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Abstract

The aim of present paper is to study the generalized B-curvature tensor of a normal paracontact metric manifold
satisfying the conditions generalized B-flatness, generalized B-semi-symmetric, BZ=0,B.S=0and B.P=0,
where B,Z, P,S denotes the generalized B-curvature tensor, concircular curvature tensor, projective curvature
tensor and Ricci tensor, respectively.
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1. Introduction

The study of paracontact geometry was initiated by Kenayuki and Williams [8]. Zamkovoy studied paracontact metric manifolds
and their subclasses [9]. Recently Welyczko studied curvature and torsion of Frenet Legendre curves in 3-dimensional normal
paracontact metric manifolds [3, 4]. In the recent years, (para) contact metric manifolds and their curvature properties have
been studied by many authors [2, 10, 11].

A n—dimensional differentiable manifold (M, g) is said to be an almost paracontact metric manifold if there exist on M a
(1,1) tensor field ¢, a contravariant vector & and a 1-form n-such that

X =X-nX)§ ¢£=0, n(9X)=0, n(&)=1 M
and

g(9X,9Y) =g(X,Y) —n(X)n(Y), n(X)=g(X,5), )
for any X,Y € x(M). If the covariant derivative of ¢ satisfies

(Vx9)Y = —g(X,Y)E —n(Y)X +2n(X)n(¥)& 3)

then, M is called a normal paracontact metric manifold, where V is Levi-Civita connection.
From (3), we can easily to see that

0X = Vy& )

for any X € x (M) [8].
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Moreover, if such a manifold has constant sectional curvature equal to c, then its the Riemannian curvature tensor is R given
by

RXZ = 2 erzx—g(x.2)7)
+ @)Y —n0m@X +ex.2n )

for any vector fields X,Y,Z € y (M) [2].
In 2014, Shaikh and Kundu [1] to imported and studied a type of tensor field, called generalized B curvature tensor on a

Riemannian manifold. It count the structures of Quasi-conformal, Weyl-conformal, Conharmonic and Concircular curvature
tensors and is spell out just as

B(X,Y)Z = poR(X,Y)Z
P1 [S(YaZ)X 7S(XaZ)Y+g(sz)QX7g(XaZ)QY]
2par[8(Y, Z)X —g(X,Z)Y] ©®)

- -

wehere R, S, Q and r are the Riemannian curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature,
respectively.

In particular, the B-curvature tensor is reduced to:

1. The quasi-conformal curvature tensor C [5] if

1 a
= =b and = —— 2b|.
Po = a,p1 and  p> n [n—l + ]

2. The Weyl-conformal curvature tensor Cc [7]if

-
2(n—1)(n—-2)

1
po=1,p1=— and py = —
n—1

3. The concircular curvature tensor Z [6] if

po=1,p1=0 and pr=—

nn—1)

4. The conharmonic curvature tensor H [12] if

1
po=1,p1=— and py =0.
n—1

The projective curvature tensor P and the concircular curvature tensor Z of n-dimensional Riemann manifold are defined by

P(X,Y)Z=R(X,Y)Z—

" i 0 [S(Y,Z)X —S(X,Z)Y], @)

and

Z(X,Y)Z=R(X,Y)Z— n(nir—l) 8(Y,2)X —g(X,2)Y], (8)
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where S is the Ricci tensor and r is the scalar curvature of the manifold [6].

In a normal paracontact metric space form by direct calculations, we can easily to see that

s,y = (LD vy (CDEZ) g ey
from which
OX = (c(n—5)4+3n+l)X+((c— 114(5—11))17(}05

for any X,Y € x(M), where Q is the Ricci operator and S is the Ricci tensor of M.

Corollary 1. A normal paracontact metric space form is always an N-Einstein manifold.

From (9) and (10), we can easily see

S(X,8) = (n—1)n(X),

08 = (n—1)¢&,
and
_ n—1
Ty

[c(n—5)+3n+5].
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&)

(10)

(1D

(12)

(13)

Let M be n-dimensional normal paracontact metric space form and we denote the Riemannian curvature tensor of R, then we

have from (5), for X = &
R(E.Y)Z=¢g(Y,2)¢ —n(2)Y,
forz=¢&
RX,Y)§ =n(Y)X —n(X)Y.
In (15) choosing ¥ = &, we get
R(X,¢)¢ =X —n(X)E.
Taking the inner product both of the sides (5) with & € x (M), we obtain
NRX,Y)Z) = g(Y,Z)n(X) —g(X,Z)n(Y).

In the same way we obtain from (7) and (8),

P(E.Y)Z=g(¥.2)5 ~ —S(Y.2)5,

P(S,Y)E =0,

and
r

Z(EY)Z= [1— m} [8(Y,2)E —n(2)Y],

nn—1)

Also from (6), we obtain

ZE g =[1- | —v].

B(&,Y)Z= [po+ % [c(n—5)+Tn—1] +2por] [s(Y,Z2)é —n(2)Y],
and

B(Y.2)& = [po+ 5 [e(n=5)+Tn—1] +2p2r] [n(2)Y —(¥)2Z].
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(14)

15)

(16)

a7)

(18)

(19)

(20)

2

(22)

(23)
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If a normal paracontact metric space form M" is a generalized B-flat, then from (6) we obatin

+ 2par[g(Y.2)X — g(X,2)Y]
= 0, (24)
forall X,Y,Z € x(M), where Q is the Ricci operator and S is the Ricci tensor of M.

Choosing Z = & and using (1), (11),(15) in (24), we obtain
[po+pi(n=1)+2par] [n(Y)X —=n(X)Y] + p1 [n(Y)QX — n(X)QY] = 0. (25)
We choosing Y = £ in (25) and taking into account (10), we have

—p10X = [po+p1(n—1)+2p2r]X — [po+2p1(n—1) +2porn(X)E. (26)

Inner product both sides of the equation by W € (M) in (26), we conclude

1 1
SXW)=-— [po+p1(n—1)+2par]g(X, W)+ o [Po+2p1(n—1) +2parIn (X)n(W).
We are able to state the following theorem

Theorem 2. An n-dimensional (n > 3) normal paracontact metric manifold M is generalized B-flat if and only if M reduce an
Einstein manifold provided that (p, # 0).

2. Generalized B-Semi-Symmetric Normal Paracontact Metric Manifold

Theorem 3. Let M be n-dimensional a normal paracontact metric manifold. Then, M is generalized B-semi symmetric if and

(1-n) [2ﬂo+m (2n-3)]
2p1+4ps(n—1)

Proof. Let (R(X,Y)B)(U,W)Z =0be on M for any X,Y,Z,U,W € x(M), then we get
(R(X.Y)B)(UW)Z = R(X,Y)B(U,W)Z—B(R(X,Y)U,W)Z
B(U,R(X,Y)W)Z—B(U,W)R(X,Y)Z. 27)

only if the scalar curvature of M is r =

In (27), choosing X = £ and from the hypothesis,we have
(R(E,Y)B)(U,W)Z = R(E,Y)B(UW)Z—B(R(E,Y)U,W)Z
B(U,R(&E,Y)W)Z—B(U,W)R(E,Y)Z
= 0. (28)
Using (14) in (28), we obtain
g(Y,B(U,W)Z)E —n(B(U,W)Z)Y
— ¢(\U)B(G,W)Z+n(U)B(Y,W)
(
( )

N N

( )
— g(\W)B(E,U)Z+n(W)B(U,Y)
( W)

8(Y,Z)B(U,W)E +n(Z)B(U,W)Y

|
e

(29
In (29), putting U = &£ and using (22) and (23), we obtain
BOYW)Z— [po+ B [e(n=5)+Tn—1] +2p2r] [s(W,2)Y — g(¥.Z)W] = 0.
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Now, choosing Z = £ and using (23) in the last equation, we conclude

_ (1—=n)[2po+ p1(2n—3)]
S T T S VN .

The converse obvious. The achieve the proof. |

3. Curvature Conditions B.Z =0, B.S =0 and B.P =0

Now, we theorize that the manifold bearing the curvature condition, that is, B.Z = 0, B.S =0 and B.P = 0, where B, Z Pand S
are the the generalized B-curvature tensor, concircular curvature tensor and projective curvature tensor and the Ricci tensor,
respectively. Now, in this position we show the theorem.

Theorem 4. Let M be n-dimensional a normal paracontact metric manifold. Then, BZ=0 if and only if M either is a real
(1) [2p0-+p1 (21-3)
2p1+4pa(n—1)

space form with sectional curvature ¢ = 1 or the scalar curvature r =

Proof. Suppose that B(,Y)Z = 0, we have
B(é,Y>Z<U,W)Z Z( B(&, Y)U W)
= 0, (31)
forall Y,U,W,Z € x(M). In (31), using (22) and putting U = &, we obtain
[po+ B [etn=3)+Tn— 1] +2p2r] [s(v. Z(&, W)2)¢
— N(Z(EW)Z)Y —n(Y)Z(E,W)Z
+ ZOLW)Z4+n(W)Z(E,Y)Z
g(Y. 2)Z(§,W)E +1(2)Z(&,W)Y ]
= 0. (32)
In (32), using the equations (20) and (21), we conclude

r

[c(n—5)+Tn—1] +2por] [Z(Y,W)Z — (l—m

[po+ 2L ) [g(W.2)Y —g(¥,Z)W]] = 0.

4

Taking into account (8), in the last equation we result

[po+ % [e(n—5)+Tn— 1] +2por] [RY,W)Z — [g(W,2)Y — g(¥,Z)W]] =0.

(1-n) [2po-+p1(2n-3)]

This tell us that M is a real space form with constant sectional curvature ¢ = 1 or the scalar curvature r = 3 Fps (1=T) of
the manifold.
The converse is obvious. The proof is complete. |

Theorem 5. Let M be n-dimensional a normal paracontact metric manifold. Then, B.P = 0 if and only if M either reduce an
(1-n) [2p0-+p1 (2n-3)
2p1+4pa(n—1)

Einstein manifold or the scalar curvature r =

Proof. Assume that B(E,Y)P = 0, we have

B(§.Y)P(U,W)Z—P(B(§,Y)U,W)Z
P(U,B(é,Y)W)Z—P(U,W)B(é,Y)Z
_ o (33)
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LG
forall Y,U,W,Z € x(M). In (33), using (22) and putting U = &, we obtain

0 = [po+%[c(n—5)+7n—l]+2p2r] [g(W,Z)n(Y)g—n%S(W,Z)n(Y)aj

1

~ n)[gW.2)E — L SW,2)E] +P(Y, W)z

b o) [s(r,2)E - 181, 2)¢)

£ n@)[gW.y)E - —Swy)E]]. G4)

When the equation (34) is shortened, we have

1
0 = [po+ % [c(n—5)+Tn—1] +2por] [HS(W,Z)Y _

1
= SWYIN(Z)E +PW)Z—g(W,2)Y +(Y.Z)n(W)E
+ g(W.Y)n(2)E]. (35)
In (35), choosing Z = £ and inner product both sides of the equation by & € x (M), we conclude

Y.,z
—S(.Z)W

[Po+ % [c(n=5)+Tn—1] +2por] [S¥,W) — (n = 1)g(Y,W)] =0 (36)

. . . . . . 1—n) |2po+p1(2n—3 . .
This show that, either M is an Einstein manifold or the scalar curvature r = ( ;LE ffp;(’ir ) ) of the manifold. This proves our

assertion. The converse is obvious. [ |

Theorem 6. Let M be n-dimensional a normal paracontact metric manifold. Then, B.S = 0 if and only if M either reduce an

(1-n) [2p0+p1 (2n-3)]
2p1+4pa(n—1)

Einstein manifold or the scalar curvature r =

Proof. Let the condition B.S = 0 holds on M, which implies that (B(Y,X)S(U,W)) = 0 for all vector fields X,Y,U,W € x(M).
Then we have

S(B(Y,X)U,W)+S(U,B(Y,X)W) =0. 37)
Substituting ¥ = U = £ in (37), we have

S(B(E,X)E,W)+5(8,B(E,X)W) =0. (38)
By the use of (1), (11), (22) we get from (38) that

[po+ B [e(n=5) +Tn— 1] +2p2r] [S(X,W) = (n— 1)g(X,W)] = 0. (39)

(1-n) [2po-+p1(20-3)]
3 Haps (1=T) of the M.

This completes of the proof. The Converse is obvious. |

This tell us either M is an Einstein manifold or the scalar curvature r =

4. Conclusion

In this paper, we study the generalized B-curvature tensor of a normal paracontact metric manifold. Necessary and sufficient
conditions are given for a normal paracontact metric manifold satisfying the conditions, generalized B-flatness, generalized
B-semi-symmetric,B.Z =0, B.S = 0 and B.P = 0. According these cases, we classified normal paracontact metric manifolds.
The same classification can be made for other curvature tensors.
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