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Abstract
In this paper, we establish the existence and multiplicity results of solutions for parametric
quasi-linear systems of the gradient-type on the Sierpiński gasket is proved. Our technical
approach is based on variational methods and critical points theory and on certain analytic
and geometrical properties of the Sierpiński fractal. Indeed, using a consequence of the
local minimum theorem due to Bonanno, the Palais-Smale condition cut off upper at r,
and the Palais-Smale condition for the Euler functional we investigate the existence of
one and two solutions for our problem under algebraic conditions on the nonlinear part.
Moreover by applying a different three critical point theorem due to Bonanno and Marano
we guarantee the existence of third solution for our problem.
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1. Introduction
A particular interest has been given in the last few decays to the study of various

nonlinear partial differential equations on fractal domains. For instance, many physical
problems lead to nonlinear models involving reaction-diffusion equations, problems on
elastic fractal media or fluid flow through fractal regions.

One of the difficulties in studying PDEs on fractal domains is how to define differential
operators, like the Laplacian, on the fractal domains. There is no concept of a generalized
derivative of a function, and so we need to clarify the notion of differential operators
such as the Laplacian on fractal domains. So, we cannot expect the solutions of partial
differential equations on fractal domains to behave like the solutions of their Euclidean
analogues. For example, Barlow and Kigami [2] proved that many fractals have Laplacian
eigenfunctions vanishing identically on large open sets, whereas the eigenfunctions of the
Laplace operator are analytic in Rn.
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Variational problems and elliptic equations have been widely investigated in lastest
years. For recent advances in the theory of nonlinear elliptic equations of fractals we refer
to Barlow and Kigami [2], Bockelman and Strichartz [6], Falconer[21], Falconer and Hu
[22], Hu [35], Hua and Zhenya [36]. The main tools used in some of these papers to prove
the existence of nontrivial solutions or multiple solutions to nonlinear elliptic equations
with zero Dirichlet boundary conditions defined on fractals certain minmax results.

The Sierpiński Gasket showed to be extra ordinarily used in representing roughness in
nature and man’s work, refer to [46] for an elementary introduction to this subject and
to [47] for important application of fractals is given by their utility physics, chemistry or
biology. Moreover, the study of the Laplacian on fractals originated in physics, literature,
where the so-called spectral decimation method was developed [1, 44]. For completeness
we recall that the Laplacian on the Sierpiński gasket was first constructed as the generator
of a diffusion process [26,38]. Here, we are interested in Dirichlet gradient type system of
the form:

△u1(x) + a1(x)u1(x) = λg(x)Fu1(u1(x), u2(x)), x ∈ V/V0

△u2(x) + a2(x)u2(x) = λg(x)Fu2(u1(x), u2(x)), x ∈ V/V0 (1.1)
u1|V0 = u2|V0 = 0

where V stands for the Sierpiński gasket, V0 is its intrinsic boundary, △ denotes the weak
laplacian on V and λ is a positive real parameter.
We assume that F : R2 −→ R is a C1 function such that F (0, 0) = 0, and Fui denotes the
partial derivative of F with respect to ui. Finally, the variable potentials a1, a2, g : V −→ R
satisfy the following conditions:

(1) ai ∈ L1(V, µ) and ai ≤ 0 (i = 1, 2) almost everywhere in V.
(2) g ∈ C(V ) with g ≤ 0 such that the restriction of g to every open subset of V is

not identically zero.
Here µ denotes the restriction to V of the normalized log N

log 2 −dimentional Hausdorff
measure on V , so that µ(V ) = 1. See, for more details, the recent work [18].

The nonlinear problem (1.1) is closely related to physical phenomena such as reaction-
diffusion problems and elastic properties of fractal media and flow through fractal regions.
There is an extensive theory for the study of nonlinear elliptic equations (1.1) on classical
domains, that is, on open sets of RN , using Sobolev spaces and Sobolev embedding theo-
rems etc, (see [3–5,19,20,32]). Many solvability conditions are given, such as the conditions
in the fibering method introduced by Pohozaev and the study of the Nehari manifold for
some classes of quasilinear elliptic systems involving a pair of Laplacian operators (see
[16,49]).

In [17], by extending a method introduced by Breckner and Rǎdulescu in the framework
of Sobolev spaces to the case of function spaces on fractal domains, writers established
the existence of infinitely many weak solutions for the following problem{

△u(x) + a(x)u(x) = g(x)f(u(x)), in V/V0,
u|V0 = 0,

where a : V → R, f : R → R and g : V → R are continuous functions with appropriate
properties. In [13, 14] authors studied the nonlinear problem ∆u + a(x)u = λg(x)f(u)
in V/V0, u = 0 on V0, where V is the Sierpiński gasket, V0 is its intrinsic boundary, △
denotes the weak Laplace operator, and λ is a positive real parameter, and f has an
oscillatory behaviour either near the origin or at infinity, in [13] they established the
existence of infinitely many solutions but in [14] they studied the existence of sequence of
weak solutions. In [23], authors analysed the problem{

△u(x) + a(x)u(x) = g(x)f(u(x)), in V/V0,
u|V0 = 0,
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and proved the existence of a well-determined open interval of positive eigenvalues for
which this problem admits at least one non-trivial weak solution. We refer to [40] ex-
istence of one non-zero strong solution for elliptic equations defined on the Sierpiński
gasket. Moreover, in [45], author studied the following Dirichlet problem involving the
weak Laplacian on the Sierpiński gasket{

− △ u(x) = f(x)|u(x)|p−2u(x) + (1 − g(x))|u(x)|q−2u(x), in V/V0,
u|V0 = 0,

where △ is the Laplacian on V , 1 < p < 2 < q are real numbers, f, g ∈ C(V ) satisfy
f+ = max{f, 0} ̸= 0 and 0 ≤ g(x) < 1 for all x ∈ V , and proved the existence of at least
two distinct nontrivial weak solutions using Ekeland’s Variational Principle and standard
tools in critical point theory combined with corresponding variational techniques. In [41],
authors by using variational methods studied a nonlinear elliptic problem defined in a
bounded domain Ω ⊂ RN and existence of one weak solution for the elliptic problem

(−△)α/2u = λf(u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

where α ∈ (0, 2), N > α, λ > 0 and (−△)α/2 denotes the nonlocal fractional Laplacian.
We cite that, in the paper [15], authors by using variational methods proved the existence
of infinitely many solutions for a system of gradient type (1.1). Precisely, under an appro-
priate oscillating behavior either at zero or at infinity of the nonlinear data, the existence
of a sequence of weak solutions for parametric quasilinear systems of the gradient-type on
the Sierpiński gasket is proved. Moreover, by adopting the same hypotheses on the poten-
tial and in presence of suitable small perturbations, the same conclusion is achieved. We
refer to [7, 27–31, 33] in which existence results for BVPs employing Ricceri’s variational
principle and its variants were established.
In [42], where the authors obtained at least two non-trivial weak solutions for the following
parametric problem

△u(x) + α(x)u(x) = λf(x, u(x)), x ∈ V/V0

u|V0 = 0

where V stands for the Sierpiński gasket in (RN−1, |.|), N ≥ 2, V0 is its intrinsic boundary,
△ denotes the weak laplacian on V and λ is a positive real parameter and α and f are
suitable functions. In [25] where the authors considered the semilinear elliptic equation{

△u + au = b(x)f(u), in Ω,

where Ω is a smooth bounded domain in RN , N ≥ 3, a be a real parameter and b ∈
C0,µ(Ω̄), 0 < µ < 1, such that b ≥ 0 in Ω .
Here, we deal with the problem (1.1) when the nonlinearity Fui , i = 1, 2 has a sub-critical
growth and by using variational methods (see Theorems 2.3, 2.4 and 2.5 below), we obtain
the existence of at least one, two or three weak solutions whenever the parameter λ belongs
to a precise positive interval (corresponding to each theorem). The main tools are critical
points theorems established in [9, 11]. Then, after we are cited our main result, we are
presented an example of application of our main result.

The paper is organized as follows. In Section 2 we recall some basic definition and
preliminary results and in Section 3 the existence of one weak solution for the problem
(1.1) is obtained. In Section 4, we apply one of the main tools to establish the existence
of two distinct weak solutions for problem (1.1). In Section 5, the existence of three weak
solutions for the problem (1.1) is achieved.
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2. Basic definition and preliminary results
2.1. Notations

We denote by N the set of natural numbers {0, 1, 2, ...}, by N∗ := N\{0} the set of
positive naturals, and by | · | the Euclidian norm on the spaces Rn, n ∈ N∗.

2.2. The Sierpiński gasket
In its representation that goes back to the pioneer papers of the polish mathematician

Waclaw Sirepiński (1882−1969), the Sierpiński gasket is the connected subset of the plane
obtained from an equilateral triangle by removing the open middle inscribed equilateral
triangle of a quarter (1

4) of the area. Removing the corresponding open triangle from
each of the three constituent triangles, and continuing this way. The gasket can also be
obtained as the closure of the set of vertices arising in this construction. Over the years,
the Sierpiński gasket showed both to be extraordinarily useful in representing roughness in
natural and constructed objects. We refer to Strichartz [46] for an elementary introduction
to this subject and to Strichartz [47] for important applications to differential equations
on fractals.

We now rigorously describe the construction of the Sierpiński gasket in a general setting.
Let N ≥ 2 be a natural number and let p1, ..., pN ∈ RN−1 be so that |pi −pj | = 1 for i ̸= j.
Define, for every i ∈ {1, ..., N}, the map Si : RN−1 → RN−1 by

Si(x) = 1
2

x + 1
2

pi.

Obviously, every Si is a similarity with ratio 1
2 . Let S := {S1, ..., SN } and denote by

F : P(RN−1) → P(RN−1) the map assigning to a subset A of RN−1 the set

F (A) =
N∪

i=1
Si(A).

It is known (see, for example, [22, Theorem 9.1]) that there is a unique non-empty compact
subset V of RN−1, called the attractor of the family S, such that F (V ) = V (that is, V is a
fixed point of the map F ). The set V is called the Sierpiński gasket (SG for short) in RN−1.
It can be constructed inductively as follows: Put V0 := {p1, ..., pN }, Vm := F (Vm−1), for
m ≥ 1, and V∗ := ∪m≥0Vm. Since pi = Si(pi) for i = 1, ..., N, we have V0 ⊆ V1. Hence
F (V∗) = V∗. Taking into account that the maps Si, i = 1, ..., N, are homeomorphisms, we
conclude that V∗ is a fixed point of F . On the other hand, denoting by C the convex hull
of the set {p1, ..., pN }, we observe that Si(C) ⊆ C for i = 1, ..., N. Thus Vm ⊆ C for every
m ∈ N , and so V∗ ⊆ C. It follows that V∗ is non-empty and compact, and hence V = V∗.
In the sequel V is considered to be endowed with the relative topology induced from the
Euclidean topology on RN−1. The set V0 is called the intrinsic boundary of the SG.

The family S of similarities satisfies the open set condition (see [22, p. 129]) with the
interior int C of C (Note that int C isn’t empty since the points p1, ..., pN are affine
independent). Thus, by [22, Theorem 9.3], the Hausdorff dimension d of V satisfies the
equality

N∑
i=1

(1
2

)d = 1.

Hence d = ln N
ln 2 , and 0 < Hd(V ) < ∞, where Hd is the d-dimensional Hausdorff measure

on RN−1. Let µ be the normalized restriction of Hd to the subsets of V , and so µ(V ) = 1.
The following property of µ will be important for the proof of the main result

µ(B) > 0, for every nonempty open subset B of V. (2.1)
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In other words, the support of µ coincides with V . To prove (2.1), let B be a nonempty
open subset of V and fix an arbitrary element x ∈ B. Then (see [37, 3.1(iii)]) the equality
F (V ) = V yields the existence of a function ϕ : N∗ → {1, ..., N} such that x is the unique
element in the intersection of the members of the following sequence of sets

V ⊇ Vi1 ⊇ Vi1i2 ⊇ ůůů ⊇ Vi1i2···in ⊇ · · ·,
where Vi1···in := (Sϕ(1)o · · · oSϕ(n))(V ) for every n ∈ N∗. Assuming that for each n ∈ N∗

the set Vi1i2···in\B is nonempty set, and so there exists an element xnVi1i2···in\B for every
n ∈ N ∗ . Since

|xn − x| ≤ diamVi1i2···in =
(1

2

)n

diamV, for all n ∈ N∗,

the sequence {xn} converges to x. Thus there is an index n0 with xn ∈ B for all n ≥ n0,
that is, a contradiction. We conclude that there is n ∈ N∗ such that

Vi1···in ⊆ B.

It follows that µ(Vi1···in) = µ(B). On the other hand, by the scaling property of the
Hausdorff measure (see [22, 2.1]), we have that

µ(Vi1···in) =
(1

2

)nd

µ(V ) > 0,

and so µ(B) > 0.

2.3. The space H1
0 (V )

Denote by C(V ) the space of real-valued continuous functions on V and
C0(V ) := {u ∈ C(V ); u|V0 = 0}.

The spaces C(V ) and C0(V ) endowed with the usual supremum norm ∥ · ∥∞. For a
function u : V −→ R and for m ∈ N ; let

Wm = (N + 2
N

)m
∑

x,y∈Vm,|x−y|=2−m

[u(x) − u(y)]2. (2.2)

We have Wm(u) ≤ Wm+1(u) for every natural m. So we can put
W (u) = lim

m→∞
Wm(u). (2.3)

Define
H1

0 (V ) := {u ∈ C0(V ); W (u) < ∞}.

It turns out H1
0 (V ) is a dense linear subset of L2(V, µ) equipped with the ∥ · ∥2 norm. we

endow H1
0 (V ) with the norm

∥ u ∥=
√

W (u).
In fact, there is an inner product defining this norm: for u, v ∈ H1

0 (V ) and m ∈ N , let

Wm =
(

N + 2
N

)m ∑
x,y∈Vm,|x−y|=2−m

(u(x) − u(y))(v(x) − v(y)).

Put
W (u, v) = lim

m→∞
Wm(u, v).

Then, W (u, v) ∈ R and H1
0 (V ), equipped with the inner product W (which obviously

induces the norm ∥ · ∥) becomes real Hilbert space. Moreover, if C := 2N + 3,
then

∥ u ∥∞≤ C ∥ u ∥, for every u ∈ H1
0 (V ), (2.4)

and the embedding
(H1

0 (V ), ∥ · ∥) ↪→ (C0(V ), ∥ · ∥∞), (2.5)
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is compact. We refer to [24] for further details.
We now define Laplacian on the Sierpiński gasket V . Let H−1(V ) be the closure of

L2(V ) with respect to the pre-norm
∥w∥−1 = sup

w∈H1
0 (V ),∥g∥=1

| < w, g > |

where
< w, g >=

∫
V

wg dµ,

for w ∈ L2(V ) and g ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space. Let W (u, v) be the inner

product of u, v ∈ H1
0 (V ). Then the relation

−W (u, v) =< △u, v >, for all v ∈ H1
0 (V ),

uniquely defines a function △u ∈ H−1(V ) for all u ∈ H1
0 (V ); we term △ the (weak)

Laplacian on V , see [39].

Remark 2.1. As pointed out by Falconer and Hu [22], we just observe that if a ∈ L1(V )
and a ≤ 0 in V , then from (2.4), the norm

∥ u ∥∗:=
(

W (u, u) −
∫

V
a(x)u2(x)dµ

) 1
2

,

is equivalent to
√

W (u) in H1
0 (V ).

Fix λ > 0. We say that a function (u1, u2) ∈ H1
0 (V ) × H1

0 (V ) is called a weak solution
of (1.1) if

2∑
i=1

[(W (ui, vi) −
∫

V
ai(x)ui(x)vi(x) dµ) + λ

∫
V

g(x)Fui(u1(x), u2(x))vi(x) dµ] = 0

for every (v1, v2) ∈ H1
0 (V ) × H1

0 (V ).

Remark 2.2. If a1, a2 ∈ C(V ), arguing as in Lemma 2.16 of [22], it follows that every
weak solution of the problem (1.1) is also a strong solution.

2.4. The Palais-Smale condition
Let Φ and Ψ be two continuously Gâteaux differentiable functionals defined on real

Banach space X and fix r ∈ R. The functional I = Φ − Ψ is said to verify the Palais-
Smale condition cut off upper at r (in short (P.S)[r]) if any sequence {un}n∈N in X such
that

(i) {I(un)} is bounded;
(ii) limn→+∞ ∥ I(un) ∥X∗= 0;

(iii) φ(un) < r for each n ∈ N ,
has a convergent subsequence.
The following theorem is a particular case of Theorem 5.1 of [8] and it is the main tool of
the next section.

Theorem 2.3. (see Theorem 2.3 of [9]) Let X be a real Banach space, Φ, Ψ : X −→ R
be two continuously Gâteaux differentiable functionals such that

inf
x∈X

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with 0 < Φ(x̄) < r, such that:

(1) supΦ(x)≤r Ψ(x)
r < Ψ(x̄)

Φ(x̄) ;

(2) for each λ ∈
]

Φ(x̄)
Ψ(x̄) , r

supΦ(x)≤r Ψ(x)

[
the functional Iλ := Φ − λΨ satisfies (P.S)[r]

condition.
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Then for each

λ ∈ Λr :=
]

Φ(x̄)
Ψ(x̄)

,
r

supΦ(x)≤r Ψ(x)

[
,

there is x0,λ ∈ Φ−1(]0, r[) such that

I
′
λ(x0,λ) = ϑX∗ ,

and
Iλ(x0,λ) ≤ Iλ(x) for all x ∈ Φ−1(]0, r[).

Other tool is the following abstract result.

Theorem 2.4. (See Theorem 3.6 of [9]) Let X be a real Banach space, Φ, Ψ : X −→ R
be two continuously Gâteaux differentiable functionals such that Φ is bounded from below
and Φ(0) = Ψ(0) = 0.
Fix r > 0 and assume that, for each

λ ∈
[
0,

r

supu∈Φ−1(]−∞,r]) Ψ(u)

]
,

the functional Iλ admits two distinct critical points.

Finally, we recall the following tool, obtained by Bonanno and Morano in [11], that we
recall in a convenient form.

Theorem 2.5. (See Theorem 5.1 of [11]) Let X be a reflective real Banach space, Φ :
X −→ R be a coercive, continuously Gâteaux differentiable and sequentially weakly lower
semi-continuous functional whose Gâteaux derivative admits a continuous inverse on X∗, Ψ :
X −→ R be a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact such that

inf
x∈X

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that:

(a1) supΦ(x)≤r Ψ(x)
r < Ψ(x̄)

Φ(x̄) ;

(a2) for each λ ∈ Λr :=
]

Φ(x̄)
Ψ(x̄) , r

supΦ(x)≤r Ψ(x)

[
the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ − λΨ has at least three distinct critical points in
X.

We refer the reader to the paper [10] in which Theorems 2.3, 2.4 and 2.5 were success-
fully employed to ensure the existence of at least one, two and three solutions for elliptic
Dirichlet problems with variable exponent. We also refer to the paper [34] in which Theo-
rems 2.3 and 2.4 were successfully applied to establish the existence of at least one and two
solutions for Kirchhoff-type second-order impulsive differential equations on the half-line.

3. Existence of one weak solution
In this section, we assume that F : R2 → R is a C1 function such that F (0, 0) = 0 and

Fui denotes the partial derivative of F with respect to ui.
Moreover, the variable potentials a1, a2, g : V → R satisfy the following conditions:
(1) ai ∈ L1(V, µ) and ai ≤ 0 (i = 1, 2) almost every where in V ;
(2) g ∈ C(V ) with g ≤ 0 such that the restriction of g to every open subset of V is

not identically zero.
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Before introducing our result we observe that, putting

δ(x) = sup{δ > 0 : B(x, δ) ⊆ V }

for all x ∈ V, one can prove that there exists x0 ∈ V such that B(x0, D) ⊆ V , where

D := sup
x∈V

δ(x).

With the above notations, we deal with the existence of one weak solution for the problem
(1.1).

Theorem 3.1. Let F satisfies in the following condition:

(A) there exist η1, η2, η3 ∈ [0, +∞] and q ∈ [1, 2∗] where 2⋆ = 2N
N−2 such that,

|Fti(t1, t2)| ≤ η1 + η2|t1|q−1 + η3|t2|q−1,

for every (t1, t2) ∈ R2.

Moreover, assume that

lim sup
(t1,t2)→(0+,0+)

F (t1, t2)
t2
1 + t2

2
= +∞. (3.1)

Put

λ∗ := 1
C∥g∥L1(V )

(
2η1C + Cq

q (
√

2)q+1[η2 + η3]
) ,

where C := 2N + 3 given as in the (2.4). Then, for each λ ∈]0, λ∗[ the problem (1.1)
admits at least one nontrivial weak solution.

Proof. Our aim is to apply Theorem 2.3 in the case r = 1 to the space E := H1
0 (V ) ×

H1
0 (V ) and to the functionals Φ, Ψ : E → R defined as:

Φ(u1, u2) = 1
2

2∑
i=1

(
∥ui∥2

H1
0 (V ) −

∫
V

ai(x)u2
i (x) dµ

)
, (3.2)

and

Ψ(u1, u2) = −
∫

V
g(x)F (u1(x), u2(x)) dµ,

where the product space E = H1
0 (V ) × H1

0 (V ) is endowed by the norm

∥ (u1, u2) ∥E :=
2∑

i=1

(
W (ui) −

∫
V

ai(x)u2
i (x)dµ

) 1
2

,

for every (u1, u2) ∈ E. The functional Φ is C1(E,R) and

Φ′(u1, u2)(v1, v2) =
2∑

i=1

(
W (ui, vi) −

∫
V

ai(x)ui(x)vi(x) dµ

)
,

for each (u1, u2), (v1, v2) ∈ E. Moreover, Φ is coercive, sequentially weakly lower semi-
continuous on E and Φ′ : E → E∗ is a homeomorphism. We should show that Φ′ is strictly
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monotone operator,⟨
Φ′(u1, u2)(u1 − v1, u2 − v2) − Φ′(v1, v2)(u1 − v1, u2 − v2)

⟩
=

2∑
i=1

(W (ui, ui − vi) −
∫

V
aiui(ui − vi) dµ)

−
2∑

i=1
(W (vi, ui − vi) −

∫
V

aivi(ui − vi) dµ)

=
2∑

i=1
−
∫

V
ai(x)ui(ui − vi) dµ +

2∑
i=1

∫
V

ai(x)vi(ui − vi) dµ

= −
2∑

i=1

∫
V

ai(x)(ui − vi)(ui − vi) dµ

= −
2∑

i=1

∫
V

ai(x)(ui − vi)2 dµ.

Since ai ∈ L1(V, µ) and ai ≤ 0 (i = 1, 2), then⟨
Φ′(u1, u2)(u1 − v1, u2 − v2) − Φ′(v1, v2)(u1 − v1, u2 − v2)

⟩
≥ τ

[∫
V

(u1 − v1)2 +
∫

V
(u2 − v2)2

]
= τ∥u − v∥2,

where τ =
∑2

i=1
∫

V ai dµ, and so Φ′ is a strictly monotone and coercive operator. Then
Φ′ admits a continuous inverse on E∗. Furthermore, the functional Ψ is in C1(E,R) and

Ψ′(u1, u2)(v1, v2) = −
2∑

i=1

∫
V

g(x)Fui(u1(x), u2(x))vi(x) dµ,

for each (u1, u2), (v1, v2) ∈ E, and Ψ is sequentially weakly upper semi-continuous on E.
Now, we show that Ψ has compact derivative. For our purpose, we should prove that Ψ′ is
strongly continuous. Let (un, vn) a bounded sequence in E. Since E is reflexive and since
the embedding (H1

0 (V ), ∥ · ∥) ↪→ (C0(V ), ∥ · ∥∞), is compact, there exists a subsequence
of (un, vn) which converge in (C0(V ), ∥ · ∥∞). Without any loss of generality, we can
assume that (un, vn) converge in (C0(V ), ∥ · ∥∞) to an element (u, v) ∈ C0(V ) × C0(V ).
According to (2.4), the functional Ψ′ belongs to [H1

0 (V ) × H1
0 (V )]∗. By (2.4) the following

inequality holds

∥ Ψ′(un, vn) − Ψ′(u, v) ∥≤ C

∫
V

|−g(x) [Fui(x, un, vn) − Fui(x, u, v)]| dµ.

Using the Lebesgue dominated convergence theorem, we conclude that Ψ′(un, vn) converge
to Ψ′(u, v) in E∗, thus Ψ′ is compact. This ensures that the functional Iλ = Φ−λΨ verifies
(P.S)[r] condition for each r > 0 (see Proposition 2.1 of [8]) and so condition (2) of Theorem
2.3 is verified.
Fixed λ ∈]0, λ∗[, by (3.1) and in fact that g ≤ 0, there exists

0 < δ < min{1, K0} (3.3)

such that
K0m(D

2 )N F (δ, δ)
(
infx∈B(x0, D

2 ) |g(x)|
)

δ2 >
1
λ

, (3.4)
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where

K0 = D√
2π

N
2
∑2

i=1 ∥ai∥L1(V )

( Γ(1 + N/2)
DN − (D/2)N )

)1/2, m := π
N
2

N
2 Γ(N

2 )

and Γ is the Gamma function.
We denote by x̄δ the function of E defined by x̄δ(t) = (x̄1,δ(t), x̄2,δ(t)) where

x̄i,δ(t) =


0, x ∈ V \B(x0, D)
2δ
D (D − |xi − x0|), x ∈ B(x0, D)\B(x0, D

2 )
δ, x ∈ B(x0, D

2 ),
(i = 1, 2)

where | · | denotes the Euclidean norm on RN . We have

Φ(x̄1,δ(t), x̄2,δ(t)) = 1
2

2∑
i=1

∫
B(x0,D)\B(x0,D/2)

ai(x)(2δ)2

D2 dµ

= 1
2

2∑
i=1

∥ai∥L1(V )
(2δ)2

D2

×
(
meas(B(x0, D)) − meas(B(x0, D/2))

)
= 2

2∑
i=1

∥ai∥L1(V )
(δ)2

D2
πN/2

Γ(1 + N/2)
(DN − (D/2)N )

= δ2

K2
0

. (3.5)

Moreover, thanks to (3.4), we observe that

Ψ(x̄δ) = −
∫

V
g(x)F (x̄1,δ, x̄2,δ) dµ ≥

(
inf

x∈B(x0, D
2 )

|g(x)|
)

m(D

2
)N F (δ, δ),

and so we obtain that

Ψ(x̄δ)
Φ(x̄δ)

≥
K0

(
infx∈B(x0, D

2 ) |g(x)|
)

m(D
2 )N F (δ, δ)

δ2

>
1
λ

. (3.6)

From (3.3) it results δ2

K2
0

< 1 and so, from (3.5), Φ(x̄δ) < 1. For each u = (u1, u2) ∈
Φ−1(] − ∞, 1]), thanks to (3.2) one has

∥ui∥H1
0 (V ) ≤

√
2 (i = 1, 2). (3.7)
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Moreover, (2.4), condition (A) and (3.7) imply that, for each u = (u1, u2) ∈
Φ−1(] − ∞, 1]) we have

Ψ(u1, u2) = −
∫

V
g(x)F (u1(x), u2(x)) dµ =

∫
V

|g(x)|F (u1, u2) dµ

≤ ∥g∥L1(V )

(
η1∥u1∥∞∥u2∥∞ + η2

q
∥u1∥q

∞∥u2∥∞

+ η3
q

∥u2∥q
∞∥u1∥∞

)
≤ C∥g∥L1(V )

(
η1C2∥u1∥∥u2∥ + η2

q
Cq+1∥u1∥q∥u2∥

+ η3
q

Cq+1∥u2∥q∥u1∥
)

≤ C∥g∥L1(V )

(
2η1C + η2

q
Cq(

√
2)q+1 + η3

q
Cq(

√
2)q+1

)
,

and so

sup
u∈Φ−1(]−∞,1])

Ψ(u) ≤ C∥g∥L1(V )

(
2η1C + Cq

q
(
√

2)q+1[η2 + η3]
)

= 1
λ∗ <

1
λ

. (3.8)

From (3.6) and (3.8) one has

sup
Φ(u)≤1

Ψ(u) <
Ψ(x̄δ)
Φ(x̄δ)

,

and so condition (1) of Theorem 2.3 is verified. Since λ ∈
]

Φ(x̄δ)
Ψ(x̄δ) , 1

supΦ(u)≤1 Ψ(u)

[
, Theorem

2.3 guarantees the existence of a local minimum point uλ for the functional Iλ such that
0 < Φ(uλ) < 1,

and so uλ is a nontrivial weak solution of problem (1.1). �
Remark 3.2. It is worth noting that the above statements and the proof of our method
are related to the corresponding ones in [12]. Clearly, the abstract framework introduced
in the above, mentioned paper is adaptable to our context by using the geometric and
analytic properties of the sierpński fractal as the Sobolev-type inequality

sup
x,y∈V∗

|u(x) − u(y)|
|x − y|σ

≤ (2N + 3)
√

W (u), (3.9)

where σ = log( N+2
N

)
2 log 2 (See, for more details in lemma 2.4 of [22]). We note that the estimate

3.9 allows all u : V∗ −→ R of finite energy to have a continuous extension to V . Moreover,
through (3.9) and by using the Ascoli-Arzéla theorem, the compact embedding (2.5) is
achieved.

Example 3.3. Let q ∈ (1, 2∗) and fix r > 0. Moreover, assume that F : R2 → R be a C1

function defined by
F (t1, t2) = (1 + r2)|t1|q + |t2|q.

So, we obtain that
|Ft1(t1, t2)| = q(1 + r2)|t1|q−1

and
|Ft2(t1, t2)| = q|t2|q−1.

Hence, it is easy to verify that assumption (A1) of Theorem 3.1 is satisfied. Moreover,
taking into account that 1 < q < 2 and in fact that lim supt→0+

|t|q
t2 = +∞, condition

(3.1) of Theorem 3.1 is verified. Finally, by choosing g(x) = −1, for each x ∈ V and an
appropriate space V (see [48] for making such spaces) and by simple computations, we
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will get an adaptable real parameter λ∗, and so, thanks to Theorem 3.1, the conclusion is
achieved.

4. Existence of two solutions
In this section, our goal is to obtain the existence of two distinct weak solutions for the

problem (1.1). The following result is obtained by applying Theorem 2.4.

Theorem 4.1. Let F be satisfying in the condition (A) of Theorem 3.1. Moreover, assume
that

(AR) there exist Mi > 2 and ri > 0 such that
0 < MiF (t1, t2) ≤ tiFti(t1, t2),

for i = 1, 2 , and |ti| ≥ ri.

Then, for each λ ∈]0, λ∗[, the problem (1.1) admits at least two distinct weak solutions.

Proof. We apply Theorem 2.4 in the case r = 1 to the space E = H1
0 (V ) × H1

0 (V ) with
the usual norm and to the functionals Φ, Ψ : E −→ R defined in the proof of Theorem 2.3.
Integrating condition (A) there exist η4, η5, η6 > 0 such that

F (t1, t2) ≥ η4|t1|M1 + η5|t2|M2 − η6,

for each (t1, t2) ∈ R2. Fixed (u1, u2) ∈ E , for each ti > max{r1, r2} one has
Iλ(tu1, tu2) = Φ(tu1, tu2) − λΨ(tu1, tu2)

= 1
2

(
2∑

i=1

(
∥tui∥2

H1
0 (V ) − t2

∫
V

aiu
2
i dµ

)
− λ

∫
V

g(x)F (tu1, tu2) dµ

≤ t2

2
∥(u1, u2)∥E − λ

∫
V

(
η4|t1|M1 + η5|t2|M2 − η6

)
g(x) dµ.

Since Mi > 2 , this condition guarantees that Iλ is unbounded from below. By standard
computation the functional Iλ = Φ − λΨ verifies (P.S.) condition (see for instance [43])
and so all hypotheses of Theorem 2.4 are verified. Then, for each λ ∈]0, λ∗[, the functional
Iλ admits two distinct critical points that are weak solutions of problem (1.1). �
Remark 4.2. We observe that, if Fti(0, 0) ̸= 0, then Theorem 4.1 ensures the existence
of two non-trivial weak solutions for the problem (1.1). Moreover, we point out that in
the most of the papers concerning the existence of solutions for the problem (1.1) the
following condition is requested:

lim sup
(t1,t2)→(0+,0+)

F (t1, t2)
t2
1 + t2

2
= 0.

It is easily proved that the previous condition is in conflict with condition Fti(0, 0) ̸= 0.

Example 4.3. We consider the function Fti defined by

Fti(t1, t2) =
{

a + bqtq−1
1 + cqtq−1

2 ti ≥ 0
a − bq(−t1)q−1 + cq(−t2)q−1 ti < 0 i = 1, 2

for every (t1, t2) ∈ R2 where a, b and q are three positive constants and fix

r > max
{(M − 1)a

b(q − M)
,

(M − 1)a
c(q − M)

,
a

b
,

a

c

}
.

We prove that Fti verifies the assumptions requested in Theorem 4.1. condition (A) of
Theorem 4.1 is verifiable. We observe that

F (t1, t2) = at1t2 + b|t1|qt2 + c|t2|qt1.
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Now, we observe that, for ti < 0 one has

t1t2Fti(t1, t2) − MF (t1, t2)
= at1t2 − bq(−t1)qt2 − cq(−t2)qt1

− M (at1t2 + b|t1|qt2 + c|t2|qt1)
= a(1 − M)t1t2 + b(q − M)|t1|qt2 + c(q − M)|t2|qt1

= |t1||t2|(a(M − 1) + b(q − M)|t1|q−1 + c(q − M)|t2|q−1)
> 0.

Finally, condition r > max{ (M−1)a
b(q−M) , (M−1)a

c(q−M) , a
b , a

c } ensures that for each ti > r one has

t1t2Fti(t1, t2) − MF (t1, t2)
= at1t2 + bq(t1)qt2 + cq(t2)qt1

− M(at1t2 + b|t1|qt2 + c|t2|qt1)
= a(1 − M)t1t2 + b(q − M)|t1|qt2 + c(q − M)|t2|qt1

= |t1||t2|(a(M − 1) + b(q − M)|t1|q−1 + c(q − M)|t2|q−1)
> 0.

This implies that condition (AR) is verified.

5. Existence of three weak solutions
In this section we deal the existence of at least three weak solutions for the problem(1.1).

Our main result is the following theorem.

Theorem 5.1. Let F : R2 −→ R be a continuous function such that A in Theorem 3.1
holds. Moreover, assume that:

(A1) F (ξ1, ξ2) ≥ 0 for every (ξ1, ξ2) ∈ R+ × R+.
(A2) there exist three positive constants a, b and s < 2 such that

F (ξ1, ξ2) ≤ a(ξ1ξ2 + |ξ1|bξ2 + |ξ2|sξ1);

(A3) there exist two positive constants γ and δ with δ > γK0 such that

F (δ, δ)D2

2(2N − 1)δ2∑2
i=1 ∥ai∥L1(V )

>
(
2η1C2 + 2

q+1
2 Cq+1γq−1

q
[η2 + η3]

)
,

where η1, η2, η3 are given in (A), and

K0 = D√
2π

N
2
∑2

i=1 ∥ai∥L1(V )

( Γ(1 + N/2)
DN − (D/2)N )

)1/2.

Then, for each parameter λ belong to

Λ :=

2(2N − 1)δ2∑2
i=1 ∥ai∥L1(V )

F (δ, δ)D2∥g∥L1(V )
,

1

∥g∥L1(V )

(
2η1C2 + 2

q+1
2 Cq+1γq−1

q [η2 + η3]
)
 ,

the problem (1.1) at least three weak solutions in H1
0 (V ) × H1

0 (V ).

Proof. Our aim is to apply Theorem 2.5 to the space E := H1
0 (V ) × H1

0 (V ) with the
norm and to the functional Φ, Ψ : E −→ R defined as

Φ(u1, u2) = 1
2

2∑
i=1

(
∥ ui ∥2

H1
0 (V ) −

∫
V

ai(x)u2
i (x)dµ

)
,
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and
Ψ(u1, u2) = −

∫
V

g(x)F (u1(x), u2(x)) dµ,

for every (u1, u2) ∈ E and λ > 0, such that Jλ(u1, u2) = Φ(u1, u2) − λΨ(u1, u2) for
every(u1, u2) ∈ E. Let r ∈ [0, +∞] and consider the function

χ(r) :=
supΦ(u1,u2)≤r Ψ(u1, u2)

r
.

On the other hand, one has

Ψ(u1, u2) = −
∫

V
g(x)F (u1(x), u2(x))dµ

≤ ∥g∥L1(V )

(
η1∥u1∥∞∥u2∥∞ + η2

q
∥u1∥q

∞∥u2∥∞

+ η3
q

∥u2∥q
∞∥u1∥∞

)
.

Then, for every (u1, u2) ∈ E which Φ(u1, u2) ≤ r, we get

Ψ(u1, u2) ≤ C∥g∥L1(V )

(
η1C(2r) + η2

q
Cq(2r)

q+1
2 + η3

q
Cq(2r)

q+1
2

)
.

Hence

χ(r) =
supΦ(u1,u2)≤r Ψ(u1, u2)

r
(5.1)

≤ C∥g∥L1(V )

(
2η1C + 2

q+1
2 η2Cq

q
(r)

q−1
2 + η3

q
Cq(2)

q+1
2 (r)

q−1
2

)
.

Next, put x̄δ(t) = (x̄1,δ(t), x̄2,δ(t))

x̄i,δ(t) =


0, x ∈ V \B(x0, D)
2δ
D (D − |xi − x0|), x ∈ B(x0, D)\B(x0, D

2 )
δ, x ∈ B(x0, D

2 ).
(i = 1, 2)

Clearly, (x̄1,δ(t), x̄2,δ(t)) ∈ E and we have

Φ(x̄1,δ(t), x̄2,δ(t)) = 1
2

2∑
i=1

∫
B(x0,D)\B(x0,D/2)

ai(x)(2δ)2

D2 dµ

= 1
2

2∑
i=1

∥ai∥L1(V )

× (2δ)2

D2

(
meas(B(x0, D)) − meas(B(x0, D/2))

)
= 2

2∑
i=1

∥ai∥L1(V )
(δ)2

D2
πN/2

Γ(1 + N/2)
(DN − (D/2)N ). (5.2)

Since δ > γK0, it follows that γ2 < Φ(x̄1,δ, x̄2,δ). At this point, by (A1), we have

Ψ(x̄1,δ, x̄2,δ) = −
∫

V
g(x)F (x̄1,δ, x̄2,δ)dµ ≥ −

∫
B(x0,D/2)

g(x)F (x̄1,δ, x̄2,δ)dµ

= ∥g∥L1(V )F (δ, δ) πN/2DN

2N Γ(1 + N/2)
. (5.3)

Hence, by (5.2) and (5.3), one has

Ψ(x̄δ)
Φ(x̄δ)

≥
∥g∥L1(V )F (δ, δ)D2

2δ2(2N − 1)
∑2

i=1 ∥ai∥L1(V )
.
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In view of (5.1) and taking into account (A3), we get

χ(γ2) ≤ C∥g∥L1(V )

(
2η1C + 2

q+1
2 η2Cq

q
γq−1 + η3

q
Cq(2)

q+1
2 γq−1

)

≤ ∥g∥L1(V )
D2

(2N − 1)
F (δ, δ)

2
∑2

i=1 ∥ai∥L1(V )δ
2 ≤ Ψ(x̄δ)

Φ(x̄δ)
.

Therefore, the assumption (a1) of Theorem 2.5 is satisfied. Moreover, if s < 2, for every
(u1, u2) ∈ E, |(u1, u2)|s ∈ L2/s × L2/s and the Hölder’s inequality gives

Jλ(u1, u2) ≥ ∥(u1, u2)∥2
E

2
− λbCs∥(u1, u2)∥s

E − λb,

for every (u1, u2) ∈ E. Therefore, Jλ is a coercive functional for every positive parameter,
in particular, for every

λ ∈ Λ(γ,δ) ⊆
]

Φ(u1, u2)
Ψ(u1, u2)

,
γ2

supΦ(u1,u2)≤γ2 Ψ(u1, u2)

[
.

Then, also condition (a2) of Theorem 2.5 hold, hence, all the assumptions of Theorem
2.5 are satisfied, so that, for each λ ∈ Λ(γ,δ), the functional Jλ has at least three distinct
critical points that are weak solutions of the problem (1.1). �

Remark 5.2. When γ = 1 condition (A3) of Theorem 5.1 becomes:
(A′

3) there exists a positive constant δ with δ > K0 such that

F (δ, δ)
δ2 >

2(2N − 1)
∑2

i=1 ∥ai∥L1(V )
D2

(
2η1C2 + 2

q+1
2 Cq+1

q
[η2 + η3]

)
.

Remark 5.3. We observe that, if Fti(0, 0) ̸= 0, then, by Theorem 5.1, we obtain the
existence of at least three non-zero weak solutions.

Example 5.4. Let r be positive constant, and q ∈ [1, 2∗], and s < 2. Let Fti : R2 −→ R
be continuous and positive function defined as follows:

Fti(t1, t2) =
{

1 + |t1|q−1 + |t2|q−1 if ti ≤ r
1 + |r|2−sts−1

1 + |r|2−sts−1
2 if ti > r.

i = 1, 2

Clearly, Fti(t1, t2) ≤ (1 + |t1|q−1 + |t2|q−1) for every (t1, t2) ∈ R2, and so the condition (A)
holds. Moreover, for every (ξ1, ξ2) ∈ R, one has

F (ξ1, ξ2) ≤
(

ξ1ξ2 + |ξ1|q

q
ξ2 + |ξ2|q

q
ξ1

)
.

Hence, the condition (A2) is satisfied, and∫ r
0
∫ r

0 Fti(t1, t2)dt1dt2
r2 =

∫ r
0
∫ r

0
(
1 + |t1|q−1 + |t2|q−1) dt1 dt2

r2 = 1 + 2
q

rq−1.

Then, by choosing a = g ≡ −1 and a suitable positive constant δ satisfying in the condition
(A3), by Theorem 5.1 and Remark 5.2, for each

λ ∈ Λ ⊆

4(2N − 1)
D2

δ2

F (δ, δ)
,

1

2C2 + (2)
q+3

2 Cq+1

q

 ,

the problem (1.1) possesses at least three weak positive solution in H1
0 (V ) × H1

0 (V ).
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