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Abstract
In this article, we propose two-layer median ranked set sampling (TMRSS) design that
combines median ranked set sampling (MRSS) and two-layer ranked set sampling (TRSS).
Ranked set sampling (RSS) is an alternative sampling method that can improve the effi-
ciency of estimators when exact measurement of response variable is either difficult, time
consuming or expensive. Evaluation of the TMRSS performance for different distributions,
set, and cycle sizes regarding mean and regression coefficients estimators and mean square
of the regression model are carried out using Monte Carlo simulation study and real data
application. The results indicate that estimators of TMRSS yields are either equivalent
to or better than MRSS.
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1. Introduction
A sample is a subset of a population that allows the researchers to make statistical

inferences about a population, without investigating every unit. However, representation
of the entire population by the chosen units in a sample to be used for the analysis is cru-
cial. Typically, a variety of sampling techniques are present in the literature. The most
common sampling method is known as simple random sampling (SRS). Each member of
the population has an equal chance of being selected as subject in SRS. Recently, ranked
set sampling (RSS) has become popular as an alternative sampling method, as it improves
the efficiency of estimators by providing more representative sample from the population,
in which the measurement of response variable is either difficult, expensive or time con-
suming. Also, RSS does not require a full measurement, uses ranks of the units based on
a visual inspection or concomitant variables. McIntyre [12], proposed RSS for the first
time for estimating mean pasture yields, whereas Takahashi and Wakimoto [17] developed
its mathematical theory. Further, they demonstrated that regardless of ranking error, the
mean estimator of RSS is unbiased and it is more efficient than the mean estimator of
SRS for the same sample size. The ranking error occurs when the visual inspection or
concomitant variables cannot be assigned the correct rank number to the observations in
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the set. Dell and Clutter [7] as well as David and Levine [6] reported similar results under
imperfect ranking, which means there is a ranking error. For some recent bibliography on
the RSS, see [8, 11, 18, 20].

In RSS, let k be a positive integer that denotes the set size, and randomly select k2

units by SRS from the target population. The k2 selected units are divided arbitrarily
into k sets, each having size k. Further, the ranking of these units is carried out according
to professional judgment (visual inspection) or a concomitant variable correlated with the
variable of interest. However, in comparison to the variable of interest, the measurement
of this concomitant variable is quite cheap or easy. For definite quantification, the selec-
tion of a sample is carried out by including the smallest ranked unit from the first set, the
second smallest ranked unit from the second set, with the procedure continuing until the
selection of kth smallest ranked unit from the kth set. These steps complete one cycle of a
ranked set sample of size k. Moreover, to obtain a ranked set sample of size n = km, the
above procedure can be repeated m times.

Let Y[1]1, ..., Y[k]1; Y[1]2, ..., Y[k]2; ...; Y[1]m, ..., Y[k]m be a ranked set sample, where Y[i]j rep-
resents the ith ranked unit in the jth cycle and ȲRSS denotes the mean estimator of RSS
in the Equation (1.1). Under consistent ranking process, it is an unbiased estimator for
the population mean (µ). A ranking mechanism is said to be consistent if F = 1

k

∑k
i=1 F[i]

holds, where F denotes the distribution function of Y and F[i] denotes the distribution
function of the ith ordered statistics of a random sample of size k from F (see details in
[4], pages 12-14).

ȲRSS = 1
mk

m∑
j=1

k∑
i=1

Y[i]j (1.1)

Recently, there have been many contributions to RSS research. Muttlak [13] proposed
median ranked set sampling (MRSS). The MRSS method is easy to apply since only the
middle of the sample is considered. Muttlak [14] mentioned that the MRSS can be per-
formed with less ranking error in performing the ranking of the units with respect to the
variable of interest. Hajighorbi and Saba [9] also pointed out that the MRSS method
can be effortlessly employed in the field while saving time in performing the ranking of
the units concerning the variable of interest. The MRSS is useful for situations in which
identifying a sample unit with intermediate rank is easier less prone to error than a sample
unit with lower/upper rank and the researcher is interested about the center of the dis-
tribution. If the researcher is interested about upper/lower tail of the distribution, then
usage of ranked set sampling with extreme ranks should be in priority. See Zamanzade
and Mahdizadeh [21] for more details.

The MRSS method can be summarized as follows: Randomly select k2 units by simple
random sample from the population, the k2 selected units are allocated as randomly into
k sets, each of size k, and the units within each set are ranked with respect to a variable
of interest. If the set size k is odd, from each set the ((k + 1)/2)th smallest ranked unit,
which is the median of the set should be selected for the measurement. On the other
hand, if the set size k is even, one should select the (k/2)th smallest ranked units from
the first k/2 sets, and the ((k + 2)/2)th smallest ranked units from the second k/2 sets.
Further, to obtain km units, the cycle may be repeated m times. The estimators of the
population mean using MRSS for odd and even set sizes are given in Equation (1.2) and
(1.3), respectively.
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ȲMRSS = 1
mk

m∑
j=1

k∑
i=1

Y[ k+1
2 (i)]j (1.2)

where Y[ k+1
2 (i)]j denotes the ((k + 1)/2)th ranked unit in the ith set for the jth cycle.

ȲMRSS = 1
mk

m∑
j=1

k/2∑
i=1

Y[ k
2 (i)]j +

k∑
i=(k+2)/2

Y[ k+2
2 (i)]j

 (1.3)

where Y[ k
2 (i)]j denotes the (k/2)th ranked unit and Y[ k+2

2 (i)]j denotes the ((k+2)/2)th ranked
unit in the ith set for the jth cycle.

Al-Saleh and Al-Omari [2] proposed the multistage RSS to increase the efficiency of
estimator of population mean, thereby estimating the average olive yields in a field in West
Jordan. Chen and Shen [5] proposed two-layer RSS, which has two concomitant variables.
In the first and second layer of procedure, sampling units are ranked corresponding to one
and other concomitant variables, respectively. Typically, all the features of the general
RSS can be applied to the two-layer RSS, as it falls into the scheme of the general RSS.
Let X{1} and X{2} denote the concomitant variables. The outline of the steps of two-layer
RSS is as follow: Identify kl2 sets from the target population, each of size k, where the
units in each sets are ranked using X{1} . For l2 ranked sets, the units with X{1} - rank
1 are selected, followed by selection, the units with X{1} - rank 2, for another l2 ranked
sets. Further with all other sets, the same process is repeated, which in turn completes
the first layer of the procedure. In the second layer, the units selected in first layer are
separated randomly or systematically into kl subsets, each of size l. Further, the ranking
of the units in each of these subsets are carried out according to X{2}. For the first ranked
subset, the unit with X{2} - rank 1 is picked up, and its value will be measured on Y .
Similarly, for the second ranked subset, the unit with rank 2 is selected, its value will be
measured on Y . The process is further repeated with all other subsets, thereby making
these steps part of a cycle. Repeating the cycle m times yields, the data set

{ Y[r][s]j : r = 1, ..., k; s = 1, ..., l; j = 1, ..., m }
where, Y[r][s]j is the measurement of Y in the jth cycle on the unit with X{1} - rank r and
X{2} - rank s, sample of size n = klm [5].

The estimator of population mean of TRSS is given in Equation (1.4).

ȲT RSS = 1
m

m∑
j=1

1
l

l∑
s=1

1
k

k∑
r=1

Y[r][s]j (1.4)

Al-Omari and Bouza [1] demonstrated the superiority of the two-layer RSS over the RSS.

In this paper, two-layer median ranked set sampling (TMRSS) design and its mean
estimator have been proposed. Further, the performance of estimators of MRSS and
TMRSS designs are being compared. Section 2 introduces the methodology of TMRSS
design. In Section 3, the biases and relative efficiencies of the estimators are obtained
using Monte Carlo simulation studies. Section 4 represents a real data application and in
Section 5 concluding remarks are provided.

2. Two-layer median ranked set sampling
Two-layer median ranked set sampling (TMRSS) was first introduced in Kara[10].

TMRSS design and its mean estimator have been given in this section. The aim of this
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study is to improve the MRSS by using more than one concomitant variable. The moti-
vation of TMRSS is to get more homogenous sample by two-layer ranking and to reduce
ranking error by using the median. TMRSS is described as follows:

Let X{1} and X{2} denote the concomitant variables.

Step 1: First, kl2 independent sets, each of size k, are drawn from the target population.

Step 2: Ranking of the units in each of these sets are carried out according to X{1}.

– When the set size k is odd, select from each set the ((k + 1)/2)th smallest
rank, the median of the set.

– When the set size k is even, for each k ranked sets, select the (k/2)th smallest
rank from the first k/2 sets, and the ((k + 2)/2)th smallest rank from the
second k/2 sets, with repeating the process for all the sets.

Thus, the first layer of the procedure completes.

Step 3: In the second layer, the units selected from the first layer are divided randomly or
systematically, into kl subsets, each of size l.

Step 4: The units in each of these subsets are ranked using X{2}.

– When the set size l is odd, select from each sample the ((l + 1)/2)th smallest
rank, which is the median of the set.

– When the set size l is even, for each l ranked sets, select the (l/2)th smallest
rank from the first l/2 sets, and the ((l+2)/2)th smallest rank from the second
l/2 sets, followed by further repetition of the process for all subsets.

Further, carrying out the measurement of the values of the selected units. Thus,
it completes one cycle of the procedure.

Step 5: The cycle may be repeated m times to get klm units, yielding the data set
{ Y[s]c : s = 1, ..., kl; c = 1, ..., m }

where Y[s]c is the corresponding value of (X{1}, X{2}) and denotes the measure-
ment of Y on sth unit in the cth cycle.

Equation (2.1) gives the estimator of population mean using TMRSS method.

ȲT MRSS = 1
m

m∑
c=1

1
kl

kl∑
s=1

Y[s]c (2.1)

An example is considered, with the aim of illustrating the construction of a two-layer
median ranked set sample.

1. Assume that k = 4, l = 2 and, m = 1. We have a random sample of size 64 units
into kl2 = 16 sets, each of size k = 4. Let X

{p}
i(j) be the jth smallest order statistic

(j = 1, 2, 3, 4) of the ith set ( i = 1, 2, · · ·, 16), which is ranked according to pth
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(p = 1, 2) concomitant variable.

2. For p = 1, the ranking of the units in each of these sets are carried out according
to X{1}. Upon being ranked, the sets appear as shown below:

(
X

{1}
i(1), X

{1}
i(2), X

{1}
i(3), X

{1}
i(4)

)
, ( i = 1, 2, · · ·, 16)

– Subsequently, for every four ranked sets, select the second smallest rank from
the first 2 sets, and the third smallest rank from the second 2 sets, with
repeating the process further. The selected units from the first layer are given
below:

(X{1}
1(2), X

{1}
2(2), X

{1}
3(3), X

{1}
4(3), X

{1}
5(2), X

{1}
6(2), X

{1}
7(3), X

{1}
8(3),

X
{1}
9(2), X

{1}
10(2), X

{1}
11(3), X

{1}
12(3), X

{1}
13(2), X

{1}
14(2), X

{1}
15(3), X

{1}
16(3))

Thus, it completes the first layer of the procedure.

3. In the second layer, the units selected from the first layer are divided, randomly
or systematically, into kl = 8 subsets, each of size l = 2.

4. For p = 2, the units in each of these subsets are ranked using X{2} .

[
(X{1}, X

{2}
i(1)), (X{1}, X

{2}
i(2))

]
, (i = 1, 2, · · ·, 8)

– Next, for each two ranked subsets, select the first smallest rank from the first
subset and the second smallest rank from the second subset, with repeating
the process further. The selected units from the second layer are specified
below:

[
(X{1}, X

{2}
1(1)), (X{1}, X

{2}
2(2)), (X{1}, X

{2}
3(1)), (X{1}, X

{2}
4(2)),

(X{1}, X
{2}
5(1)), (X{1}, X

{2}
6(2)), (X{1}, X

{2}
7(1)), (X{1}, X

{2}
8(2))

]
Therefore, the second layer of the procedure gets completed.

5. The selected units are measured on Y . Hence, one cycle of the procedure is com-
pleted. The final set, for one cycle, is{

Y[s]1 : s = 1, · · ·, 8
}

.

3. Simulation study
In this section, the TMRSS and MRSS estimators, which are the relative efficiencies of

mean and regression coefficients estimators, the relative efficiencies of mean squares of the
regression models, and the amount of bias of regression coefficient estimators, are being
compared. With the intention of comparing the methods, simulation with R statistical
software version 3.5.1 was carried out. The steps of simulation study are specified below:
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1. Generated 10,000 observations coming from some symmetric and asymmetric dis-
tributions: Normal (0,1), Uniform (0,1), Exponential (1), Gamma (5,1), and Log-
normal (0,1).

2. Yi is calculated using the following regression model

Yi = β0 + β1X
{1}
i + β2X

{2}
i + εi , i = 1, · · ·, N

where β0 = β1 = β2 = 1 and εi is distributed normal with mean zero and the
variance σ2

ε = 0.25, 0.5, and 1.0.

3. N = 10, 000 is the repetition number.

4. The performances of the estimators are investigated for k = 6, 8 for MRSS and
k = 3, 4 for TMRSS where l = 2 and m = 3, 5, 10.

5. The estimators of TMRSS are compared with the estimators of MRSS using X{1}

as the ranking variable.

6. Let θ denote the unkonown parameter, and θ̂i denote the corresponding estimator
of ith number of repetitions. The bias values of regression coefficient estimators
are computed using Equation (3.1).

Bias(θ̂i, θ) = 1
N

N∑
i=1

(θ̂i − θ) (3.1)

7. The mean square error (MSE) of the estimators are then computed by Equa-
tion (3.2).

MSE(θ̂i, θ) = 1
N

N∑
i=1

(θ̂i − θ)2 (3.2)

8. For the comparison of efficiencies of the estimators, relative efficiency (RE) values
are calculated as below:

RE1 =
MSEȲMRSS

MSEȲT MRSS

, RE2 =
MSEβ̂MRSS

MSEβ̂T MRSS

, RE3 =
MSEσ̂2

MRSS

MSEσ̂2
T MRSS

(3.3)

Tables 1-4 depict the results of the simulation studies. Table 1 shows the relative effi-
ciencies of the population mean estimator. From the table, it is evident that every value
of RE1 is higher than 1, except for some cases of uniform distribution, thereby indicat-
ing that the population mean estimator of TMRSS design is more efficient than that of
MRSS design. Moreover, the population mean estimator of TMRSS is more effective in
asymmetric distributions. Elaborately, in asymmetric distributions, when other simula-
tion parameters are fixed, increasing set size k or cycle size m, increases the efficiency of
TMRSS over MRSS.

Table 2 shows the biases of the regression coefficient estimator β̂2. The table indicates
that the biases of the regression estimator of TMRSS are comparable magnitude with the
biases of the regression estimator of MRSS. Further, the biases values are barely large at
uniform distributions in both TMRSS and MRSS designs. The biases are generally smaller
in asymmetric distributions than symmetric distributions. The bias of β̂0 and β̂1 are not
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Table 1. Relative efficiencies of the population mean estimator (RE1)

m k σ2
ε Normal (0,1) Uniform (0,1) Exponential (1) Gamma (5,1) Lognormal (0,1)

3

1.00 1.026 1.060 1.159 1.105 1.213
3 0.50 1.056 1.006 1.200 1.147 1.220

0.25 1.101 0.992 1.258 1.134 1.208
1.00 1.066 1.025 1.256 1.162 1.253

4 0.50 1.103 1.003 1.245 1.173 1.280
0.25 1.056 1.010 1.305 1.178 1.280

5

3
1.00 1.077 0.970 1.317 1.210 1.338
0.50 1.076 0.998 1.408 1.224 1.329
0.25 1.080 0.999 1.429 1.207 1.360

4
1.00 1.086 1.005 1.332 1.181 1.298
0.50 1.123 0.966 1.404 1.222 1.345
0.25 1.118 1.041 1.448 1.254 1.378

10

3
1.00 1.041 0.999 1.465 1.266 1.416
0.50 1.103 1.048 1.534 1.326 1.456
0.25 1.137 1.062 1.563 1.276 1.493

4
1.00 1.109 1.029 1.612 1.364 1.563
0.50 1.069 1.000 1.698 1.387 1.551
0.25 1.142 1.052 1.711 1.403 1.603

Table 2. Biases of regression estimator β̂2 of MRSS and TMRSS

m k σ2
ε

Normal (0,1) Uniform (0,1) Exponential (1) Gamma (5,1) Lognormal (0,1)
MRSS TMRSS MRSS TMRSS MRSS TMRSS MRSS TMRSS MRSS TMRSS

3

3
1.00 0.007 0.006 -0.034 -0.008 0.015 0.011 0.001 0.000 -0.011 -0.009
0.50 0.004 0.005 0.002 0.009 -0.007 -0.004 0.001 0.001 0.001 0.002
0.25 -0.004 -0.004 0.005 -0.002 0.007 0.003 0.002 0.001 0.003 0.001

4
1.00 0.002 0.003 -0.019 -0.009 0.006 0.006 0.001 0.000 -0.008 -0.007
0.50 0.001 0.002 0.000 0.001 -0.003 -0.003 0.000 0.001 0.001 0.002
0.25 -0.006 -0.005 0.006 -0.002 0.004 0.004 0.001 0.001 0.002 0.001

5

3
1.00 0.002 0.005 -0.017 -0.013 0.005 0.004 0.001 0.000 -0.004 -0.002
0.50 0.003 0.002 -0.007 0.007 -0.004 -0.003 -0.001 0.000 0.001 0.002
0.25 -0.005 -0.004 0.007 0.007 0.004 0.004 0.000 0.001 0.002 0.002

4
1.00 0.003 0.004 -0.029 -0.016 0.006 0.012 0.000 -0.002 -0.010 -0.006
0.50 0.005 0.002 -0.013 0.001 -0.004 -0.002 0.000 0.000 0.000 0.003
0.25 -0.006 -0.005 0.006 0.006 0.006 0.004 0.002 0.001 0.001 0.001

10

3
1.00 -0.002 0.004 -0.023 -0.011 0.001 0.010 0.000 0.000 -0.008 -0.004
0.50 0.002 0.002 -0.004 0.007 -0.001 -0.001 -0.001 0.002 0.001 0.000
0.25 -0.005 -0.005 0.002 0.002 0.008 0.004 0.002 0.000 0.003 0.002

4
1.00 0.001 0.001 -0.025 -0.011 0.000 0.006 0.001 0.001 -0.003 -0.002
0.50 0.003 0.003 0.003 -0.004 -0.002 -0.002 0.000 0.000 0.002 0.002
0.25 -0.006 -0.004 0.003 0.002 0.005 0.004 0.002 0.001 0.003 0.002

shared, as they have a similar pattern.

RE2 values are obtained for β̂0 , β̂1, and β̂2. For better clarity of the presentation, the
relative efficiencies of β̂1 are tabulated in Table 3. In the present study, the regression
coefficient estimator of the proposed design, for all the simulation parameters, always per-
forms better than the regression coefficient estimator of MRSS. Especially in asymmetric
distibutions, the results are more favourable and the efficiency mostly increase, when k or
m increase for fixed σ2

ε .

Table 4 displays the relative efficiencies of the mean squares of the regression models.
The values are close to 1.0; hence, we can conclude that MRSS and TMRSS designs have
equivalent MSE.
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Table 3. Relative efficiencies of the regression estimator β̂1 (RE2)

m k σ2
ε Normal (0,1) Uniform (0,1) Exponential (1) Gamma (5,1) Lognormal (0,1)

3

3
1.00 1.553 1.416 1.610 1.561 1.663
0.50 1.553 1.399 1.616 1.545 1.701
0.25 1.559 1.399 1.628 1.549 1.734

4
1.00 1.581 1.415 2.656 1.602 1.788
0.50 1.551 1.396 1.637 1.562 1.783
0.25 1.556 1.402 1.634 1.587 1.760

5

3
1.00 1.560 1.411 1.668 1.596 1.905
0.50 1.570 1.393 1.691 1.583 1.875
0.25 1.556 1.403 1.676 1.585 1.851

4
1.00 2.158 1.825 2.370 2.214 2.565
0.50 2.176 1.823 2.396 2.150 2.584
0.25 2.157 1.830 2.323 2.183 2.565

10

3
1.00 2.171 1.824 2.377 2.201 2.701
0.50 2.161 1.797 2.376 2.170 2.719
0.25 2.132 1.821 2.367 2.194 2.681

4
1.00 2.156 1.827 2.417 2.181 2.895
0.50 2.149 1.805 2.446 2.168 2.850
0.25 2.141 1.816 2.430 2.195 2.806

Table 4. Relative efficiencies of the mean square erros of regression models (RE3)

m k σ2
ε Normal (0,1) Uniform (0,1) Exponential (1) Gamma (5,1) Lognormal (0,1)

3

3
1.00 1.105 1.011 0.995 0.995 0.994
0.50 0.992 1.001 1.015 0.996 0.993
0.25 1.007 1.003 0.999 0.992 0.999

4
1.00 1.006 1.002 1.002 1.007 0.999
0.50 0.996 0.994 1.004 1.005 0.994
0.25 0.997 1.000 0.989 1.004 0.997

5

3
1.00 1.002 1.007 1.002 1.004 1.002
0.50 0.998 0.993 1.012 1.005 0.998
0.25 0.998 1.000 0.998 1.000 0.996

4
1.00 0.998 0.998 1.013 1.003 0.999
0.50 1.002 0.987 1.020 1.004 1.001
0.25 0.997 1.000 1.001 1.003 0.997

10

3
1.00 1.009 1.005 1.006 1.005 0.995
0.50 0.995 0.993 1.014 1.002 1.000
0.25 0.998 1.000 1.002 1.000 0.995

4
1.00 1.006 1.006 1.006 0.998 1.002
0.50 0.993 0.988 1.016 1.001 0.995
0.25 0.995 1.003 0.998 0.998 0.996

4. Real data application
In this section, for comparing the methods, a real data analysis is employed. The data

set is the abalone data provided by Nash et al. [15] used for prediction of the age of
the abalone. Cetintav et al. [3] and Sevinc et al. [16] use this data set, for applica-
tion of RSS. The abalone dataset comes with the goal of attempting to predict abalone
age (through the number of rings on the shell) given various descriptive attributes of the
abalone. For the determination of abalone age, the shell is sliced through the cone to
form rings, which is further stained and counted through a microscope, a boring and time-
consuming task. Other measurements, which are easier to obtain, are used to predict the
age. The data set contains nine variables; (i) Sex, (ii) Length (mm), (iii) Diameter (mm),
(iv) Height (mm), (v) Whole weight (grams), (vi) Shucked weight (grams), (vii) Viscera
weight (grams), (viii) Shell weight (grams), and (ix) Rings (integer +1.5 gives the age in
years).
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Assuming that this study aims to obtain the mean and regression estimation of the
viscera weight, Y , which is more time-consuming measurement process as compared to
other physical measurements. Diameter and Height are selected as the concomitant vari-
ables, X{1} and X{2}, respectively, for ranking the abalones in the random sets without
actual measurement of their Y values. The correlation coefficients between X{1}, Y ,and
X{2}, Y are 0.902 and 0.877, respectively. For this analysis, k = 5, l = 2 and m = 5 are
considered. The results are tabulated in Table 5. From the table, it is evident that all
values of relative efficiencies are greater than 1.0, thereby indicating that the estimators
of TMRSS are more efficient than the estimators of MRSS.

Table 5. Relative efficiencies for real data application

RE1 RE2(β̂0) RE2(β̂1) RE2(β̂2) RE3
1.071 1.288 1.995 1.573 1.768

5. Discussion
This study proposes the two-layer median RSS design which is an extension of MRSS

and its mean estimator. According to the results of simulation studies and real data ap-
plication, the efficiency of the mean estimator of TMRSS is always more as compared to
the mean estimator of MRSS except some cases of uniform distribution. Further, the rela-
tive efficiency values are higher in asymmetric distributions than symmetric ones. On the
other hand, the regression coefficient estimators of TMRSS are comparable in magnitude
with the biases of the regression coefficient estimators of MRSS. Nevertheless, it appears
that these two estimators have little large biases in uniform distribution. In comparison
to, the regression coefficient estimator of MRSS, for all the simulation parameters, the
performance of the regression coefficient estimator of TMRSS is always better. Moreover,
the efficiencies of mean and regression estimators of TMRSS increases upon increasing
the set and/or cycle size, especially in asymmetric disributions, while keeping the other
simulation parameters fixed. Additionally, the mean square errors of the regression models
of the MRSS and TMRSS are found to be almost equal. As a future study, TMRSS may
be improved as multi-layer for multiple concomitant variables. Additionally, the different
estimators such as proportion and variance can be developed for TMRSS. As another
direction for future research, the other modified RSS methods like neoteric ranked set
sampling (NRSS) [19], which is consistently superior to the usual RSS for estimating pop-
ulation mean and variance can be extended to a two-layer design.
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