(5
2

)
· 1√

r
(1.17)

and

S (r) ≤ 7cL
36

·
√
π

2
· Γ
(1

6

)
ζ

(13
6

)
· r− 5

6 , (1.18)

where bL and cL are given by (1.12) and (1.14) respectively.

The following results were obtained in [8] using a weighted Čebyšev functional approach.
See also [6] where the approach was utilized for a greater variety of special functions.

Theorem 1.5. For µ > 0 and r > 0 the generalized Mathieu series Sµ (r) satisfies∣∣∣∣∣∣Sµ (r) − π2

12µ
(
r2 + 1

4

)µ
∣∣∣∣∣∣ (1.19)
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≤ κ

 1√
π

·
Γ
(
2µ− 1

2

)
22µ−1Γ2 (µ+ 1)

∫ π
2

0

cos2µ−1 ϕ[(
1
4

)2
+ r2 cos2 ϕ

]2µ− 1
2
dϕ− 1

2µ2
(
r2 + 1

4

)2µ


1
2

≤ κ

Γ
(
2µ− 1

2

)
Γ
(
µ+ 1

2

)
22µΓ3 (µ+ 1)

· 1
r4µ−1 − 1

2µ2
(
r2 + 1

4

)2µ


1
2

,

where

κ =
[
π2
(

1 − π2

72

)
− 7ζ (3)

] 1
2

= 0.3198468959 . . . .. (1.20)

Corollary 1.6. The Mathieu series S (r) , satisfies the following bounds

∣∣∣∣∣∣
∞∑
n=1

2n
(n2 + r2)2 − π2

12
(
r2 + 1

4

)
∣∣∣∣∣∣ ≤ 2

√
2 · κ

 2
1 + (4r)2 − 1[

1 + (2r)2
]2


1
2

(1.21)

where κ is as given by (1.20).

As explained in Pogany et al.[22], motivated by [8], a family of Mathieu a-series were
introduced by Pogany et al.[25] together with their integral representations with various
approaches and results to procure bounds.

The alternating generalized Mathieu series, companion to Sµ (r) ,was introduced by
Pogany et al. [25] and is represented by

S̃µ (r) =
∞∑
n=1

(−1)n−1 · 2n
(n2 + r2)1+µ , r > 0, µ > 0. (1.22)

which can be also expressed in the following integral form

S̃µ (r) = Cµ (r)
∫ ∞

0

xµ+ 1
2

ex + 1
Jµ− 1

2
(rx) dx, µ > 0, (1.23)

where Cµ (r) is as given in (1.8).
In the current paper, further bounds are obtained for the alternating generalized Math-

ieu series S̃µ (r), and the odd ϕµ(r) and even ψµ(r) generalized Mathieu series, as defined
in Section 4. This is accomplished by using their integral representations via Čebyšev
Functional bounds. The methodology produces both the approximation and bounds for
the companion series of the generalized Mathieu series. In Section 5 some properties of
the generalized Mathieu series and its companions are given with an emphasis on the mo-
ments in terms of Beta and Zeta functions. The paper’s emphasis is to analyze the odd
and even counterparts for the generalized Mathieu series as has been accomplished for the
odd and even Zeta functions. It is further demonstrated that the relationship between
the Zeta function, the alternating Zeta function and the odd Zeta function is recaptured
by allowing r− > 0 in the relationship between the generalised ; Mathieu series , the
alternating and odd Mathieu series in Theorem 4.7 and Remark 4.8.

2. Some results on bounding the Čebyšev functional
The weighted Čebyšev functional defined by

T (f, g; p) := M (fg; p) − M (f ; p)M (g; p) , (2.1)
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where M is the weighted integral mean

M (h; p) :=
∫ b
a p (x)h (x) dx∫ b

a p (x) dx
, (2.2)

has been extensively investigated in the literature with the view of determining its bounds.
The unweighted Čebyšev functional T (f, g; 1) ,was bounded by Grüss in [14] by the prod-
uct of the difference of the functions and their function bounds.

There has been much activity in procuring bounds for T (f, g; p) and the interested
reader is referred to [5, 7]. The functional T (f, g; p) is known to satisfy a number of
identities. Included amongst these are identities of Sönin type, namely

P · T (f, g; p) =
∫ b

a
p (t) [f (t) −K] [g (t) − M (g; p)] dt, (2.3)

where K is a constant and,

P =
∫ b

a
p (x) dx . (2.4)

The constant K ∈ R , but in the literature some of the more popular values have been
taken as

0, ∆ + δ

2
, f

(
a+ b

2

)
and M (f ; p) ,

where −∞ < δ ≤ f (t) ≤ ∆ < ∞ and t ∈ [a, b] .
An identity attributed to Körkine viz

P 2 · T (f, g; p) = 1
2

∫ b

a

∫ b

a
p (x) p (y) (f (x) − f (y)) (g (x) − g (y)) dxdy (2.5)

may also easily be shown to hold.

Remark 2.1. For −∞ < δ ≤ f (t) ≤ ∆ < ∞ for t ∈ [a, b] Cerone and Dragomir [7]
showed that

P · |T (f, g; p)| ≤ 1
2

(∆ − δ)
∫ b

a
p (t) |g (t) − M (g; p)| dt (2.6)

≤ 1
2

(∆ − δ)
(∫ b

a
p (t) |g (t) − M (g; p)|α dt

) 1
α

, 1 ≤ α < ∞

≤ 1
2

(∆ − δ) ess sup
t∈[a,b]

|g (t) − M (g; p)| .

Specifically, if −∞ < ϕ ≤ g (t) ≤ Φ < ∞ for t ∈ [a, b] , then

|T (f, g; p)| ≤ 1
2

(∆ − δ)
∫ b

a
p (t) |g (t) − M (g; p)| dt (2.7)

≤ 1
2

(∆ − δ)
[

1
P

∫ b

a
p (t) g2 (t) dt− M2 (g; p)

] 1
2

≤ 1
4

(∆ − δ) (Φ − ϕ) .

The results in (2.6) were obtained from the Sönin type identity (2.3) on taking K = ∆+δ
2 .

It is instructive to show from (2.3) that the best K, in the sense of providing the sharpest
bound for the Euclidean or 2−norm, results when K = M (f ; p) .
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Lemma 2.2. The sharpest bound for the Čebyšev functional involving the Euclidean norm
is given by

P · |T (f, g; p)| ≤ inf
K

[∫ b

a
p (t) (f (t) −K)2 dt

] 1
2
[∫ b

a
p (t) (g (t) − M (g; p))2 dt

] 1
2

=
[∫ b

a
p (t) f2 (t) dt− M2 (f ; p)

] 1
2
[∫ b

a
p (t) g2 (t) dt− M2 (g; p)

] 1
2

.

Proof. From (2.3) we have, on using the Cauchy-Buniakowsky-Schwartz inequality

P · |T (f, g; p)| ≤
(∫ b

a
p (t) (f (t) −K)2 dt

) 1
2
(∫ b

a
p (t) (g (t) − M (g; p))2 dt

) 1
2

.

Now, the sharpest bound is obtained by taking the infimum over K ∈ R. That is

inf
K∈R

(∫ b

a
p (t) (f (t) −K)2 dt

) 1
2

= inf
K∈R

(∫ b

a
p (t)

(
f2 (t) − 2Kf (t) +K2

)
dt

) 1
2

= inf
K∈R

[∫ b

a
p (t) f2 (t) dt+ P ·K (K − 2M (f ; p))

] 1
2

=
(∫ b

a
p (t) f2 (t) dt− P · M2 (f ; p)

) 1
2

,

and the infimum occurs when K = M (f ; p) . �
In the next section Lemma 2.2 is used to obtain bounds for the alternating generalized

Mathieu series S̃µ (r) .
We note that the first inequality in (2.6) results from

|P · T (f, g; p)| ≤ inf
K

∥f (·) −K∥∞

∫ b

a
p (t) |g (t) − M (g; p)| dt (2.8)

≤ ∥f (·) −K∥∞

∫ b

a
p (t) |g (t) − M (g; p)| dt,

which are tighter than those in Lemma 2.2.
However, (2.8) relies on knowing where the shifted functions are positive and where

they are negative. This is not always an easy task.
The first result in (2.6) arises from (2.8) with K = ∆+δ

2 so that∥∥∥∥f (·) − ∆ + δ

2

∥∥∥∥
∞

= sup
t∈[a,b]

∣∣∣∣f (t) − ∆ + δ

2

∣∣∣∣ = ∆ − δ

2
,

where −∞ < δ ≤ f (t) ≤ ∆ < ∞ for t ∈ [a, b] .

3. Bounds for S̃µ (r) via the Čebyšev functional
Bounds on the Čebyšev functional (2.1) may be looked upon as estimating the distance

of the weighted mean of the product of two functions from the product of the weighted
means of the two functions. This proves to be quite useful since the individual means are
invariably easier to evaluate.

Here we investigate the bounding of the alternating generalized Mathieu series, S̃µ (r)
through the identities (1.22) – (1.23). We notice that bounding S̃µ (r) is accomplished via
χ̃µ (r) where

χ̃µ (r) :=
∫ ∞

0

xµ+ 1
2

ex + 1
Jµ− 1

2
(rx) dx µ, r > 0, (3.1)
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since from (1.23)
S̃µ (r) = Cµ (r) χ̃µ (r) , (3.2)

where Cµ (r) is positive as defined in (1.8).
The following technical lemma involving the Euler beta function will be required,

B(x, y) and which is represented in terms of the gamma function by

B(x, y) = Γ(x)Γ(y)
Γ(x+ y)

. (3.3)

Lemma 3.1. The following result holds
1
2

·
B(1

2 , µ)

[α2 + r2]2µ− 1
2

≤
∫ π

2

0

cos2µ−1 ϕ

[α2 + r2 cos2 ϕ]2µ− 1
2
dϕ ≤ 1

2
·
B(1

2 , µ)
α4µ−1 , (3.4)

It is noted that equality follows in (3.4) when r = 0.

Proof. Making the substitution p = r cosϕ gives∫ π
2

0

cos2µ−1 ϕ

[α2 + r2 cos2 ϕ]2µ− 1
2
dϕ = 1

r2µ−1

∫ r

0

p2µ−1

[α2 + p2]2µ− 1
2 ·
√
r2 − p2

dp. (3.5)

Now, since 0 ≤ p ≤ r then
1

α2 + r2 ≤ 1
α2 + p2 ≤ 1

α2

and so from (3.5)
1

r2µ−1 · 1

[α2 + r2]
2µ− 1

2
·
∫ r

0

p2µ−1√
r2 − p2dp ≤ 1

r2µ−1 ·
∫ r

0

p2µ−1

[α2 + p2]2µ− 1
2 ·
√
r2 − p2

dp

≤ 1
α4µ−1 · 1

r2µ−1 ·
∫ r

0

p2µ−1√
r2 − p2dp.

Further, since
∫ r

0
p2µ−1√
r2−p2

dp = r2µ−1 ∫ 1
0

ρ2µ−1√
1−ρ2

dρ = r2µ−1

2 B(1
2 , µ) = r2µ−1

2
Γ( 1

2 )Γ(µ)
Γ(µ+ 1

2 ) where

Γ(1
2) =

√
π then the result (3.4) follows. �

The following lemma examines the behavior of χ̃µ (r) as defined by (3.1)

Lemma 3.2.∣∣∣∣∣∣χ̃µ (r) − 1
2

· (2r)µ− 1
2

√
π

· Γ (µ)(
r2 + 1

4

)µ · π
2

12

∣∣∣∣∣∣
≤ κ̃

Γ
(
2µ− 1

2

)
r2µ−1

π
3
2

∫ π
2

0

cos2µ−1 ϕ[(
1
4

)2
+ r2 cos2 ϕ

]2µ− 1
2
dϕ− 2K2

∗


1
2

, (3.6)

where

K∗ = (2r)µ− 1
2 Γ (µ)

2
√
π
(
r2 + 1

4

)µ is defined in (3.16),

and

κ̃ =

π3

4
− 8 ·G− 2 ·

(
π2

24

)2
 1

2

= 0.29260623049 . . . . (3.7)

and G is Catalan’s constant, ([24, p. 610]).
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Proof. Firstly, we notice that χ̃µ (r) from (3.1) may be written in the form

χ̃µ (r) =
∫ ∞

0
e− x

2 · x

e
x
2 + e− x

2
· xµ− 1

2Jµ− 1
2

(rx) dx. (3.8)

Let
p (x) = e− x

2 , f (x) = x

e
x
2 + e− x

2
, g (x) = xµ− 1

2Jµ− 1
2

(rx) (3.9)

then from (2.2)
P =

∫ ∞

0
p (x) dx =

∫ ∞

0
e− x

2 dx = 2, (3.10)

P · M (f ; p) =
∫ ∞

0
e− x

2 · x

e
x
2 + e− x

2
dx =

∫ ∞

0

x

ex + 1
dx = ζ (2)

2
= π2

12
(3.11)

and

P · M (g; p) =
∫ ∞

0
e− x

2 · xµ− 1
2Jµ− 1

2
(rx) dx = (2r)µ− 1

2 Γ (µ)
√
π

((
1
2

)2
+ r2

)µ , (3.12)

where we have used the fact that [13]

(1 − 2−p) · Γ (p+ 1) ζ (p+ 1) =
∫ ∞

0

xp

ex + 1
dx , (3.13)

to procure (3.11) and from Watson [32, p. 386]∫ ∞

0
e−αx · xνJν (βx) dx = (2β)ν√

π
·

Γ
(
ν + 1

2

)
(α2 + β2)ν+ 1

2
, Re (ν) > 1

2
, Re (α) > |Im (β)| ,

with α = 1
2 , ν = µ− 1

2 , β = r to obtain (3.12).
Now, from (2.1) – (2.4) we have on using (3.9) – (3.12)

χ̃µ (r) − 1
2

· (2r)µ− 1
2

√
π

· Γ (µ)(
r2 + 1

4

)µ · π
2

12

=
∫ ∞

0
e− x

2
(
xµ− 1

2Jµ− 1
2

(rx) −K
)( x

e
x
2 + e− x

2
− π2

24

)
dx. (3.14)

Further, using the Cauchy-Buniakowsky-Schwartz inequality, we have from (3.14)∣∣∣∣∣∣χ̃µ (r) − 1
2

· (2r)µ− 1
2

√
π

· Γ (µ)(
r2 + 1

4

)µ · π
2

12

∣∣∣∣∣∣
≤
(∫ ∞

0
e− x

2
(
xµ− 1

2Jµ− 1
2

(rx) −K
)2
dx

) 1
2

×

∫ ∞

0
e− x

2

(
x

e
x
2 + e− x

2
− π2

24

)2

dx

 1
2

. (3.15)

As mentioned in Section 2, the appropriate choice of K is the weighted integral mean as
given from (3.12), namely

K = K∗ = (2r)µ− 1
2 Γ (µ)

2
√
π
(
r2 + 1

4

)µ . (3.16)

It may be easily shown by expansion that∫ b

a
p (t) [h (t) − M (h; p)]2 dt =

∫ b

a
p (t)h2 (t) dt− P · M2 (h; p) . (3.17)
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The result (3.17) was a by product of the proof of Lemma 2.2.
This result will be utilized to evaluate the two expressions on the right hand side of

(3.15).
Thus from (3.15) we have

∫ ∞

0
e− x

2

(
x

e
x
2 + e− x

2
− π2

24

)2

dx =
∫ ∞

0
e− x

2

(
x

e
x
2 + e− x

2

)2
dx− 2

(
π2

24

)2

. (3.18)

Now, allowing for the permissible interchange of integration and summation, we have∫ ∞

0
e− x

2

(
x

e
x
2 + e− x

2

)2
dx =

∫ ∞

0
e− 3x

2

(
x

1 + e−x

)2
dx (3.19)

=
∫ ∞

0
e− 3x

2 x2
( ∞∑
n=1

(−1)n−1ne−nx
)
dx

=
∞∑
n=1

(−1)n−1n

∫ ∞

0
e−( 2n+1

2 )xx2dx

=
∞∑
n=1

(−1)n−1nΓ (3)(
2n+1

2

)3 =
∞∑
n=1

(−1)n−12n(
n+ 1

2

)3

= 23
∞∑
n=1

(−1)(n−1)
(

1
(2n+ 1)2 −

∞∑
n=1

1
(2n+ 1)3

)

= π3

4
− 8 ·G.

where G =
∑∞
n=0

(−1)n

(2n+1)2 = 0.9159655941772 ([24, p. 610]), Catalan’s constant and∑∞
n=0

(−1)n

(2n−1)3 = π3

32 (see [24, Chapters 24-25]).
In (3.19) we have used the fact that∫ ∞

0
e−αxxpdx = Γ (p+ 1)

αp+1 .

Hence, from (3.18) and (3.19) we have

∫ ∞

0
e− x

2

(
x

e
x
2 + e− x

2
− π2

24

)2

dx

 1
2

=

π3

4
− 8 ·G− 2 ·

(
π2

24

)2
 1

2

. (3.20)

Now, for the first expression on the right hand side of (3.15), we have, on using (3.16) and
(3.17)∫ ∞

0
e− x

2
(
xµ− 1

2Jµ− 1
2

(rx) −K∗
)2
dx =

∫ ∞

0
e− x

2 x2µ−1J2
µ− 1

2
(rx) dx− 2K2

∗ . (3.21)

A result in Watson [32, p. 290] states that∫ ∞

0
e−2atJα (γt) Jβ (γt) tα+βdt

=
Γ
(
α+ β + 1

2

)
π

3
2

γα+β
∫ π

2

0

cosα+β ϕ cos (α− β)ϕ
(a2 + γ2 cos2 ϕ)α+β+ 1

2
dϕ (3.22)
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and so taking a = 1
4 , α = β = µ− 1

2 and γ = r in (3.22) gives∫ ∞

0
e− x

2 x2µ−1J2
µ− 1

2
(rx) dx

=
Γ
(
2µ− 1

2

)
r2µ−1

π
3
2

∫ π
2

0

cos2µ−1 ϕ((
1
4

)2
+ r2 cos2 ϕ

)2µ− 1
2
dϕ (3.23)

That is,[∫ ∞

0
e− x

2
(
xµ− 1

2Jµ− 1
2

(rx) −K∗
)2
dx

] 1
2

=

Γ
(
2µ− 1

2

)
π

3
2

r2µ−1
∫ π

2

0

cos2µ−1 ϕ[(
1
4

)2
+ r2 cos2 ϕ

]2µ− 1
2
dϕ− 2K2

∗


1
2

. (3.24)

Placing (3.24) and (3.20) into (3.15) produces the stated result (3.6). �

Theorem 3.3. For µ > 0 and r > 0, the alternating generalized Mathieu series S̃µ (r)
satisfies the following bounds, ∣∣∣∣∣∣S̃µ (r) − π2

24µ
(
r2 + 1

4

)µ
∣∣∣∣∣∣ (3.25)

≤ κ̃

 1√
π

·
Γ
(
2µ− 1

2

)
22µ−1Γ2 (µ+ 1)

∫ π
2

0

cos2µ−1 ϕ[(
1
4

)2
+ r2 cos2 ϕ

]2µ− 1
2
dϕ− 1

2µ2
(
r2 + 1

4

)2µ


1
2

≤ κ̃

 1
23µ−1µ2(µ− 1

2)B(µ, µ− 1
2)

− 1

2µ2
(
r2 + 1

4

)2µ


1
2

,

where κ̃ is as given by (3.7).

Proof. From (3.2) we have, since Cµ (r), as defined by (1.8), is positive so that using
Lemma 3.2 readily produces the above results (3.25) upon simplification. The coarser
bound results on using Lemma 3.1. �

Corollary 3.4. The alternating Mathieu series. S̃ (r) satisfies the result∣∣∣∣∣∣
∞∑
n=1

(−1)n−1 · 2n
(n2 + r2)2 − π2

24
(
r2 + 1

4

)
∣∣∣∣∣∣ ≤ 2

√
2 · κ̃

 2
1 + (4r)2 − 1[

1 + (2r)2
]2


1
2

, (3.26)

where κ̃ is as given by (3.7).

Proof. Let µ = 1 in (3.25) and using (1.1) and (1.5) gives the above result (3.26), on
noting that

26
∫ π

2

0

cosϕ[
1 + (4r cosϕ)2

] 3
2
dϕ = 64

1 + (4r)2

and after some simplification. �
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Remark 3.5. The result of Theorem 3.3 holds for any µ > 0 and r > 0 whereas those
obtained in [8] were valid for µ > 1

2 .

Remark 3.6. From (3.27) we may infer,since κ̃ > 0,

G <
π3
32

(
1 − π

72

)
= 0.9266678949 . . . . (3.27)

4. Odd and even generalized Mathieu series
Using the generalized Mathieu series, Sµ (r) as given in (1.1) and (1.7)-(1.8) together

with the alternating generalized Mathieu series S̃µ (r) as given in (1.22)-(1.23) we introduce
the odd generalized Mathieu series, ϕµ(r) and the even generalized Mathieu series, ψµ(r).
These are given by

ϕµ(r) := Sµ (r) + S̃µ (r)
2

(4.1)

=
∞∑
n=1

2(2n− 1)
((2n− 1)2 + r2)1+µ

= Cµ (r) · 2
∫ ∞

0

xµ+ 1
2

ex − e−xJµ− 1
2

(rx) dx, r, µ > 0,

and

ψµ(r) := Sµ (r) − S̃µ (r)
2

(4.2)

=
∞∑
n=1

2 · (2n)
((2n)2 + r2)1+µ

= Cµ (r) · 2
∫ ∞

0

xµ+ 1
2

e2x − 1
Jµ− 1

2
(rx) dx, r, µ > 0,

where Cµ (r) is positive as defined in (1.8).

Remark 4.1. It may be noticed that if we have identities for any two of the generalized
Mathieu type series Sµ (r) , S̃µ (r) , ϕµ(r), ψµ(r) then we may deduce the other two. In
particular Sµ(r) = ϕµ(r) + ψµ(r)

2 and S̃µ(r) = ϕµ(r) − ψµ(r)
2 .This however, is not the case

with regards to inequalities or bounds since, recourse to the triangle inequality would
result in a coarser bound. We may further notice that their integral representation may
be given by

2Cµ (r)
∫ ∞

0
H(x) · xµ− 1

2Jµ− 1
2

(rx) dx, r, µ > 0 (4.3)

where Cµ (r) is positive as defined in (1.8)and H(x) is one of the following

HM (x) = x

ex − 1
, HA(x) = x

ex + 1
, HO(x) = x

ex − e−x , HE(x) = x

e2x − 1
, (4.4)

where the subscripts relate to the generalized Mathieu , alternating Mathieu, odd Mathieu
and even Mathieu series integral representations, respectively.

Remark 4.2. It should be emphasized that the H·(·) in (4.4) represent the weights as-
sociated with the integral representation of the generalized Mathieu and its companions.
They satisfy the following conditions

HA(x) < HE(x) < HO(x) < HM (x) , x < ln(2) (4.5)
HE(x) < HA(x) < HO(x) < HM (x) , x > ln(2).
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We will now follow closely the approach of Section 3 in obtaining results pertaining to
the odd and even generalized Mathieu series. The subscripts of O and E will be used to
denote the cases related to ϕµ(r) and ψµ(r) respectively.

We note from (4.1) that
ϕµ(r)

2Cµ (r)
=
∫ ∞

0
HO(x) · xµ− 1

2Jµ− 1
2

(rx) dx, r, µ > 0 (4.6)

where from (4.4)
HO(x) = x

ex − e−x . (4.7)

Theorem 4.3. For µ > 0 and r > 0 the odd generalized Mathieu series ϕµ(r) satisfies the
following relationship, namely, ∣∣∣∣∣ϕµ(r) − π2

4µ (r2 + 1)µ

∣∣∣∣∣ (4.8)

≤ κO

 4Γ
(
2µ− 1

2

)
22µ−1√

πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 ϕ[
(1)2 + r2 cos2 ϕ

]2µ− 1
2
dϕ− 4

µ2 (12 + r2)2µ


1
2

≤ κO

 1
4µ−1µ2(µ− 1

2) ·B
(
µ, µ− 1

2

) − 4
µ2 (12 + r2)2µ

 1
2

,

where,

κO =
[
π2

8
(1 − π2

8
) + 7

8
ζ (3)

] 1
2

and B(x, y) is the Euler beta function given by (3.3).

Proof. We notice that ϕµ(r)
2Cµ(r) from (4.6) and (4.7) may be written in the form

ϕµ(r)
2Cµ (r)

=
∫ ∞

0
e−x · x

1 − e−2x · xµ− 1
2Jµ− 1

2
(rx) dx, r, µ > 0 (4.9)

If we now let
pO (x) = e−x, fO (x) = x

1 − e−2x , g (x) = xµ− 1
2Jµ− 1

2
(rx) (4.10)

then from (2.2)
PO =

∫ ∞

0
pO (x) dx =

∫ ∞

0
e−xdx = 1, (4.11)

PO · M (fO; p) =
∫ ∞

0
e−x · x

1 − e−2xdx = (1 − 2−2) · ζ (2) = π2

8
(4.12)

and

PO · M (g; p) =
∫ ∞

0
e−x · xµ− 1

2Jµ− 1
2

(rx) dx = (2r)µ− 1
2 Γ (µ)√

π (12 + r2)µ
, (4.13)

where we have used the fact that [13]

(1 − 2−(p+1)) · Γ (p+ 1) ζ (p+ 1) =
∫ ∞

0

xp

ex − e−xdx (4.14)

to procure (4.12),and from Watson [32, p. 386]∫ ∞

0
e−αx · xνJν (βx) dx = (2β)ν√

π
·

Γ
(
ν + 1

2

)
(α2 + β2)ν+ 1

2
, Re (ν) > 1

2
, Re (α) > |Im (β)| ,
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with α = 1, ν = µ− 1
2 , β = r to obtain (4.13).

Now, from (2.1) – (2.4) we have on using (3.9) – (3.12)

ϕµ(r)
2Cµ (r)

− (2r)µ− 1
2 Γ (µ)√

π (12 + r2)µ
· π

2

8

=
∫ ∞

0
e−x

(
xµ− 1

2Jµ− 1
2

(rx) −K
)( x

1 − e−2x − π2

8

)
dx. (4.15)

Further, using the Cauchy-Buniakowsky-Schwartz inequality, we have from (3.14)∣∣∣∣∣∣ ϕµ(r)
2Cµ (r)

− (2r)µ− 1
2 Γ (µ)√

π (12 + r2)µ
· π

2

8

∣∣∣∣∣∣
≤
(∫ ∞

0
e−x

(
xµ− 1

2Jµ− 1
2

(rx) −K
)2
dx

) 1
2

×

∫ ∞

0
e−x

(
x

1 − e−2x − π2

8

)2

dx

 1
2

. (4.16)

As mentioned in Section 2, the appropriate choice of K is the weighted integral mean as
given from (4.13), namely

K = K∗ = (2r)µ− 1
2 Γ (µ)√

π (12 + r2)µ
. (4.17)

Now using the result∫ b

a
p (t) [h (t) − M (h; p)]2 dt =

∫ b

a
p (t)h2 (t) dt− P · M2 (h; p) . (4.18)

to evaluate the two expressions on the right hand side of (4.16) produces; firstly,∫ ∞

0
e−x

(
x

1 − e−2x − π2

8

)2

dx =
∫ ∞

0
e−x

(
x

1 − e−2x

)2
dx− 1 ·

(
π2

8

)2

. (4.19)

and secondly, allowing for the permissible interchange of integration and summation, we
have ∫ ∞

0
e−x

(
x

1 − e−2x

)2
dx =

∫ ∞

0
e−x

(
x

1 − e−2x

)2
dx (4.20)

=
∫ ∞

0
e−xx2 · e2x

( ∞∑
n=1

ne−2nx
)
dx

=
∞∑
n=1

n

∫ ∞

0
e−(2n−1)xx2dx

=
∞∑
n=1

nΓ (3)
(2n− 1)3 =

∞∑
n=1

2n
(2n− 1)3

=
∞∑
n=0

(
1

(2n+ 1)2 +
∞∑
n=1

1
(2n+ 1)3

)

= π2

8
+ 7

8
ζ (3)

where
∑∞
n=0

1
(2n+1)n = (1 − 2−n)ζ (n) ([24, p. 602]) and, in (4.20) we have used the fact

that ∫ ∞

0
e−αxxpdx = Γ (p+ 1)

αp+1 .
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Hence, from (4.19) and (4.20) we have

∫ ∞

0
e−x

(
x

1 − e−2x − π2

8

)2

dx

 1
2

=
[
π2

8
(1 − π2

8
) + 7

8
ζ (3)

] 1
2

. (4.21)

Now, for the first expression on the right hand side of (4.16), we have, on using (4.17) and
(4.18)∫ ∞

0
e−x

(
xµ− 1

2Jµ− 1
2

(rx) −K∗
)2
dx =

∫ ∞

0
e−xx2µ−1J2

µ− 1
2

(rx) dx− 1 ·K2
∗ . (4.22)

A result in Watson [32, p. 290] states that

∫ ∞

0
e−2atJα (γt) Jβ (γt) tα+βdt

=
Γ
(
α+ β + 1

2

)
π

3
2

γα+β
∫ π

2

0

cosα+β ϕ cos (α− β)ϕ
(a2 + γ2 cos2 ϕ)α+β+ 1

2
dϕ (4.23)

and so taking a = 1
2 , α = β = µ− 1

2 and γ = r in (4.23) gives

∫ ∞

0
e−xx2µ−1J2

µ− 1
2

(rx) dx =
Γ
(
2µ− 1

2

)
r2µ−1

π
3
2

∫ π
2

0

cos2µ−1 ϕ((
1
2

)2
+ r2 cos2 ϕ

)2µ− 1
2
dϕ (4.24)

That is, from (4.22) and (4.24) we have

[∫ ∞

0
e−x

(
xµ− 1

2Jµ− 1
2

(rx) −K∗
)2
dx

] 1
2

=

Γ
(
2µ− 1

2

)
π

3
2

r2µ−1
∫ π

2

0

cos2µ−1 ϕ[(
1
2

)2
+ r2 cos2 ϕ

]2µ− 1
2
dϕ− 1 ·K2

∗


1
2

. (4.25)

Placing (4.25) and (4.21) into (4.16) produces the stated result (4.8) upon multiplication
by 2Cµ (r) and using (1.8).

For the coarser bound in (4.8) we have from (3.4) of Lemma 3.1

∫ π
2

0

cos2µ−1 ϕ

[12 + r2 cos2 ϕ]2µ− 1
2
dϕ ≤ 1

2
B(1

2
, µ) =

√
πΓ (µ)

2Γ
(
µ+ 1

2

)
and so on substitution into the first result in (4.8) produces the second, upon some sim-
plification. �

Theorem 4.4. For µ > 0 and r > 0 the even generalized Mathieu series ψµ(r) satisfies
the following relationship ∣∣∣∣∣ψµ(r) − π2

6µ (r2 + 22)µ

∣∣∣∣∣ (4.26)
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≤ κE

 4Γ
(
2µ− 1

2

)
22µ−1√

πΓ2 (µ+ 1)

∫ π
2

0

cos2µ−1 ϕ[
(1)2 + r2 cos2 ϕ

]2µ− 1
2
dϕ− 8

µ2 (12 + r2)2µ


1
2

≤ κE

 1
4µ−1µ2(µ− 1

2) ·B
(
µ, µ− 1

2

) − 8
µ2 (12 + r2)2µ

 1
2

,

where,

κE =
[
π2

24
(1 − π2

12
)
] 1

2

(4.27)

and B(x, y) is the Euler beta function given by (3.3).

Proof. (Sketch) The proof follows that of the previous theorem. The subscript E repre-
sents terms related to the even generalized Mathieu series.

Some of the terms are : pE(x) = e−2x, fE(x) = x
1−e−2x and g(x) = xµ−1Jµ− 1

2
(rx) .

Further, PE =
∫∞

0 pE(x)dx = 1
2 , PE · M (fE ; pE) =

∫∞
0 e−2x x

1−e−2xdx =
∫∞

0
x

e2x−1dx =
π2

24 and PE · M (g; pE) =
∫∞

0 e−2x · xµ− 1
2Jµ− 1

2
(rx) dx = (2r)µ− 1

2 Γ(µ)√
π(22+r2)µ .

We omit further details. �
Lemma 4.5. The companion generalised Mathieu series may be expressed in terms of the
generalised Mathieu series, namely,

S̃µ (r) = Sµ (r) − 4−µSµ

(
r

2

)
ϕµ(r) = Sµ (r) − 2−2µ−1Sµ

(
r

2

)
(4.28)

ψµ(r) = 2−2µ−1Sµ

(
r

2

)
.

Proof. From the generalised Mathieu series (1.5) it may be shown that

Sµ

(
r

2

)
= 22µ+1

∞∑
n=1

2 · (2n)
((2n)2 + r2)1+µ (4.29)

and so from (4.2) and (4.29)gives ψµ(r) = 2−2µ−1Sµ
(
r
2
)
,the third result. Further, the

first result of (4.28) readily follows on noting that 2 · ψµ(r) = Sµ (r) − S̃µ (r) . The second
result is procured from 4.1), 2 ·ϕµ(r) = Sµ (r) + S̃µ (r) and substituting the first result for
S̃µ (r) . �
Remark 4.6. It is important to emphasize, as mentioned earlier, that obtaining bounds
for the companions in terms of those of the generalised Mathieu series would produce
inferior bounds from using the triangle inequality required for the first two results in
(4.28).

Theorem 4.7. The following relationship holds,
Sµ (r) = 2ϕµ(r) − S̃µ (r) . (4.30)

Proof. The relationship (4.30) follows easily from (4.28) by subtracting the first equation
from twice the second . �
Remark 4.8. The equation (4.30) recaptures, on allowing r− > 0, the well known result
involving the Zeta function ζ(x)

ζ(x) = 2λ(x) − η(x) (4.31)
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where λ(x) is the odd zeta and η(x) is the alternating zeta and x = 2µ + 1.This demon-
strates that (4.30) is an extention of the Zeta expression (4.31) through the variable r of
Mathieu type functions.

Remark 4.9. The Čebyšev Functional bounds have been used to procure bounds for
the Mathieu family of special functions. Much effort has been expended in the literature
as to various ways of bounding the Mathieu series (1.1). The accuracy of bounds over
perticular regions of parameters cannot be determined a priori ( see also for example
[22],[2] A comparison of the bounds using (1.2) and (3.26) demonstates that the upper
bound for the Mathieu series is better for 0 < r < 0.855662 and for the lower bound, better
over 0 < r < 1.206377 for (3.26) and better for the remainder of r for the bounds (1.2).
It must be remembered however that (3.26)is valid for the more general result involving
parameters r and µ .

5. Some properties of the generalized Mathieu series and its companions

Let

Gµ(r;H) = γµ

∫ ∞

0
H(x)xµ− 1

2 ·
Jµ− 1

2
(rx)

rµ− 1
2

dx, r, µ > 0 (5.1)

where, from (4.4)

γµ =

 Cµ =
√
π

2µ− 1
2 Γ(µ+1)

, for HM (·) and HA(·)

2Cµ , for HO(·) and HE(·)
. (5.2)

The following proposition determines the moments of (5.1). See also [9] where a Mellin
transform has been treated only for the generalised Mathieu series.

Proposition 5.1. The moments of Gµ(r;H) from (5.1) and (5.2)given by

M (k) =
∫ ∞

0
rkGµ(r;H)dr (5.3)

= [1or2]
B(k2 + 1

2 , µ− k
2 + 1

2)
Γ (2µ− k)

∫ ∞

0
x2µ−k−2H(x)dx

where B(x, y) is the Euler beta function given by (3.3) and,

[1or2] =
{

1, for HM (·) and HA(·)
2, for HO(·) and HE(·) . (5.4)

Proof. From from (5.1), (5.2) and (5.3) we have

M (k) = γµ

∫ ∞

0
xµ− 1

2H(x)
∫ ∞

0
rk ·

Jµ− 1
2

(rx)

rµ− 1
2

drdx (5.5)

and so the substitution of ω = rx produces∫ ∞

0
rk ·

Jµ− 1
2

(rx)

rµ− 1
2

dr = xµ−k− 3
2

∫ ∞

0
ωk−(µ− 1

2 ) · Jµ− 1
2

(ω) dω (5.6)

= xµ−k− 3
2 · 2k−µ+ 1

2
Γ
(
k
2 + 1

2

)
Γ
(
µ− k

2

)
where we have used the result∫ ∞

0
ωλ−ν · Jν (ω) dω = 2λ−ν

Γ
(
λ
2 + 1

2

)
Γ(ν − λ

2 + 1
2)
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with ν = µ− 1
2 and λ = k.Thus, substituting (5.6) into (5.5) gives

M (k) = γµ δµ,k

∫ ∞

0
x2µ−k−2H(x)dx (5.7)

where,

δµ,k = 2k−µ+ 1
2

Γ
(
k
2 + 1

2

)
Γ
(
µ− k

2

) . (5.8)

Further, using the duplication formula for the gamma function,√
πΓ (2z) = 22z−1Γ (z) Γ

(
z + 1

2

)
with z = µ−k

2 we have Γ
(
µ− k

2

)
=

√
πΓ(2µ−k)

22µ−k−1Γ(µ− k
2 + 1

2 ) and
so, from (5.2) and (5.8), we have

γµ δµ,k = [1or2]
Γ
(
k
2 + 1

2

)
Γ
(
µ− k

2 + 1
2

)
Γ (µ+ 1) Γ (2µ− k)

(5.9)

Substitution of (5.9) into (5.7) produces the statement of the proposition. �

The following Corollary gives the moments for the generalized Mathieu series and its
companions.

Corollary 5.2. Let the subscript of M,A,O,E indicate the generalized :Mathieu, Alter-
nating, Odd and Even series moments respectively. These are then given by

M
(k)
M = B(k

2
+ 1

2
, µ− k

2
+ 1

2
)ζ (2µ− k) , 2µ− k > 1 (5.10)

M
(k)
A = B(k

2
+ 1

2
, µ− k

2
+ 1

2
)(1 − 2−(2µ−k−1))ζ (2µ− k) , 2µ− k > 0

M
(k)
O = 2B(k

2
+ 1

2
, µ− k

2
+ 1

2
)(1 − 2−(2µ−k))ζ (2µ− k) , 2µ− k > 1

M
(k)
E = 2B(k

2
+ 1

2
, µ− k

2
+ 1

2
)2−(2µ−k)ζ (2µ− k) , 2µ− k > 1

where B(x, y) is the Euler beta function given by (3.3).

Proof. From (5.3) we require to evaluate the integral for the various H(x) representing
each of the generalized Mathieu functions. That is we require to evaluate

M(q;H) =
∫ ∞

0
xq−1H(x)dx (5.11)

where q = 2µ− k − 1 and for each of H(x) as given in (4.4).
Now, for the generalized Mathieu series we have from (4.4)

M(q;HM ) =
∫ ∞

0

xq

ex − 1
dx, q = 2µ− k − 1 (5.12)

= Γ(2µ− k)ζ(2µ− k)
where we have used the result from ([24, p.604, 25.5.1])

ζ(s) = 1
Γ(s)

∫ ∞

0

xs−1

ex − 1
dx, Res > 1 . (5.13)

Substituting (5.12) into (5.3) and noting (5.4) gives the first result.
For the alternating generalized Mathieu series we have from (4.4)

M(q;HA) =
∫ ∞

0

xq

ex + 1
dx, q = 2µ− k − 1 (5.14)

= Γ(2µ− k)(1 − 21−(2µ−k))ζ(2µ− k)
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where we have used the result from ([24, pg.604, 25.5.3])

ζ(s) = 1
(1 − 21−s)Γ(s)

∫ ∞

0

xs−1

ex + 1
dx, Res > 0 . (5.15)

Substituting (5.14) into (5.3) and noting (5.4) gives the second result.
Further for the odd generalized Mathieu series we have from (4.4)

M(q;HO) =
∫ ∞

0

xq

ex − e−xdx, q = 2µ− k − 1 (5.16)

= Γ(2µ− k)(1 − 2−(2µ−k))ζ(2µ− k)
where we have used the result,∫ ∞

0
e−x xq

1 − e−2xdx =
∫ ∞

0
e−x xq

1 − e−2xdx

=
∫ ∞

0
e−xxq

( ∞∑
n=0

e−2nx
)
dx

=
∞∑
n=0

∫ ∞

0
e−(2n+1)xxqdx

=
∞∑
n=0

Γ (q + 1)
(2n+ 1)q+1

= Γ (q + 1) (1 − 2−(q+1))ζ (q + 1)

where
∑∞
n=0

1
(2n+1)s = (1−2−s)ζ (s) , Res > 1 . ([24, p.602, 25.2.2]) and we have allowed

the permissible interchange of integration and summation.
Substituting (5.16) into (5.3) and noting (5.4) gives the third result.
Finally, for the even generalized Mathieu series we have from (4.4)

M(q;HE) =
∫ ∞

0

xq

e2x − 1
dx, q = 2µ− k − 1 (5.17)

= Γ(2µ− k)2−(2µ−k)ζ(2µ− k)
where we have from (5.13)∫ ∞

0

xq

e2x − 1
dx = 2−(q+1)

∫ ∞

0

uq

eu − 1
du

= Γ (q + 1) 2−(q+1)ζ (q + 1)
giving (5.17).

Substituting (5.17) into (5.3) and noting (5.4) gives the last result and thus completing
the proof. �

The generalized Mathieu series Sµ (r) is a positive, decreasing function of both µ and r
for µ > 0, r > 0.

The following interesting results hold (see also [8]).

Corollary 5.3. The generalized Mathieu series as defined in (1.5) satisfies the identity∫ ∞

0
Sµ (r) dr =

√
π ·

Γ
(
µ+ 1

2

)
µΓ (µ)

ζ (2µ) , µ > 0. (5.18)

For m a positive integer, then∫ ∞

0
Sm (r) dr = (−1)m−1 22m−1π2m+ 1

2

m! (2m)!
Γ
(
m+ 1

2

)
B2m, (5.19)
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where Bk are the Bernoulli numbers defined by

x

ex − 1
=

∞∑
k=0

xk

k!
Bk, |x| < 2π.

Proof. From (5.10) we have

M
(0)
M =

∫ ∞

0
Sµ (r) dr = B(1

2
, µ+ 1

2
)ζ (2µ)

where B(1
2 , µ+ 1

2) = Γ( 1
2 )Γ(µ+ 1

2 )
Γ(µ+1) and Γ (µ+ 1) = µΓ (µ) , Γ

(
1
2

)
=

√
π.

Taking µ = m ∈ N in (5.18) gives

∫ ∞

0
Sm (r) dr =

√
πΓ
(
m+ 1

2

)
m!

ζ (2m) . (5.20)

Now, a 1748 result of Euler states that for m ∈ N

ζ (2m) = (−1)m−1 22m−1π2m

(2m)!
B2m. (5.21)

Substitution of (5.21) in (5.20) readily produces the result (5.19). �

Remark 5.4. If we take µ = 1 in (5.18) (or alternatively, m = 1 in (5.20)), then we
recapture the result of Guo [15], namely∫ ∞

0
S1 (r) dr = π3

12
. (5.22)

Remark 5.5. An alternative representation to (5.19) is given in a 1999 paper by Lin in
Chinese (see [17]), namely,

ζ (2m) = Amπ
2m, (5.23)

where Am satisfies the recurrence relation

Am = (−1)m−1 · m

(2m+ 1)!
+
m−1∑
j=1

(−1)j−1

(2j + 1)!
Am−j (5.24)

and by convention the sum is neglected for m = 1 so that A1 = 1
3! .

Thus an equivalent result to (5.19) may be obtained as, from (5.20) and (5.23),

∫ ∞

0
Sm (r) dr =

Γ
(
m+ 1

2

)
m!

π2m+ 1
2 ·Am

with Am being given by (5.24).

Remark 5.6. Similar results to the above Corollary may be obtained for the companion
zeroth moments by taking k =0 in (5.10). These are obviously related, for example,

M
(0)
A = M

(0)
M −M

(0)
E (5.25)

M
(0)
O = 2M (0)

M −M
(0)
E .

Remark 5.7. The moments may be used to approximate the class of generalized Mathieu
series and obtain bounds for the remainders. Further, the current paper has aimed at
investigating odd and even members of generalized Mathieu series, which it is believed
not to have been treated in the literature. Their relationship to the Zeta function has also
been highlighted throughout the paper and in particular in in Theorem 4.7 and Remark
4.8.
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Remark 5.8. The main thrust of the paper has been focused on generalizations based
around the Mathieu series. We may also introduce the alternating odd generalized
Mathieu series

ϕ̃µ(r) =
∞∑
n=1

(−1)n−1 2(2n− 1)
((2n− 1)2 + r2)1+µ (5.26)

= Cµ (r) · 2
∫ ∞

0

xµ+ 1
2

ex + e−xJµ− 1
2

(rx) dx, r, µ > 0.

This is, in part, inspired by the alternating odd zeta function, β(s) =
∑∞
n=1

(−1)n−1

(2n−1)s which
has explicit closed form solution in terms Euler polynomials for s = 2m + 1 whereas
ζ (2m) form ∈ N, is explicitly given in terms of Bernoulli polynomials as seen in (5.21).This
is so since using a limiting argument ϕ̃µ(0) = 4β(2µ+ 1).

This, however, will not be elaborated upon further given space considerations.
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