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Abstract 

Near fault ground motions excitations have specific characteristics comparing to 
regular earthquake excitations. Near fault ground motions contain directivity 
pulses and flint steps in different directions and these excitations are the reason 
of more damages than regular excitations for structures. A successful method to 
reduce structural vibrations is the usage of tuned mass dampers. By using 
optimally tuned mass dampers, it will be possible to reduce vibrations resulting 
from earthquake excitations. In the present study, the optimization of tuned 
mass dampers are done for near fault excitations. During optimization, 6 
different pulse like excitations are used. Three of these excitations are directivity 
pulses while the other ones are flint steps. The periods of excitations are 1.5s, 
2.0s and 2.5s since near fault pulses have long period and big peak ground 
velocity around 200 m/s. The optimization objectives are related to maximum 
displacement of structure in time domain, the maximum stroke limitation of 
tuned mass damper and transfer function of the structure in frequency domain 
analyses. The iterative optimization process uses both time and frequency 
domain analyses of the structure. Three different metaheuristic algorithms are 
used in the methodology. These methods are harmony search algorithm, 
teaching learning based optimization and flower pollination algorithm which are 
inspired from musical performances, education process and reproduction of 
flowering plants, respectively. As the numerical investigation, three different 
single degree of freedom structures with periods 1.5s, 2.0s and 2.5s are 
investigated for optimum mass, period and damping ratio of a tuned mass 
damper positioned on the structure. 
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1. INTRODUCTION

The undesired responses of structures subjected to earthquake and strong winds can be reduced by using control 

systems. These control systems may be passive, active, semi-active or hybrid. As a passive control system, a 

tuned mass damper (TMD) can be used on top of the structures. There are several existing examples of using 

TMDs on structures. Examples include Taipei 101, Berlin TV Tower (Fig. 1), LAX theme Building and other 

high rise buildings, towers or bridges. 

Especially, near fault ground motions are more dangerous than far fault motions because of significant impulsive 

motions; namely directivity pulse and flint step. These pulses have long period and big peak ground velocity 

(PGV). For that reason, these motions are dangerous for structures with long period. In several studies, these 
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motions are formulized. The formulations of Makris [1] are the best equations which represent the behavior of 

motions. In order to use TMDs on structures in near fault regions, an optimum tuning is needed. In the 

documented methods, several formulations have been proposed [2-4], but these formulations may not be an exact 

solution for structures with inherent damping and effected by impulsive motions. For that reason, numerical 

algorithms are more suitable for the optimization problem. Especially, metaheuristic algorithms are effective on 

optimization [5-8].  

   

Figure 1. Berlin TV Tower 

In this study, the optimization of TMDs positioned on the top of single degree of freedom (sdof) structures was 

investigated for near fault motions. During the optimization, three directivity pulses and three flint steps (with 

periods 1.5s, 2.0s and 2.5s and 200m/s PGV) are considered by using the equations of Makris [1]. Three 

different algorithms such as harmony search (HS), flower pollination algorithm (FPA) and teaching learning 

based optimization (TLBO) have been used. 

2. MATERIALS AND METHODS 

The aim of the optimization is to find design variables such as mass (md), period (Td) and damping ratio (ξd) of 

TMD by considering the optimization objectives such as related with maximum displacement (f1(v)), stroke 

capacity of TMD (f2(v)) and maximum value of acceleration transfer function (f3(v)). In the methodology, the 

design constants, excitations and solution ranges are defined. Then, initial solution matrix (V) is constructed with 

p sets of solutions (vi for the ith solution) including randomly generated design variables from the defined 

solution range. The formulations of vi, V, f1(v), f2(v) and f3(v) are given in Eqs.(1-5). 
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In these equations, xi are the displacement of ith story; xmax is a user defined value which is iteratively increased 

(0 is the initial value in current study); xd is the total displacement of TMD; st_max is a user defined value for 

stroke limitation (2 in the current study); TFN (w) is the acceleration transfer function which uses the Laplace 

transforms. After the generation of initial solution matrix, new solutions are produced according to the rules of 

the algorithms. The main comparisons factor is f1(v), but the function; f2(v) must be provided.  
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HS is music based algorithm developed by Geem et al. [9]. It imitates the musical performances in a musician 

tries to gain admiration of audience. FPA is a nature inspired algorithm and uses four rules proposed by Yang 

[10] including cross pollination, self-pollination, flower constancy and switch probability. TLBO developed by 

Rao et al. [11] imitates two phases of education such as teacher phase and learner phase in which self-education 

of students is considered. The details and formulation of the algorithms can be found in Reference [8]. 

3. RESULTS AND DISCUSSION 

Three single degree of freedom structures with 5% inherent damping and periods 1.5s, 2.0s and 2.5s are 

investigated for an optimum TMD. The mass of structures are taken as a symbolic value (1kg). Three different 

cases of maximum damping was investigated. The maximum damping ratio is 0.2, 0.3 and 0.4 for cases 1, 2 and 

3, respectively while the minimum bound is 0.01. The mass ratio of TMD was searched between 1% and 10% 

while Td was optimized between 0.5 and 1.5 times of the period of main structure. For the structure with 2 s 

period, the maximum mass ratio is taken as 20% in order to obtain an effective control. The optimum results are 

shown in Table 1. The objective function and maximum acceleration values are presented in Tables 2-4 for HS, 

FPA and TLBO algorithms. The best solutions were obtained for TLBO algorithm. For the structure with 2.0s 

and 2.5s period, the optimum results are the same since the optimum damping ratio of TMD is within the ranges 

of case 1. For the structure with 1.5s period, the results are the same for cases 2 and 3. The time history plots of 

top story displacements of structures are given in Figs. 2-5 for TLBO algorithm. 

 

   Figure 2. Time history plot for structure with 1.5s period (case 1) 

 

 

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

x
N
 (

m
)

Directivity Pulse - 1.5 s

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

x
N
 (

m
)

Flint Step - 1.5 s

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

Time (s)

x
N
 (

m
)

Directivity Pulse - 2 s

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

x
N
 (

m
)

Flint Step - 2 s

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

Time (s)

x
N
 (

m
)

Directivity Pulse - 2.5 s

0 5 10 15 20 25 30
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

x
N
 (

m
)

Flint Step - 2.5 s

 

 

Without control

With control



 

European Journal of Engineering and Natural Sciences 
 

89 EJENS, Volume 3, Issue 2 (2019) 
 

 

Table 1. The optimum design variables 

Case  

Structure 

periods 

(s) 

HS FPA TLBO 

md (kg) Td(s) ξd 
md 

(kg) 
Td(s) ξd 

md 

(kg) 
Td(s) ξd 

1 

1 0.100 1.597 0.190 0.100 1.653 0.200 0.100 1.653 0.200 

2 0.198 1.955 0.068 0.200 1.929 0.047 0.200 1.929 0.047 

3 0.099 2.170 0.055 0.100 2.150 0.047 0.100 2.071 0.018 

2 

1 0.098 1.738 0.229 0.100 1.753 0.231 0.100 1.753 0.231 

2 0.195 1.967 0.064 0.200 1.929 0.047 0.200 1.929 0.047 

3 0.099 2.070 0.024 0.100 2.071 0.018 0.100 2.071 0.018 

3 

1 0.099 1.729 0.227 0.100 1.753 0.231 0.100 1.753 0.231 

2 0.200 1.956 0.067 0.200 1.929 0.047 0.200 1.929 0.047 

3 0.098 2.178 0.059 0.100 2.071 0.018 0.100 2.071 0.018 

 

   

Figure 3. Time history plot for structure with 2.0s period 
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   Figure 4. Time history plot for structure with 2.5s period  

 

Table 2. The objective function values (HS) 

Case 

Structure 

periods 

(s) 

f1(v) 
Maximum 

acceleration 
f3(v) f2(v) 

Iteration 
With 

TMD 

Without 

TMD 

With 

TMD 

Without 

TMD 

With 

TMD 

With 

TMD 

Without 

TMD 

1 

1 1.204 1.006 21.224 16.418 10.012 3.425 1.948 2184 

2 1.602 1.217 15.889 10.482 9.558 6.617 1.940 3304 

3 2.000 1.605 12.697 9.234 9.892 7.815 1.999 6373 

2 

1 1.204 0.998 21.224 17.033 10.012 3.882 1.994 4097 

2 1.602 1.217 15.889 10.544 9.558 6.667 1.995 1335 

3 2.000 1.604 12.697 9.109 9.892 9.760 1.967 1035 

3 

1 1.204 0.997 21.224 16.950 10.012 3.816 1.988 2618 

2 1.602 1.216 15.889 10.459 9.558 6.701 1.937 4062 

3 2.000 1.606 12.697 9.256 9.892 7.687 1.997 2675 
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   Figure 5. Time history plot for structure with 1.5s period (case 2-3) 

 

Table 3. The objective function values (FPA) 

Case 

Structure 

periods 

(s) 

f1(v) 
Maximum 

acceleration 
f3(v) f2(v) 

Iteration 
With 

TMD 

Without 

TMD 

With 

TMD 

Without 

TMD 

With 

TMD 

With 

TMD 

Without 

TMD 

1 

1 1.204 0.997 21.224 16.631 10.012 3.489 2.000 3465 

2 1.602 1.209 15.889 10.381 9.558 7.488 2.000 5045 

3 2.000 1.603 12.697 9.196 9.892 8.194 2.000 2620 

2 

1 1.204 0.994 21.224 17.014 10.012 3.909 2.000 4055 

2 1.602 1.209 15.889 10.381 9.558 7.488 2.000 4915 

3 2.000 1.601 12.697 9.085 9.892 9.892 2.000 7370 

3 

1 1.204 0.994 21.224 17.014 10.012 3.909 2.000 4020 

2 1.602 1.209 15.889 10.381 9.558 7.488 2.000 5090 

3 2.000 1.601 12.697 9.085 9.892 9.892 2.000 7290 
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Table 4. The objective function values (TLBO) 

Case 

Structure 

periods 

(s) 

f1(v) 
Maximum 

acceleration 
f3(v) f2(v) 

Iteration 
With 

TMD 

Without 

TMD 

With 

TMD 

Without 

TMD 

With 

TMD 

With 

TMD 

Without 

TMD 

1 

1 1.204 0.997 21.224 16.631 10.012 3.489 2.000 4180 

2 1.602 1.209 15.889 10.381 9.558 7.488 2.000 4480 

3 2.000 1.601 12.697 9.085 9.892 9.892 2.000 4750 

2 

1 1.204 0.994 21.224 17.014 10.012 3.909 2.000 4130 

2 1.602 1.209 15.889 10.381 9.558 7.488 2.000 5160 

3 2.000 1.601 12.697 9.085 9.892 9.892 2.000 6850 

3 

1 1.204 0.994 21.224 17.014 10.012 3.909 2.000 4010 

2 1.602 1.209 15.889 10.381 9.558 7.488 2.000 4990 

3 2.000 1.601 12.697 9.085 9.892 9.892 2.000 6850 

4. CONCLUSIONS 

The optimized TMDs are effective in reduction of structural displacements and accelerations. All algorithms are 

effective, but FPA and TLBO can find precise optimum solutions. The iteration number for the optimum values 

are nearly 2000 iterations. The reduction of maximum displacements are 17%, 25% and 20% for the structure 

with period 1.5s, 2.0s and 2.5s, respectively. For near fault motions, these values are good, but active control 

system may be more effective for impulsive motions. The cost, maintain, stability problem and energy 

consumption are big problems of the active systems comparing to passive control methods.   
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