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Abstract
We show that quantale-valued metric spaces and quantale-valued partial metric spaces
allow natural quantale-valued uniform convergence structures. We furthermore charac-
terize quantale-valued metric spaces and quantale-valued partial metric spaces by these
quantale-valued uniform convergence structures. For special choices of the quantale, the
results specialize to metric spaces and probabilistic metric spaces.
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1. Introduction
Quantale-valued metric spaces, first discussed in [14] in order to establish a categorical

approach to metric spaces, generalize metric spaces by allowing the range of the metric
to be a quantale, the values of which are interpreted as generalized distances between
points. If we choose as quantale Lawvere’s quantale, i.e. the extended half line [0,∞]
ordered opposite to the natural order and with extended addition as quantale operation,
then classical metric spaces are recovered. Choosing as quantale the completely distribu-
tive lattice of distance distribution functions with a sup-continuous triangle function as
quantale operation, then we obtain probabilistic metric spaces [7].

Like metric spaces, also quantale-valued metric spaces allow the definition of under-
lying uniform structures and concepts like completeness can be studied [6]. A similar
generalization for the case of partial metric spaces is e.g. developed in [13]. In this pa-
per, rather than focusing on underlying uniform structures, we develop a framework that
allows to characterize quantale-valued metric spaces by suitable uniform structures. To
this end, we define for each element of the quantale a structure and show that the whole
“tower” of these structures then can be used to characterize quantale-valued metric spaces.
The resulting quantale-valued uniform convergence tower spaces are special instances of a
more general concept introduced recently [11]. In this paper, we will show that the cat-
egory of quantale-valued metric spaces can be coreflectively embedded into the category
of quantale-valued uniform convergence tower spaces and we identify a subcategory that
is isomorphic to the category of quantale-valued metric spaces. In this sense, quantale-
valued metric spaces can be characterized by their quantale-valued uniform convergence
towers. Corresponding results are also achieved for quantale-valued partial metric spaces.
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2. Preliminaries
Let L be a complete lattice with ⊤ ̸= ⊥ for the top element ⊤ and the bottom element

⊥. In any complete lattice L we can define the well-below relation α� β if for all subsets
D ⊆ L such that β ≤

∨
D there is δ ∈ D such that α ≤ δ. Then α ≤ β whenever α � β

and, for a subset B ⊆ L, we have α�
∨
β∈B β iff α�β for some β ∈ B. Sometimes we need

a weaker relation, the way-below relation, α ≺ β if for all directed subsets D ⊆ L such that
β ≤

∨
D there is δ ∈ D such that α ≤ δ. The properties of this relation are similar to the

properties of the well-below relation, replacing arbitrary subsets by directed subsets. But
we have α ∨ β ≺ γ whenever α, β ≺ γ, a property not enjoyed by the well-below relation.
A complete lattice is completely distributive, if and only if we have α =

∨
{β : β�α} for

any α ∈ L and it is continuous if and only if we have α =
∨

{β : β ≺ α} for any α ∈ L,
[9,19]. Clearly α� β implies α ≺ β and hence every completely distributive lattice is also
continuous. For more results on lattices we refer to [9].

The triple L = (L,≤, ∗), where (L,≤) is a complete lattice, is called a commutative and
integral quantale if (L, ∗) is a commutative semigroup for which the top element of L acts
as the unit, and ∗ is distributive over arbitrary joins, i.e. (

∨
i∈J αi) ∗ β =

∨
i∈J(αi ∗ β).

Typical examples of such quantales are e.g. the unit interval [0, 1] with a left-continuous
t-norm [21]. Another important example is given by Lawvere’s quantale, the interval [0,∞]
with the opposite order and addition α∗β = α+β (extended by α+∞ = ∞+a = ∞), see
e.g. [7]. A further noteworthy example is the quantale of distance distribution functions.
A distance distribution function φ : [0,∞] −→ [0, 1], satisfies φ(x) = supy<x φ(y) for
all x ∈ [0,∞]. The set of all distance distribution functions is denoted by ∆+. With
the pointwise order, the set ∆+ then becomes a completely distributive lattice [7] with
top-element ε0. A quantale operation on ∆+, ∗ : ∆+ × ∆+ −→ ∆+, is also called a
sup-continuous triangle function [21].

We consider in the sequel only commutative and integral quantales L = (L,≤, ∗) with
underlying complete lattices that are completely distributive.

For a set X, we denote its power set by P (X) and the set of all filters F,G, ... on X
by F(X). The set F(X) is ordered by set inclusion and maximal elements of F(X) in
this order are called ultrafilters. The set of all ultrafilters on X is denoted by U(X). In
particular, for each x ∈ X, the point filter [x] = {A ⊆ X : x ∈ A} ∈ F(X) is an
ultrafilter. If F ∈ F(X) and f : X −→ Y is a mapping, then we define f(F) ∈ F(Y )
by f(F) = {G ⊆ Y : f(F ) ⊆ G for some F ∈ F}. For filters Φ,Ψ ∈ F(X × X)
we define Φ−1 to be the filter generated by the filter base {F−1 : F ∈ Φ} where
F−1 = {(x, y) ∈ X × X : (y, x) ∈ F} and Φ ◦ Ψ to be the filter generated by the
filter base {F ◦ G : F ∈ Φ, G ∈ Ψ}, whenever F ◦ G ̸= ∅ for all F ∈ Φ, G ∈ Ψ, where
F ◦G = {(x, y) ∈ X ×X : (x, s) ∈ F, (s, y) ∈ G for some s ∈ X}.

For details and notation from category theory we refer to [1] and [18].

3. L-uniform convergence tower spaces, L-limit spaces and L-metric spaces
Let X be a set. A family Λ = (Λα)α∈L with Λα ⊆ F(X ×X) which satisfies the axioms

(LUC1) [(x, x)] ∈ Λα for all x ∈ X,α ∈ L;
(LUC2) Ψ ∈ Λα whenever Φ ≤ Ψ and Φ ∈ Λα;
(LUC3) Φ,Ψ ∈ Λα implies Φ ∧ Ψ ∈ Λα;
(LUC4) Λβ ⊆ Λα whenever α ≤ β;
(LUC5) Φ−1 ∈ Λα whenever Φ ∈ Λα;
(LUC6) Φ ◦ Ψ ∈ Λα∗β whenever Φ ∈ Λα, Ψ ∈ Λβ and Φ ◦ Ψ exists;
(LUC7) Λ⊥ = F(X ×X)
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is called an L-uniform convergence tower on X and the pair (X,Λ) is called an L-uniform
convergence tower space. A mapping f : (X,Λ) −→ (X ′,Λ′) between L-uniform conver-
gence tower spaces is called uniformly continuous if, for all Φ ∈ F(X×X), (f×f)(Φ) ∈ Λ′

α

whenever Φ ∈ Λα. The category of L-uniform convergence tower spaces with uniformly
continuous mappings as morphisms is denoted by L-UCTS. We note that an L-uniform
convergence tower space is a stratified {0, 1}{0, 1}L-uniform convergence tower space in
the definition of [11].

For L = ({0, 1},≤,∧) we obtain uniform convergence spaces [18], for L = ([0, 1],≤, ∗)
with a left-continuous t-norm we obtain probabilistic uniform convergence spaces in the
definition of Nusser [17], for L = (∆+,≤, ∗) we obtain the probabilistic uniform convergence
spaces in [2] and for L = ([0,∞],≥,+) we obtain the approach uniform convergence spaces
of Lee and Windels [15]. It follows from [11] that the category L-UCTS is topological and
Cartesian closed.

An L-uniform convergence tower space (X,Λ) is called principal if
∧
i∈I Φi ∈ Λα when-

ever Φi ∈ Λα for all i ∈ I (α ∈ L). It is called left-continuous if for all subsets M ⊆ L we
have Φ ∈ Λ∨

M whenever Φ ∈ Λα for all α ∈ M .
For (X,Λ) ∈ |L-UCTS|, F ∈ F(X), x ∈ X and α ∈ L we define

x ∈ cΛ
α(F) ⇐⇒ [x] × F ∈ Λα.

It is then not difficult to show that (X, cΛ = (cΛ
α)α∈L) is an L-limit tower space, i.e. satisfies

the axioms (see [12])
(LC1) x ∈ cΛ

α([x]) for all x ∈ X,α ∈ L;
(LC2) cΛ

α(F) ⊆ cΛ
α(G) whenever F ≤ G;

(LC3) cΛ
α(F ∧ G) = cΛ

α(F) ∩ cΛ
α(G);

(LC4) cΛ
β (F) ⊆ cΛ

α(F) whenever α ≤ β;
(LC5) x ∈ cΛ

⊥(F) for all x ∈ X,F ∈ F(X).
For L = ([0, 1],≤, ∗) with a left-continuous t-norm, we obtain the probabilistic limit

spaces of [17, 20]. For Lawvere’s quantale, L = ([0,∞],≥,+), an L-limit tower space is a
limit tower space in the definition of [5] and for L = (∆+,≤, ∗) we obtain the probabilistic
convergence spaces in [10].

An L-metric space [7] is a pair (X, d) of a set X and a mapping d : X ×X −→ L which
satisfies the axioms
(LM1) d(x, x) = ⊤ for all x ∈ X;
(LM2) d(x, y) = d(y, x) for all x, y ∈ X;
(LM3) d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X.
A mapping between two L-metric spaces, f : (X, dX) −→ (X ′, d′) is called an L-metric
morphism if d(x1, x2) ≤ d′(f(x1), f(x2)) for all x1, x2 ∈ X. We denote the category of
L-metric spaces with L-metric morphisms by L-MET.

If we leave away the symmetry axiom (LM2), then we shall speak of an L-quasimetric
space. In case L = ({0, 1},≤,∧), an L-quasimetric space is a preordered set. If L =
([0,∞],≥,+) with the opposite order and extended addition as quantale operation, an L-
metric space is a pseudometric space. If L = (∆+,≤, ∗), an L-metric space is a probabilistic
pseudometric space, see [7].

4. Embedding L-MET into L-UCTS
Let (X, d) ∈ |L-MET|. Define, for α ∈ L, Λdα ⊆ F(X ×X) by

Φ ∈ Λdα ⇐⇒
∨
F∈Φ

∧
(x,y)∈F

d(x, y) ≥ α.
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Lemma 4.1. Let (X, d) ∈ |L-MET|. Then [(x, y)] ∈ Λdα if and only if d(x, y) ≥ α.

Proof. We have, choosing F = {(x, y)} ∈ [(x, y)],
∨
F∈[(x,y)]

∧
(u,v)∈F d(u, v) ≥ d(x, y) and

on the other hand, as (x, y) ∈ F for all F ∈ [(x, y)] we get∨
F∈[(x,y)]

∧
(u,v)∈F d(u, v) ≤

∨
F∈[(x,y)] d(x, y) = d(x, y). �

Proposition 4.2. Let (X, d) ∈ |L-MET|. Then (X,Λd) ∈ |L-UCTS|, and is left-continuous
and principal.

Proof. From d(x, x) = ⊤ ≥ α, we obtain [(x, x)] ∈ Λdα and (LUC1) is valid. (LUC2),
(LUC3) and (LUC6) are obvious. (LUC4) follows from the symmetry of the L-metric.

For (LUC5) let Φ ∈ Λdα and Ψ ∈ Λdβ and let Φ ◦ Ψ exist. Let further α′ � α and β′ � β.
Then there is F ∈ Φ such that for all (x, y) ∈ F we have d(x, y) ≥ α′. Likewise, there is
G ∈ Ψ such that for all (u, v) ∈ G we have d(u, v) ≥ β′. Let (s, t) ∈ F ◦ G. Then there
is r ∈ X such that (s, r) ∈ F and (r, t) ∈ G and hence d(s, t) ≥ d(s, r) ∗ d(r, t) ≥ α′ ∗ β′.
It follows

∨
H∈Φ◦Ψ

∧
(s,t)∈H d(s, t) ≥

∧
(s,t)∈F◦G d(s, t) ≥ α′ ∗ β′. The quantale law and

the complete distributivity of the lattice L yield
∨
H∈Φ◦Ψ

∧
(s,t)∈H d(s, t) ≥ α ∗ β, i.e.

Φ ◦ Ψ ∈ Λdα∗β.
The left-continuity is trivial. To show that (X,Λd) is principal, let Φj ∈ Λdα for all

j ∈ J . Then for all j ∈ J and all ϵ � α there is F ϵj ∈ Φj such that for all (x, y) ∈ F ϵj ,
d(x, y) ≥ ϵ. Define F =

∪
j∈J F

ϵ
j ∈

∧
j∈J Φj . Then for all (x, y) ∈ F we have d(x, y) ≥ ϵ

and hence
∨
F∈

∧
j∈J Φj

∧
(x,y)∈F d(x, y) ≥ ϵ. This is true for all ϵ� α and by the complete

distributivity of L then
∨
F∈

∧
j∈J Φj

∧
(x,y)∈F d(x, y) ≥ α and we obtain

∧
j∈J Φj ∈ Λdα. �

Proposition 4.3. Let f : (X, d) −→ (X ′, d′) be an L-MET-morphism. Then f : (X,Λd) −→
(X ′,Λd′) is uniformly continuous.

Proof. We have, for Φ ∈ Λdα, that∨
G∈(f×f)(Φ)

∧
(u,v)∈G

d′(u, v) ≥
∨
F∈Φ

∧
(u,v)∈(f×f)(F )

d′(u, v)

≥
∨
F∈Φ

∧
(x,y)∈F

d′(f(x), f(y)) ≥
∨
F∈Φ

∧
(x,y)∈F

d(x, y) ≥ α

and therefore (f × f)(Φ) ∈ Λd′
α . �

Hence we have a functor from L-MET into the category of left-continuous and principal
L-uniform convergence tower spaces, LCP-L-UCTS. This functor is injective on objects: If
d ≠ d′ then, without loss of generality, there are x, y ∈ X such that d(x, y) ̸≤ d′(x, y).
Then [(x, y)] ∈ Λdd(x,y) but [(x, y)] /∈ Λd′

d(x,y).
Let (X,Λ) ∈ |L-UCTS|. Define, for x, y ∈ X,

dΛ(x, y) =
∨

[(x,y)]∈Λα

α.

Proposition 4.4. Let (X,Λ) ∈ |L-UCTS|. Then (X, dΛ) ∈ |L-MET|.

Proof. From [(x, x)] ∈ Λ⊤ we obtain dΛ(x, x) = ⊤. The symmetry (LM2) follows from
[(x, y)]−1 = [(y, x)] and (LUC4). Transitivity, (LM3), follows from [(x, y)]◦[(y, z)] = [(x, z)]
and (LUC5). �

Proposition 4.5. Let f : (X,Λ) −→ (X ′,Λ′) be uniformly continuous. Then f : (X, dΛ) −→
(X ′, dΛ′) is an L-MET-morphism.

Proof. We have dΛ′(f(x), f(y)) =
∨

(f×f)([(x,y)])∈Λ′
α
α ≥

∨
[(x,y)]∈Λα α = dΛ(x, y). �
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Proposition 4.6. Let (X, d) ∈ |L-MET|. Then d(Λd) = d.

Proof. We have d(Λd)(x, y) =
∨

[(x,y)]∈Λdα α =
∨
d(x,y)≥α α = d(x, y). �

Proposition 4.7. Let (X,Λ) ∈ |LCP-L-UCTS|. Then Λ(dΛ)
α ⊆ Λα.

Proof. Let Φ ∈ Λ(dΛ)
α . Then

∨
F∈Φ

∧
(x,y)∈F

∨
[(x,y)]∈Λβ β ≥ α. Let δ � α. Then there is

F δ ∈ Φ such that for all (x, y) ∈ F there is β ≥ δ such that [(x, y)] ∈ Λβ ⊆ Λδ, by (LUC3).
As (X,Λ) is principal, we get

∧
(x,y)∈F δ [(x, y)] = [F δ] ∈ Λδ and hence, as [F δ] ≤ Φ with

(LUC2) we obtain Φ ∈ Λδ. This is true for all δ � α and from the left-continuity and the
complete distributivity of L we finally get Φ ∈ Λα. �

Theorem 4.8. L-MET can be coreflectively embedded into LCP-L-UCTS.

Remark 4.9 (Quasimetric case). If we leave away the symmetry requirement (LM2)
in the definition of an L-metric space (X, d), then (X,Λd) does not satisfy the symmetry
axiom (LUC4) and conversely, if (X,Λ) does not satisfy (LUC4), then (X, dΛ) does not
satisfy (LM2). All other results of this section remain valid, so that we can say that the
category of L-quasimetric spaces (where d : X ×X −→ L satisfies (LM1) and (LM3)) can
be coreflectively embedded into the category of L-quasiuniform tower spaces (X,Λ) (where
the axioms (LUC1)-(LUC7) without (LUC4) are satisfied).

Remark 4.10. In [2] for the case L = (∆+,≤, ∗) we embedded the category of probabilistic
metric spaces into the category of probabilistic uniform convergence tower spaces in a
different way. Following Tardiff [22], we define for an L-metric space (X, d), ϵ > 0 and
φ ∈ ∆+ the (φ, ϵ)-entourage by

Nφ,ϵ = {(x, y) ∈ X ×X : d(x, y)(u+ ϵ) + ϵ ≥ φ(u) ∀u ∈ [0, 1
ϵ

)}.

and define the φ-entourage filter, Nφ, as the filter generated by the sets Nφ,ϵ, ϵ > 0. If we
define

Φ ∈ Λ̃dφ ⇐⇒ Φ ≥ Nφ

then we obtain a left-continuous and principal L-uniform convergence tower space (X, Λ̃d).
We will show that this L-unform convergence tower space coincides with the L-uniform
convergence tower space (X,Λd) and we need the following results from [22]. For φ ∈ ∆+

and 0 ≤ ϵ ≤ 1 we define φϵ ∈ ∆+ by

φϵ(u) =


0 if u = 0

(φ(u+ ϵ) + ϵ) ∧ 1 if 0 < u ≤ 1
ϵ

1 if u > 1
ϵ .

Clearly then φ ≤ φϵ and Tardiff [22] shows that (x, y) ∈ Nφ,ϵ if and only if d(x, y)ϵ ≥ φ
and φ ≥ ψ if and only if for all ϵ > 0 we have φϵ ≥ ψ. The last assertion implies that for
φ ∈ ∆+ we have φ =

∧
ϵ>0 φ

ϵ. We will need the following results [12].
(∗) Let φj ∈ ∆+ for all j ∈ J and let 0 ≤ ϵ ≤ 1. Then (

∨
j∈J φj)ϵ =

∨
j∈J(φϵj) and

(
∧
j∈J φj)ϵ =

∧
j∈J(φϵj).

(∗∗) (Cf. [16], Proposition 1.8.29) Let U ∈ U(X) be an ultrafilter and f : X −→ L be
a mapping. Then

∨
U∈U

∧
y∈U f(y) =

∧
U∈U

∨
y∈U f(y).

Let first Φ ≥ Nφ. Then, for ϵ > 0, we have∨
F∈Φ

∧
(x,y)∈F

d(x, y)ϵ ≥
∧

(x,y)∈Nφ,ϵ

d(x, y)ϵ ≥ φ.
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From (∗) we conclude

φ ≤
∧
ϵ>0

∨
F∈Φ

∧
(x,y)∈F

d(x, y)ϵ =
∧
ϵ>0

(
∨
F∈Φ

∧
(x,y)∈F

d(x, y))ϵ =
∨
F∈Φ

∧
(x,y)∈F

d(x, y)

and we have Φ ∈ Λdφ.
Let now Φ ∈ Λdφ and U ≥ Φ be an ultrafilter and ψ � φ. Then, by (∗∗),∧

U∈U

∨
y∈U

d(x, y) =
∨
U∈U

∧
y∈U

d(x, y) ≥ φ� ψ,

and hence, for all U ∈ U there is (xψ, yψ) ∈ U such that d(xψ, yψ)ϵ ≥ d(xψ, yψ) ≥ ψ.
But this means (xψ, yψ) ∈ Nψ,ϵ for all ϵ > 0. So we conclude that for all U ∈ U we have
Nψ,ϵ ∩U ̸= ∅, and hence, U being an ultrafilter, Nψ,ϵ ∈ U for all ϵ > 0. Therefore Nψ ≤ U
for all ultrafilters U ≥ Φ and we conclude Nψ ≤ Φ. Therefore Φ ∈ Λ̃dψ for all ψ � φ and
from the left-continuity then also Φ ∈ Λ̃dφ.

5. A subcategory of L-UCTS isomorphic to L-MET
We introduce the following axiom (LUM) for an L-uniform convergence tower space.

(LUM) ∀U ∈ U(X ×X), α ∈ L:
U ∈ Λα ⇐⇒ ∀U ∈ U, β � α∃(x, y) ∈ U s.t. [(x, y)] ∈ Λβ.

A similar axiom in the realm of probabilistic convergence spaces was first introduced in
[4].

Proposition 5.1. Let (X, d) ∈ |L-MET|. Then (X,Λd) satisfies (LUM).

Proof. Let first U ∈ Λdα and let β � α and U ∈ U. Then there is Uβ ∈ U such
that for all (x, y) ∈ Uβ we have d(x, y) ≥ β. We choose (x, y) ∈ U ∩ Uβ. Then∨
F∈[(x,y)]

∧
(u,v)∈F d(u, v) ≥

∧
(u,v)∈U∩Uβ d(u, v) ≥ β and this means [(x, y)] ∈ Λdβ.

Let now, for all U ∈ U, β � α exist (x, y) ∈ U such that [(x, y)] ∈ Λdβ. We define
N =

∧
Φ∈Λd

β
Φ ∈ Λdβ and let N ∈ N. By the condition, then for U ∈ U there is (x, y) ∈ U

such that [(x, y)] ∈ Λdβ and hence N ≤ [(x, y)] and we conclude (x, y) ∈ N ∩ U . Therefore
N ∨ U exists and U being ultra, this implies U ≥ N. Hence U ∈ Λdβ. This is true for all
β � α and by left-continuity this implies U ∈ Λdα. �

We call a space (X,Λ) ∈ |L-UCTS| which is left-continuous, principal and satisfies the
axiom (LUM) an L-metric uniform convergence tower space and denote the category of
these spaces by L-MUCTS.

Proposition 5.2. Let (X,Λ) ∈ |L-MUCTS|. Then Λ(dΛ)
α = Λα.

Proof. We need to show that Λα ⊆ Λ(dΛ)
α . Let U ∈ Λα be an ultrafilter. By the property

(LUM), then for β � α with Nβ = {(x, y) : [(x, y)] ∈ Λβ} we have U ∩ Nβ ̸= ∅
and hence Nβ ∈ U. Furthermore, for [(x, y)] ∈ Λβ, we have dΛ(x, y) ≥ β and hence∨
U∈U

∧
(u,v)∈U d

Λ(u, v) ≥
∧

(u,v)∈Nβ d
Λ(u, v) ≥ β, i.e. U ∈ Λ(dΛ)

β . This is true for all β � α

and by the left-continuity then also U ∈ Λ(dΛ)
α . As Λ(dΛ) is principal and Φ =

∧
U≥Φ ultra U,

the claim follows. �

Theorem 5.3. The categories L-MUCTS and L-MET are isomorphic.

Remark 5.4. For L = (∆+,≤, ∗) with a continuous triangle function ∗ (see [21]), we
introduced a different axiom that ensured the isomorphy of L-MUCTS and L-MET. A
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space (X,Λ) ∈ |L-UCTS| satisfies the axiom (PUM) if for all ultrafilters Φ ∈ F(X × X)
and all φ ∈ ∆+

Φ ∈ Λφ ⇐⇒

∀ϕ ∈ Φ, ϵ > 0∃(x, y) ∈ ϕ s.t.
∨

ψ:[(x,y)]∈Λψ

ψ(s+ ϵ) + ϵ ≥ φ(s)∀s ∈ [0, 1
ϵ

).

With the notation of this paper and of Remark 4.10 then d(Λ̃d) = d and if (X,Λ) is left-
continuous and principal, then Λ̃(dΛ)

φ (Φ) = Λφ(Φ) for all φ ∈ ∆+ and all Φ ∈ F(X × X).
It follows from this, that for an L-uniform convergence tower space (X,Λ) that is left-
continuous and principal, the axioms (PUM) and (LUM) are equivalent. In fact, if (PUM)
is true, then Λ̃(dΛ)

φ = Λφ and hence, using Remark 4.10, then also Λ(dΛ)
φ = Λφ and as dΛ is

an L-metric on X we know that (X,Λ) = (X,Λ(dΛ)) satisfies (LUM). A similar argument
shows that (LUM) implies (PUM).

6. The L-uniform tower of an L-metric space
Let (X, d) be an L-metric space and let ϵ ∈ L, ϵ ≺ ⊤. We define

Uϵ = {(x, y) ∈ X ×X : d(x, y) ≻ ϵ}.

Then, for α ∈ L, the collection of all Uϵ with ϵ ≺ α is a filter basis. As (x, x) ∈ Uϵ for all
ϵ ≺ ⊤, none of the Uϵ is empty. Moreover we have Uϵ∨δ ⊆ Uϵ ∩ Uδ and for ϵ, δ ≺ α, also
ϵ ∨ δ ≺ α. We define Udα = [{Uϵ : ϵ ≺ α}] as the filter on X ×X generated by this filter
basis.

Lemma 6.1. Let (X, d) ∈ |L-MET| and let α ∈ L. Then Udα =
∧

Φ∈Λdα Φ.

Proof. We have
∨
F∈Udα

∧
(x,y)∈F d(x, y) ≥

∨
ϵ≺α

∨
(x,y)∈Uϵ d(x, y) ≥

∨
ϵ≺α ϵ = α. Hence

Udα ∈ Λdα and therefore Udα ≥
∧

Φ∈Λdα Φ. For the converse, let U ∈ Udα. Then there is ϵ ≺ α

such that Uϵ ⊆ U . We have, for Φ ∈ Λdα, that
∨
F∈Φ

∧
(x,y)∈F d(x, y) ≥ α ≻ ϵ. Noting that

the set {
∧

(x,y)∈F d(x, y) : F ∈ Φ} is directed, there is F ϵ ∈ Φ such that F ϵ ⊆ Uϵ ⊆ U

and hence U ∈ Φ. This shows Udα ≤
∧

Φ∈Λdα Φ. �

Remark 6.2. For the case L = (∆+,≤, ∗) we conclude with Remark 4.10 that the φ-
entourage filter Nφ from [2] and Udφ coincide.

Proposition 6.3. Let (X, d) ∈ |L-MET|. The system of filters (Udα)α∈L then has the
following properties.

(LUT1) Udα ≤ [∆] with [∆] =
∧
x∈X [(x, x)];

(LUT2) Udα ≤ (Udα)−1;
(LUT3) Udα∗β ≤ Udα ◦ Udβ;
(LUT4) Udα ≤ Udβ whenever α ≤ β;
(LUT5) Ud⊥ =

∧
F(X ×X);

(LUT6) Ud∨
A

≤
∨
α∈AUdα whenever ∅ ̸= A ⊆ L.

Proof. We use Lemma 6.1. (LUT1) follows as [(x, x)] ∈ Λdα and hence Udα ≤ [(x, x)]
for all x ∈ X. (LUT2) We have, with Udα ∈ Λdα that also (Udα)−1 ∈ Λdα and hence
Udα ≤ (Udα)−1. For (LUT3) we note that Uα ◦ Uβ exists as both filters are ≤ [∆]. From
(LUC6) then Udα ◦ Udβ ∈ Λα∗β which implies Udα∗β ≤ Udα ◦ Udβ. (LUT4) We have, for
α ≤ β, that Udβ ∈ Λdβ ⊆ Λdα and hence Udα ≤ Udβ. (LUT5) follows with Lemma 6.1
from (LUC7). For (LUT6) finally, we remark that

∨
α∈AUdα exists by (LUT1) and clearly
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∨
α∈AUdα ∈ Λdβ for all β ∈ A. By left-continuity of Λd then

∨
α∈AUdα ∈ Λd∨

A
and this

means Ud∨
A

≤
∨
α∈AUdα. �

We note that Ud⊤ is a classical uniformity and that we can think of the collection of
the Udα as “approximations” of Ud⊤. For L = ({0, 1},≤,∧) we obtain classical uniformities
[3], for L = ([0, 1],≤, ∗) with a left-continuous t-norm, we obtain probabilistic uniformities
in the definition of Florescu [8] and for Lawvere’s quantale, L = ([0,∞],≥,+), a left-
continuous L-uniform tower is an approach uniformity [15]. For L = (∆+,≤, ∗), an L-
uniform tower is a probabilistic uniform space in [2].

For an L-metric space (X, d) we defined in [12] the L-convergence structure cd by

x ∈ cdα(F) ⇐⇒
∨
F∈F

∧
y∈F

d(x, y) ≥ α.

Lemma 6.4. Let (X, d) ∈ |L-MET|. Then cdα(F) = c
(Λd)
α (F) for all F ∈ F(X) and all

α ∈ L.

Proof. Let first x ∈ cdα(F). Then we have α ≤
∨
F∈F

∧
y∈F d(x, y) =∨

F∈F
∧
y∈F,z∈{x} d(z, y) ≤

∨
G∈[x]×F

∧
(z,y)∈G d(z, y) and hence [x] × F ∈ Λdα, which

means x ∈ c
(Λd)
α (F). Conversely, let x ∈ c

(Λd)
α (F). Then [x] × F ∈ Λdα and hence

α ≤
∨
G∈[x]×F

∧
(u,v)∈G d(u, v) ≤

∨
F∈F

∧
v∈F d(x, v). Therefore, x ∈ cdα(F). �

We showed in [12] that (X, cd) is principal, i.e. that we have x ∈ cdα(F) if and only if
F ≥ Udα,x with the α-neighbourhood filter of x, Udα,x =

∧
x∈cdα(F) F.

Lemma 6.5. Let (X, d) ∈ |L-MET|. Then Udα,x is generated by the filter basis Bdα,x =
{Uϵ,x : ϵ ≺ α}, where Uϵ,x = {y ∈ X : d(x, y) ≻ α}. Furthermore, we have Udα,x =
Udα(x).

Proof. Clearly x ∈ Uϵ,x for all ϵ ≺ ⊤ and hence Uϵ,x ̸= ∅. Moreover, for y ∈ Uϵ∨δ,x
we have d(x, y) ≻ ϵ ∨ δ ≥ ϵ, δ and hence also y ∈ Uϵ,x ∩ Uδ,x. As ϵ, δ ≻ α implies
ϵ ∨ δ ≻ α this shows that Bdα,x is a filter basis. The proof of Udα,x = [Bdα,x] is similar to
the proof of Lemma 6.1 and not shown. The last part follows from the observation that
Uϵ(x) = {y ∈ X : (x, y) ∈ Uϵ} = {y ∈ X : d(x, y) ≻ ϵ} = Uϵ,x. �

7. The case of L-partial metric spaces
An L-partial metric p : X ×X −→ L satisfies the axioms, for all x, y, z ∈ X,

(LPM1) p(x, y) ≤ p(x, x),
(LPM2) p(x, y) = p(y, x) and
(LPM3) p(x, y) ∗ (p(y, y) → p(y, z)) ≤ p(x, z).

The pair (X, p) is then called an L-partial metric space [13]. We define morphisms between
L-partial metric spaces in the same way as for L-metric spaces and denote the resulting
category by L-PMET.

We will, in this section, discuss axioms for suitable L-uniform convergence towers. To
this end, we again define, for a mapping p : X×X −→ L and α ∈ L, a family Λp = (Λpα)α∈L
with Λpα ⊆ F(X ×X), by

Φ ∈ Λpα ⇐⇒
∨
F∈Φ

∧
(x,y)∈F

p(x, y) ≥ α.
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Conversely, for Λ = (Λα)α∈L with Λα ⊆ F(X×X), we define a mapping pΛ : X×X −→ L
by

pΛ(x, y) =
∨

[(x,y)]∈Λα

α.

As in Lemma 4.1, we can show that [(x, y)] ∈ Λpα if and only if p(x, y) ≥ α.

Lemma 7.1. (1) Let p : X ×X −→ L satisfy (LPM1). Then [(x, x)] ∈ Λpα whenever
[(x, y)] ∈ Λpα.

(2) Let Λα ⊆ F(X ×X) satisfy [(x, x)] ∈ Λα whenever [(x, y)] ∈ Λα. Then pΛ(x, y) ≤
pΛ(x, x).

Proof. (1) If [(x, y)] ∈ Λpα, then α ≤ p(x, y) ≤ p(x, x) and hence [(x, x)] ∈ Λpα.
(2)We have pΛ(x, y) =

∨
[(x,y)]∈Λα α ≤

∨
[(x,x)]∈Λα α = pΛ(x, x). �

These results show that for a suitable definition of L-uniform convergence towers for
an L-partial metric space we have to replace the axiom (LUC1) by the following weaker
axiom (WLUC1).

(WLUC1) [(x, x)] ∈ Λα whenever [(x, y)] ∈ Λα for all x, y ∈ X, α ∈ L.
We will next consider a suitable concept of transitivity. To this end, we define, for y ∈ X,

E(y) = EΛ(y) =
∨

[(y,y)]∈Λα α. We note that for (X,Λ) ∈ |L-UCTS|, we have E(y) = ⊤ for
all y ∈ X. Furthermore, for an L-partial metric space (X, p) we have EΛp(y) = p(y, y) for
all y ∈ X.

We say that (X,Λ) is strongly point transitive if Λ satisfies the following axiom
(SPT) [(x, z)] ∈ Λα∗(E(y)→β) whenever [(x, y)] ∈ Λα and [(y, z)] ∈ Λβ.

Proposition 7.2. Let (X, p) be an L-partial metric space. Then Λp is strongly point
transitive.

Proof. Let [(x, y)] ∈ Λp and [(y, z)] ∈ Λpβ. Then p(x, y) ≥ α and p(y, z) ≥ β. Moreover
E(y) = p(y, y). Hence α ∗ (E(y) → β) ≤ p(x, y) ∗ (p(y, y) → p(y, z)) ≤ p(x, z) and hence
[(x, z)] ∈ Λpα∗(E(y)→β). �

In the sequel, we will need the following axiom (DM2) for the quantale L.
(DM2) α → (

∨
j∈J

βj) =
∨
j∈J

(α → βj) for all α, βj ∈ L, J ̸= ∅.

Typical examples for quantales satisfying (DM2) are Lawvere’s quantale or complete MV-
algebras.

Proposition 7.3. Let the quantale L satisfy (DM2) and let Λ satisfy the axiom (SPT).
Then pΛ satisfies (LPM3).

Proof. We have, using pΛ(y, y) =
∨

[(y,y)]∈Λγ γ = E(y),

pΛ(x, y) ∗ (pΛ(y, y) → pΛ(y, z)) =
∨

[(x,y)]∈Λα

α ∗ (E(y) →
∨

[(y,z)]∈Λβ

β)

(DM2)=
∨

[(x,y)]∈Λα

∨
[(y,z)]∈Λβ

α ∗ (E(y) → β)

≤
∨

[(x,z)]∈Λα∗(E(y)→β)

α ∗ (E(y) → β) ≤ pΛ(x, z).

�
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Hence, if we define the category L-PUCTS with objects the L-partial uniform convergence
tower spaces (X,Λ) where Λ = (Λα)α∈L and Λα ⊆ F(X×X) satisfies the axioms (WLUC1),
(LUC2) - (LUC6) and (SPT), and morphisms as defined for L-UCTS, then we deduce the
following results.

Theorem 7.4. Let the quantale L satisfy (DM2).
(1) The category L-PMET can be embedded into L-PUCTS as a coreflective subcategory.
(2) The category L-PMET is isomorphic to the category L-PMUCTS with objects the

L-partial uniform convergence tower spaces that are left-continuous, principal and
satisfy the axiom (LUM).

Remark 7.5 (Transitivity). (1) In [12] we introduced a transivity axiom for L-
convergence spaces (X, c). We call (X, c) transitive if x ∈ cα∗β([z]) whenever x ∈ cα([y])
and y ∈ cβ([z]). Similarly, we call (X, c) strongly transitive if x ∈ cα∗(Ec(y)→)β([z]) whenever
x ∈ cα([y]) and y ∈ cβ([z]), where Ec(y) =

∨
y∈cγ([y]). If we call an L-uniform convergence

space point transitive if [(x, z)] ∈ Λα∗β whenever [(x, y)] ∈ Λα and [(y, z)] ∈ Λβ, then

(X, cΛ) is transitive if (X,Λ) is point transitive and, noting that EcΛ(y) = EΛ(y), we also
see that (X, cΛ) is strongly transitive if (X,Λ) is strongly point transitive.

(2) From [(x, y)] ◦ [(y, z)] = [(x, z)] it is clear that the axiom (LUC6) implies the point
transitivity for (X,Λ) ∈ |L-UCTS|. For this reason we did not introduce such an axiom
before. It is, however, not clear at present, if a suitable transitivity axiom à la (LUC6) is
available for L-partial uniform convergence tower spaces.

8. Conclusion
We showed that the category of quantale-valued metric spaces can be coreflectively

embedded in the category of left-continuous and principal quantale-valued uniform con-
vergence tower spaces. We furthermore identified a subcategory, which is isomorphic to
the category of quantale-valued metric spaces. These quantale-valued uniform convergence
towers may lend themselves to the study of completions of quantale-valued metric spaces.
We shall look into this aspect in our future work.
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