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Abstract
We define proximately chain refinable functions as a generalization of refinable maps and
investigate some of their properties for Hausdorff paracompact spaces. We prove that
the proximate fixed point property is preserved by proximate near homeomorphisms in
paracompact Hausdorff spaces. This generalizes a previous result of E. Grace.
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1. Introduction
Refinable maps, defined by Ford in [3], are shown to be a very fruitful class of continuous

functions. By changing some of the requirements, Grace in papers [4–6] defined weakly
refinable and proximately refinable functions and he obtained various properties of these
maps. Main theorems usually work for compacta, and in some cases, for continua.

One of the main properties of proximately refinable functions is the preservation of
proximate fixed point property for some types of functions and spaces.

In this paper we define a weaker class than proximately refinable functions, we inves-
tigate some of their properties and we prove a theorem about the proximate fixed point
property in the domain of Hausdorff paracompact spaces.

2. Definitions and notations
Along this paper by a covering we mean an open covering of the space.
If U,V are two coverings of the space X, then V is refinement of U if for every V ∈ V

there exists U ∈ U such that V ⊆ U . We write V ≺ U.
If U ∈ U, then the star of U is the set St(U,U) = {W ∈ U|W ∩ U ̸= ∅} and by StU will

be denoted the collection of all St(U,U), U ∈ U.
By f : X → Y we denote a function (not necessarily continuous) from X to Y and

f : X � Y means that f is a surjective function from X to Y .
Suppose F is an open family of subsets of X and x and y are two points in X. A chain in

F from x and y is a finite sequence F1, F2, ..., Fn of members of F such that x ∈ F1, y ∈ Fn

and Fi ∩ Fi+1 ̸= ∅, for 1 ≤ i ≤ n − 1. We say that the points x and y are chainF−near.
If F ′, F ′′ ∈ F, then a chain from F ′ to F ′′ is a finite sequence F1, F2, ..., Fn of members
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of F such that F ′ ∩ F1 ̸= ∅, F ′′ ∩ Fn ̸= ∅ and Fi ∩ Fi+1 ̸= ∅, for 1 ≤ i ≤ n − 1.
The collection F is said to be connected if for every pair F ′, F ′′ of elements of F there
exists a chain from F ′ to F ′′. For every collection F the components of F are defined as
maximal connected subcollections of F.

Definition 2.1. A covering of the space X is said to be finite component covering if all
of its components are finite.

Definition 2.2. A space X is said to be superparacompact if every covering U of the space
X has a finite component refinement V.

For arbitrary covering V of the topological space X and for V ∈ V by chainV we denote
the set

∪
{W ∈ V| there exists e chain in V from V to W }.

By chainV we denote the covering {chainV | V ∈ V}.
Let f : X → Y be a function and let V be a covering of Y . We say that g : X → Y is

V−near to f if for every x ∈ X, f(x) and g(x) lie in the same member of V.

Definition 2.3. Let X, Y be spaces, and V a covering of Y . The function f : X → Y is
V−continuous, if for any x ∈ X, there exists a neighborhood U of x, such that f(U) ⊆ V
for some member V ∈ V.
(The family of all such U form a covering U of X. Shortly, we say that f : X → Y is
V−continuous, if there exists such an U satisfying f(U) ≺ V.)

Since refinable maps are investigated in the class of compact metric spaces, the domain
best suited to a generalization of refinable maps seems to be the class of paracompact
Hausdorff spaces. These spaces, as a class between compact and normal spaces, fulfill nice
covering properties and provide a rich foundation for future applications. In the following
definitions all spaces are assumed to be Hausdorff and paracompact.

Definition 2.4. Let U be a covering of the space X. The function f : X � Y is strong
U−function if for every y ∈ Y there exists a neighborhood D of y in Y such that f−1(D)
is contained in some member of U.

Definition 2.5. The function f : X � Y is proximately chain refinable if for every cover-
ing V of Y and for every covering U for X, there exists V−continuous strong U−function
g : X � Y which is chainV−near to f .
We say that g is chain (U,V) refinement of f .

Definition 2.6. Let U be a covering of X and V a covering of Y . The bijective function
f : X → Y is (U,V)−homeomorphism if f and f−1 are V,U−continuous, respectively.

Definition 2.7. The function f : X → Y is proximate (chain) near homeomorphism if
for every covering U of X and V of Y there exists (U,V)−homeomorphism g : X → Y
which is V (chainV) near to f .

Definition 2.8. The function f : X → Y is strong chain homeomorphism if for every
covering V of Y there exists a homeomorphism g : X → Y which is chainV−near to f .

It is clear that every proximate chain near homeomorphism is a proximately chain
refinable function.

For arbitrary covering of a connected space, from [9] any two points could be connected
by finite chains, so by considering the papers [5, p.330] and [9, Proposition 1.1], it is
always possible to construct a proximate near chain homeomorphism from an arc X to
a continuum (compact connected metric space) Y , actually every surjection from an arc
to continuum is proximate chain near homeomorphism. As a consequence, proximately
chain refinable functions and proximate chain near homeomorphisms don’t need to be
continuous in all cases.
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3. Properties of proximate chain refinable functions
First, we will show that composition of a proximately chain refinable function with a

strong chain homeomorphism is proximately chain refinable.
The following theorem given in [7] as Proposition 1.3. is an easy consequence of the

definitions of continuous functions over a covering.
Theorem 3.1. Let X, Y and Z be topological spaces and let W be a covering of Y . For
every W−continuous function g : Y → Z, there exists a covering V of Y , such that
g(V) ≺ W and for every V−continuous function f : X → Y the composition g ◦ f is
W−continuous.
Theorem 3.2. Let X, Y and Z be Hausdorff paracompact spaces. If f : X � Y is
proximately chain refinable and g : Y � Z is strong chain homeomorphism, then the
composition h = g ◦ f : X � Z is proximately chain refinable.
Proof. Take W an arbitrary covering of Z and U of X. From Theorem 3.1. for every
W−continuous function G : Y → Z there exists a covering VG of Y , such that for every
VG−continuous function F : X → Y the composition G◦F is W−continuous and G(VG) ≺
W .

Choose g1 : Y → Z to be a homeomorphism which is chainW near to g. There exists a
covering V of Z such that g1(V) ≺ W.

Now, since f is proximately chain refinable, there exists a V−continuous U− strong
function f1 : X � Y which is chainV near to f . Considering the fact that f1 is U−
strong, there exists a covering V2 of Y such that for every V ∈ V2 we have f−1

1 (V ) ⊆ U
for some set U of the covering U.

It is clear that the composition g1 ◦ f1 is W−continuous.
From the fact that g−1

1 is V2−continous it implies that g1 ◦ f1 is U−strong.
Since g and g1 are chainW−near, the pairs of points g(f1(x)), g1(f1(x)) and g1(f(x)),

g(f(x)) are connected by finite chains from the covering W. On the other hand, from
g1(V) ≺ W and considering the fact that f(x), f1(x) are chainV−near it implies that the
points g1(f(x)), g1(f1(x)) are connected by a finite chain from W. This shows that the
composition g1 ◦ f1 is chainW−near to g ◦ f .

We have shown that the composition g1 ◦ f1 is W−continuous U−strong function which
is chainW near to g ◦ f , so g ◦ f is proximately chain refinable. �
Theorem 3.3. Let X be a paracompact Hausdorff and Y a superparacompact Hausdorff
space. If f : X � Y is proximately chain refinable, then for every covering V of Y f is
chainV−continuous.
Proof. Let V be an arbitrary covering of the space Y . From the superparacompactness
of Y by [1, Theorem 2.2] there exists a disjoint refinement W of chainV. Let f1 : X → Y
be a W−continuous function which is chainW−near to f . If x ∈ X, then there exists
a neighborhood U of x such that f1(U) ⊆ W ⊆ chainV for some V ∈ V and W ∈ W.
We have f(U) ⊆ W , because otherwise some point from U will be mapped by f and f1
to different sets of W and that is impossible since f and f1 are chainW = W near. So,
f(U) ⊆ chainV , hence f is chainV−continuous. �

Remark. In the previous theorem we could not assume that every proximately chain
refinable function is V−continuous since the function f : [0, 1] → [0, 1] defined by f(x) = x
for x ∈ [0, 1/2] and f(x) = −x + 3/2 for x ∈ (1/2, 1] is proximately chain refinable, but it
is not V−continuous for

V = {(0, 1/3), (1/4, 3/4), (2/3, 1)}.
Theorem 3.4. Let X be a Hausdorff paracompact and Y a Hausdorff superparacompact
space. If f : X � Y is proximately chain refinable, then X has an isolated point if and
only if Y does.
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Proof. If x is an isolated point of X, then for the covering U = {x} ∪ (X \ {x}) there
exists a (U, {Y }) proximately chain refinement g of f . For the point g(x) ∈ Y there exists
a neighborhood Vg(x) such that g−1(Vg(x)) ⊆ {x}, so Vg(x) = {g(x)}, which implies that
g(x) is an isolated point of Y .

For the opposite, let y be an isolated point of Y and let f(x) = y. Take a covering
V = {y} ∪V′ such that y ̸∈ V ′ for all V ′ ∈ V′. From Theorem 3.3 f is chainV−continuous
so there exists a neighborhood U ⊆ X of x such that f(U) ⊆ {y}. If we suppose that
x′ ̸= x and x′ ∈ U then from the fact that X is Hausdorff there exist neighborhoods Ux, Ux′

of x, x′ respectively, such that Ux ∩ Ux′ = ∅. If we fix a ∈ X \ {x, x′} , again from the fact
that X is Hausdorff, we could find neighborhood Ua of a such that x, x′ ̸∈ Ua. If we take
the covering U = {Ux} ∪ {Ux′} ∪ {Ua|x, x′ ̸∈ Ua} of X, then for the g(U,V)-proximately
chain refinement of f we have g(U) ⊆ {y}. On the other hand, x, x′ ∈ g−1({y}), but in
the covering U we could not find a member containing in the same time the points x, x′,
so x = x′ i.e. U = {x}. Hence x is an isolated point of X. �

4. Proximate near homeomorphisms and the proximate fixed point prop-
erty

Definition 4.1. An Hausdorff paracompact space X has the proximate fixed point property
if for every covering U of X there exists a covering V of X with the property: for every
V−continuous function f : X → X there is a point x ∈ X such that x and f(x) lie together
in some member of U.(In this case we write x is a U invariant point for f).
We say that X has the p.f.p.p..

Example 4.2. The space of integers Z with discrete topology doesn’t have the p.f.p.p..

Proof. If we take the covering U = {{z}|z ∈ Z} and define the function f : Z → Z by
f(z) = z + 1, then f is continuous so it is V−continuous for every covering V of Z. On
the other hand for every z ∈ Z, the points z and f(z) = z + 1 are not connected by a set
from U, so Z doesn’t have the p.f.p.p. �

Every arc, as an absolute retract, has the proximate fixed point property [8, Theorem
6]. On the other hand, there exists a continuum without the p.f.p.p.[4, p.295]. From
the previous discussion there exists a proximate chain near homeomorphism from the arc
onto every continuum, so the proximate fixed point property could not be preserved by
proximate chain near homeomorphisms.

In [4] E. Grace proved that the p.f.p.p. is preserved by proximate near homeomorphisms
for the class of continua.

We will investigate the preservation of p.f.p.p. by proximate near homeomorphisms
in the class of paracompact connected Hausdorff spaces, but first we need the following
lemma.

Lemma 4.3. Let X, Y be Hausdorff paracompact spaces and f : X � Y . If for every
covering V of Y , there exists a V−continuous function g : X � Y which is V near to f ,
then f is continuous.

Proof. Let the assumtions be fulfilled. First we will prove that f is W−continuous for
every covering W of Y .

From paracompactness of Y there exists a covering W1 of Y such that stW1 ≺ W

[2, Theorem 5.1.12]. Take g : X � Y to be a W1−continuous function W1 near f , then
for arbitrary point x of X there exists a neighborhood Ux of x such that g(Ux) ⊆ W1 for
some W1 ∈ W1. On the other hand for x ∈ Ux the points f(x) and g(x) lie in the same
set W2 from W1. There exists a set W ∈ W such that stW1 ⊆ W . From W1 ∩ W2 ̸= ∅ it
implies that W2 ⊆ stW1 ⊆ W . Hence f(Ux) ⊆ W , so f is W−continuous.
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Now, we will prove the continuity of f . Let x ∈ X , f(x) = y. Take an open neighbor-
hood V of y. For every y′ ∈ Y , y ̸= y′ there exists a neighborhood V ′

y such that y ̸∈ V ′
y .

Now, take the covering V = {V ′
y |y′ ̸= y} ∪ {V } of Y . The function f is V−continuous so

there exists a neighborhood Ux of x and a set O from V such that f(Ux) ⊆ O. But, V is
the unique set from V that contains y, so O = V . We showed that f(Ux) ⊆ V , hence f is
continuous. �

Theorem 4.4. Let X, Y be Hausdorff paracompact connected spaces and let f : X � Y
be a proximate near homeomorphism. If X has the p.f.p.p., then Y also has the p.f.p.p..

Proof. Let W be a covering of Y . Similarly as in the previous proof there exists a covering
V of Y such that stV ≺ W. From Lemma 4.3. f is continuous so f(U1) ≺ V for some
covering U1 of X. From the fact that X has the p.f.p.p. there exists a covering U2 of X
such that every U2−continuous function has an U1 invariant point. There exists a bijection
g : X → Y which is V near f , g−1 is U2−continuous and g−1(V1) ≺ U2 for some covering
V1 of Y .

On the other hand, let G : Y → Y be an arbitrary V1−continuous function. We will
show that G has W invariant point.

Taking into consideration Theorem 3.1 and the continuity of f , the composition G ◦ f
is V1−continuous. Now, the function F = g−1 ◦ G ◦ f : X → X is U2−continuous, so it
has an U1 invariant point x.

From F (x), x ∈ U1 ∈ U1, the points f(F (x)), f(x) lie in the same set V from the
covering V. From the fact that g is V near to f we have that the points f(F (x)) =
f(g−1(G(f(x)))), G(f(x)) = g(g−1(G(f(x)))) lie in the same set V ′ ∈ V.

From V ∩ V ′ ̸= ∅, we have f(x), G(f(x)) ∈ stV ′ ∈ stV which proves that f(x) is stV
invariant point for G. From stV ≺ W we have that f(x) is W invariant point for G. Hence
Y has the p.f.p.p.. �

5. Conclusion
For arbitrary coverings of paracompact Hausdorff nonconnected spaces, by investigating

finite chains between images of points, we obtained proximately chain refinable functions
as a new class of noncontinuous functions.

The definition of continuity over a covering allowed us to generalize a result about the
proximate fixed point property from compact metric spaces to paracompact Hausdorff
spaces.

We are curious if the following questions will be affirmative:
Question 1. If f : X � Y is proximately chain refinable and X superparacompact,

does Y needs to be superparacompact?
Question 2. Could we drop the assumption of superparacompactness in Theorem 3.4?

References
[1] D. Buhagiar, T. Miwa and B.A. Pasynkov, Superparacompact type properties, Yoko-

hama Math.J. 46, 71–86, 1998.
[2] R. Engelking, General topology, Heldermann Verlag, 1989.
[3] J. Ford and J.W. Rogers,Jr., Refinable maps, Colloq.Math. 39, 263–269, 1978.
[4] E.E. Grace, Refinable maps and the proximate fixed point property, Proceedings of

the 1985 topology conference, 293–303, 1985.
[5] E.E. Grace, Generalized refinable maps, Proc. Amer. Math. Soc. 98, 329–335, 1986.
[6] E.E. Grace and E.J. Vought, Proximately refinable maps and θ′

n-continua, Topology
Proc. 15, 39–51, 1990.



1442 A. Buklla, G. Markoski

[7] R.W. Kieboom, An intrinsic characterization of the shape of paracompacta by menas
of non-continuous single-valued maps, Bull. Belg. Math. Soc. Simon Stevin, 1, 701–
711, 1994.

[8] V. Klee, Stability of the fixed-point property, Colloq. Math., 8, 43–46, 1961.
[9] N. Shekutkovski, On the concept of the connectedness, Mat. Bilten, 50 (1), 5–14,

2016.


