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Abstract 
 
In this paper, it is (1 )G  expansion method which are used to obtain new complex 
hyperbolic traveling wave solutions of the non-linear Kuramoto-Sivashinsky equation.   
Special values are given to the parameters in the solutions obtained and graphs are 
drawn.  These graphs are presented using special package program.  This method is 
employed to achieve the goals set for this study. 
 
Keywords: Kuramoto-Sivashinsky equation,  1 G -expansion method, complex 

hyperbolic traveling wave solutions. 
 
 

Lineer olmayan dinamik teorisi için  1 G -açılım metodunu 

kullanarak Kuramoto-Sivashinsky denkleminin karmaşık 
hiperbolik yürüyen dalga çözümleri 

 
 
Özet 
 
Bu makalede lineer olmayan Kuramoto–Sivashinsky denkleminin yeni karmaşık 
hiperbolik yürüyen dalga çözümlerini elde etmek için  1 G metodunu kullanılmıştır. 

Elde edilen çözümlerdeki parametrelere özel değerler verilmiş ve grafikler çizilmiştir.  
Bu grafikler özel paket programı kullanılarak sunulmuştur.  Bu yöntem, bu çalışma için 
belirlenen hedeflere ulaşmak için kullanılmıştır. 
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Anahtar Kelimeler: Kuramoto-Sivashinsky denklemi,  1 G  -açılım metodu, karmaşık 

hiperbolik yürüyen dalga çözümleri. 
 
 
1.  Introduction 
 
Nonlinear partial differential equations have been studied in many areas in recent years, 
such as in physics, engineering, fluid dynamics, plasma physics and chemistry, the 
search of exact solutions of PDEs which appeared.  The exact solution have been 
proposed for solving PDEs.  For this aim many variety analytical methods are used such 
as  G G -expansion method, jacobi elliptic function expansion method, homotopy 

analysis method, extended trial equation method, auxiliary equation method, the 
functional variable method, generalized auxiliary equation method, the first integral 
method [1-8],  1 G -expansion method [9-11], inverse Laplace homotopy technique 

[12], solutions of partial differential equations [13-16], the homotopy perturbation 
method (HPM) [17], multistage Adomian decomposition method (MADM)[18] and so 
on. 
 
The Kuramoto-Sivashinsky (K-S) equation appears in many work such as Weiss-Tabor-
Carnevale method [19], extensive numerical simulation [20], several alternative 
methods for the approximation of inertial manifolds [21], “viscous shocks” and periodic 
solutions [22], the Painleve test [23], a new topological method [24], a generalized tanh 
function method [25], the normal form analysis of nonlinear dynamic theory [26], 
detailed crossover analysis [27], the homotopy analysis method (HAM) [28], galerkin 
method [29] and so on.   
 
In this study, our aim is to obtain the traveling wave solution of the Kuramoto-
Sivashinsky equation by using  1 G -expansion method. The K-S equation can be 

shown in the form of 
 

2 3 0,t x xx x xxxxu u u u u u u                 (1.1) 

 
where , ,    arbitrary constants.  
 
The KS equation is derived from many physical events. These physical phenomena are 
mainly: plasma instabilities in the diffusion system in the reaction, heat dissipation, 
phase turbulence, etc. [30]. 
 
 
2.   1 G -expansion method 

 
Firstly, in order to explain this method, think two-variable general form of NPDEs  
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in the general form.  Here, let    , , , 0,u u x t u x vt v       and where v  is a 

constant.  Then, we can be converted into following nonlinear ODE for  u  : 

 , , ,... 0.u u u                 (2.2) 

  
The solution of (2. 2) Eq. is assumed to have the form 
 

  0
1

1
,

im

i
i

u a a
G




     
             (2.3) 

 
where ia are constants, m is a pozitif integer which is balancing term.  This term is 

found in the Eq. (2.2) by equalizing the linear terms with the largest order and the non-
linear terms having the largest order.  G G   is also considered as the solution of the 

following differential equation 
 

0,G G                  (2.4) 
 
where  and   represent the fixed number.  If the desired derivatives of the Eq. (2.3) 
are calculated and replaced in the equation (2.2), a polynomial with the argument  1 G  

is obtained.  An algebraic equation system is created by equalizing the coefficients of 
this polynomial to zero.  This equation system is solved with the help of the computer 
package program and put into place in the default (2.2) solution function.  As a result, 
the solution of the Eq. (1.1) is found. 
 
 
3.  Solution of Kuramoto-Sivashinsky equation 
 
We consider Kuramoto-Sivashinsky Eq. (1.1). Therefore, using transformation 

   ,u u x t u   , , 0x vt v    , of Eq. (1.1) we obtain 

 
 42 3 0,vu u u u u u u                     (3.1) 

 

where v represents the speed of the wave.  Considering the Eq. (3.1), balancing  4u  
with 3u ugives m = 1, and we obtain the following form of the solution 
 

  0 1

1
.u u a a

G
       

            (3.2) 

 
If we replace the Eq. (3.2) in the Eq. (3.1)  and the coefficients of the algebraic equation 
are equal to zero, we can construct the following algebraic equation system.  
 

 
2 4 2 3

1 1 1 0 1 0 1 0,
1

: v a a a a a a a
G
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2 2 2 2 2 2 3 3

1 1 0 1 0 1 1 0 13

1
: 2 50 2 3 3 0,a a a a a a a a a

G
      


     


             (3.3) 
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: 60 3 0,a a a a a
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where 0 1, , , ,a a     and v  are constants, aim with computer package program, 

finding the solutions of system (3.3) and we obtained the following stations. 
 
Case 1.  If 
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       (3.4) 

 
substituting values (3.4) into (3.2) and we have the following wave solutions for Eq. 
(1.1): 
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Figure 1. The solution representing the stationary hyperbolic traveling wave solution in 

the 1( , )u x t  obtained of the Eq. (1.1) for 1.6, 1, 4, 2, 4.A          

 
Case 2.  If 
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                           (3.6) 

 
substitute (3.6) into (3.2), obtain two types of traveling wave solutions of Eq. (1.1): 
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Figure 2. The solution representing the stationary complex hyperbolic traveling wave 

solution in the 2 ( , )u x t   obtained of the Eq. (1.1) for 1, 1, 5, 2, 3.A            

 
Case 3.  If 
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substituting values found (3.8) into (3.2), obtain two types of wave solutions for Eq. 
(1.1): 
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Figure 3. The solution representing the stationary complex hyperbolic traveling wave 

solution in the 3( , )u x t   obtained of the Eq. (1.1) for 1, 1, 5, 2, 3.A            

 
Case 4.  If 
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                           (3.10) 

         
substituting values found (3.10) into (3.2), obtain two types of wave solutions for Eq. 
(1.1): 
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Figure 4. The solution representing the stationary hyperbolic traveling wave solution in 
the 4 ( , )u x t   obtained of the Eq. (1.1) for 1.6, 1, 4, 2, 4.A          

 
 
4.  Conclusion 
 
In this study,  1 G -expansion method is successfully employed to establish a series of 

new exact travelling wave solutions for K-S equation. The shock wave structure is 
obtained by the (1 /G’)- expansion method, in particular the wave solutions exhibiting 
asymptotic behavior are obtained. The process is less complicated than other methods. 
As a result, new series of exact traveling wave solutions are obtained.  These solutions 
include  1 G -expansion method, which may be useful to further understand the 

mechanisms of PDEs.  Also, Mathematica has been used for computations and 
programming in this paper.  The results obtained here show that the method is effective 
and reliable, can be further used applied to other PDE’s. 
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