
Vol. 1, No. 2, 15-21, 2019
HSJG

On C-Bochner Curvature Tensor in (LCS)n-Manifolds
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Abstract
The object of the present paper is to study the C−Bochner curvature tensor in (LCS)n-manifolds.
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1. Introduction
In 2003, Shaikh [18] introduced the notion of Lorentzian concircular structure manifolds (briefly, (LCS)n-manifolds) with an
example, which generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto [14] and also by Mihai and Rosca
[15]. Then Shaikh and Baishya [19] investigated the applications of (LCS)n-manifolds to the general theory of relativity and
cosmology. The (LCS)n-manifolds are also studied by Atçeken et. al. [1, 2, 3, 11], Hui [10], Narain and Yadav [16] many
authors.

Motivated by the studies of the above authors, in this paper we classify (LCS)n-manifolds, which satisfy the curvature
conditions R(ξ ,X)B = 0, B(ξ ,X)P = 0, B(ξ ,X)S = 0 and C-Bochner flat, where B is the C-Bochner curvature tensor, P is the
projective curvature tensor and S is the Ricci tensor.

2. Preliminaries
An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g,
that is, M admits a smooth symmetric tensor field g of type (0,2) such that for each point p∈M, the tensor gp : TpM×TpM→R
is non-degenerate inner product of signature (−,+, ...,+), where TpM denotes the tangent vector space of M at p and R is
the real number space. A non-zero vector v ∈ TpM is said to be timelike (resp., non-spacelike, null, spacelike) if satisfies
gp(v,v)< 0 (resp., ≤ 0,= 0,> 0) [17]. The category to which a given vector falls is called its casual chatacter.

Definition 1. In a Lorentzian manifold (M,g), a vector field P defined by

g(X ,P) = A(X)

for any X ∈ Γ(T M) is said to be a concircular vector field if

(∇X A)Y = α{g(X ,Y )+ω(X)A(Y )}

for Y ∈ Γ(T M), where α is a nonzero scalar function, A is a 1-form, ω is also closed 1-form, and ∇ denotes the Levi-Civita
connection on M.



Let M be a Lorentzian manifold admitting a unit timelike concircular vector field ξ , called the characteristic vector field of
the manifold. Then we have

g(ξ ,ξ ) =−1.

Since ξ is a unit vector field, there exists a nonzero 1-form η such that

g(X ,ξ ) = η(X). (1)

The equation of the following form holds:

(∇X η)Y = α{g(X ,Y )+η(X)η(Y )},α 6= 0 (2)

for all X ,Y ∈ Γ(T M), where α is nonzero scalar function satisfying

∇X α = X(α) = dα(X) = ρη(X), (3)

ρ being a certain scalar function given by ρ =−ξ (α). Let us put

∇X ξ = αφx, (4)

then from (2) and (4), we can derive

φX = X +η(X)ξ (5)

which tells us that φ is symmetric (1,1)-tensor. Thus the Lorentzian manifold M together with the unit timelike concircular
vector field ξ , its associated 1-form η and (1,1)-type tensor field φ is said to be a Lorentzian concircular structure manifold.
A differentiable manifold M of dimension n is called (LCS)-manifold if it admits a (1,1)-type tensor field φ , a covariant vector
field η and a Lorentzian metric g which satisfy

η(ξ ) = g(ξ ,ξ ) =−1, (6)

φ
2X = X +η(X)ξ , (7)

g(X ,ξ ) = η(X)ξ , (8)

φξ = 0, η ◦φ = 0, (9)

for all X ∈ Γ(T M). Particulary, if we take α = 1, then we can obtain the LP-Sasakian structure of Matsumoto [14].

Also, in an (LCS)n-manifold M, the following conditions are satisfied

η(R(X ,Y )Z) = (α2−ρ)
[
g(Y,Z)η(X)−g(X ,Z)η(Y )

]
, (10)

R(ξ ,X)Y = (α2−ρ)
[
g(X ,Y )ξ −η(Y )X

]
, (11)

R(X ,Y )ξ = (α2−ρ)
[
η(Y )X−η(X)Y

]
, (12)

(∇X φ)Y = α
[
g(X ,Y )ξ +2η(X)η(Y )ξ +η(Y )X

]
, (13)

S(X ,ξ ) = (n−1)(α2−ρ)η(X), (14)

S(φX ,φY ) = S(X ,Y )+(n−1)(α2−ρ)η(X)η(Y ) (15)

for all X ,Y,Z on M, where R is the Riemannian curvature tensor and S is the Ricci tensor. Q is also the Ricci operator given by
S(X ,Y ) = g(QX ,Y ) [18].
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S. Bochner [5] introduced a Kähler analogue of the Weyl conformal curvature tensor by purely formal considerations, which is
now well known as the Bochner curvature tensor. A geometric meaning of the Bochner curvature tensor was given by D. E.
Blair [4]. By using the Boothby-Wangs fibration [6], M. Matsumoto and G. Chuman [13] constructed the C-Bochner curvature
tensor from the Bochner curvature tensor.

The C-Bochner curvature tensor is given by

B(X ,Y )Z = R(X ,Y )Z +
1

n+3
[
S(X ,Z)Y −S(Y,Z)X +g(X ,Z)QY

− g(Y,Z)QX +S(φX ,Z)φY −S(φY,Z)φX

+ g(φX ,Z)QφY −g(φY,Z)QφX +2S(φX ,Y )φZ

+ 2g(φX ,Y )QφZ−S(X ,Z)η(Y )ξ

+ S(Y,Z)η(X)ξ −η(X)η(Z)QY +η(Y )η(Z)QX
]

− p+n−1
n+3

[
g(φX ,Z)Y −g(φY,Z)φX +2g(φX ,Y )φZ

]
− p−4

n+3
[
g(X ,Z)Y −g(Y,Z)X

]
+

p
n+3

[
g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ

+ η(X)η(Z)Y −η(Y )η(Z)X
]
, (16)

where S is the Ricci tensor of type (0,2), Q is the Ricci operator defined by g(QX ,Y ) = S(X ,Y ) and p = n+r−1
n+1 , r is the scalar

curvature of the manifold.

The projective curvature tensor P of n-dimensional Riemann manifold is defined by

P(X ,Y )Z = R(X ,Y )Z− 1
(n−1)

[
S(Y,Z)X−S(X ,Z)Y

]
, (17)

where S is the Ricci tensor of the manifold [21].

In (LCS)n-manifold M, the following conditions are satisfied

B(ξ ,Y )Z =
[4(α2−ρ)+2p−4

n+3
][

g(Y,Z)ξ −η(Z)Y
]

+
2

n+3
[
η(Z)QY −S(Y,Z)ξ

]
, (18)

B(X ,Y )ξ =
[4(α2−ρ)+2p−4

n+3
][

η(Y )X−η(X)Y
]

+
2

n+3
[
η(X)QY −η(Y )QX

]
, (19)

B(ξ ,Y )ξ =
[4(α2−ρ)+2p−4

n+3
][

η(Y )ξ +Y
]

− 2
n+3

[
QY +(n−1)(α2−ρ)η(Y )ξ

]
. (20)

P(ξ ,Y )Z = (α2−ρ)g(Y,Z)ξ − 1
n−1

S(Y,Z)ξ (21)

and

P(X ,Y )ξ = P(ξ ,Y )ξ = 0. (22)

Theorem 2. If an (LCS)n-manifold M is C-Bochner flat, then M reduces to an η-Einstein Manifold.
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Proof. Suppose that an (LCS)n-manifold M is C-Bochner flat. Then we have,

B(X ,Y )Z = 0. (23)

In (16), putting Z = ξ , we have

0 = R(X ,Y )ξ +
1

n+3
[
S(X ,ξ )Y −S(Y,ξ )X

+ g(X ,ξ )QY −g(Y,ξ )QX−S(X ,ξ )η(Y )ξ

+ S(Y,ξ )η(X)ξ +η(X)QY −η(Y )QX
]

− p−4
n+3

[
g(X ,ξ )Y −g(Y,ξ )X

]
+

p
n+3

[
g(X ,ξ )η(Y )ξ −g(Y,ξ )η(X)ξ

+ η(Y )X−η(X)Y
]
. (24)

In (24), by using the equations (6),(8),(9),(12) and (14), we obtain

0 =
[
α

2−ρ +
2p−4
n+3

− (n−1)(α2−ρ)

n+3
][

η(Y )X−η(X)Y
]

+
2

n+3
[
η(X)QY −η(Y )QX

]
. (25)

Putting X = ξ in (25) and by using (14), we obtain

2
n+3

QY =
[
α

2−ρ +
2p−4
n+3

− 3(n−1)(α2−ρ))

n+3
]
η(Y )ξ

+
[
α

2−ρ +
2p−4
n+3

− (n−1)(α2−ρ)

n+3
]
Y, (26)

which is equivalent to

QY =
[
2p−4+4(α2−ρ)]Y +

[
2p−4− (α2−ρ)(2n−6)

]
η(Y )ξ . (27)

Inner product both sides of the equation by W ∈ χ(M) and taking into account p = n+r−1
n+1 , we conclude

S(Y,W ) =
[
2(α2−ρ)−

(
1+

r
n+1

)]
g(Y,W )

+
[
(3−n)(α2−ρ)−

(
1+

r
n+1

)]
η(Y )η(W ).

�

Theorem 3. Let M be an (LCS)n-manifold. Then, R(ξ ,Y )B is always identically zero, for any Y ∈ χ(M).

Proof. For any X ,Y,U,W,Z ∈ χ(M) on M, we have

(R(X ,Y )B)(U,W,Z) = R(X ,Y )B(U,W )Z−B(R(X ,Y )U,W )Z

− B(U,R(X ,Y )W )Z−B(U,W )R(X ,Y )Z. (28)

In (28), for X = ξ , we have

(R(ξ ,Y )B)(U,W,Z) = R(ξ ,Y )B(U,W )Z−B(R(ξ ,Y )U,W )Z

− B(U,R(ξ ,Y )W )Z−B(U,W )R(ξ ,Y )Z. (29)
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By using (11) in (29), we obtain

(R(ξ ,Y )B)(U,W,Z) =
(
α

2−ρ
)[

g(Y,B(U,W )Z)ξ −η
(
B(U,W )Z

)
Y

− B
(
g(Y,U)ξ −η(U)Y,W

)
Z

− B
(
U,g(Y,W )ξ −η(W )Y

)
Z

− B(U,W )
(
g(Y,Z)ξ −η(Z)Y

)]
. (30)

Now, by using (18),(19) and choosing U = Z = ξ , we obtain

(R(ξ ,Y )B)(ξ ,W,ξ ) = g
(
Y,Aη(W )+AW − 2

n+3
QW −Dη(W )ξ

)
ξ

− η
(
Aη(W )ξ +AW − 2

n+3
QW −Dη(W )

)
Y

− 2η(Y )
(
Aη(W )ξ +AW − 2

n+3
QW −Dη(W )

)
− Aη(W )Y +2Aη(Y )W − 4

n+3
η(Y )QW +

2
n+3

η(W )QY

+ η(W )
[
Aη(Y )ξ +AY − 2

n+3
−Dη(Y )ξ

]
− Ag(W,Y )ξ +

2
n+3

S(W,Y )ξ , (31)

where, A = 4(α2−ρ)+2p−4
n+3 and D = 2(n−1)(α2−ρ)

n+3 .

We easily obtain from (31) that

(R(ξ ,Y )B)(ξ ,W,ξ ) = 0. (32)

�

3. (LCS)n-Manifolds Satisfying Conditions (B,ξ )P = 0 and (B,ξ )S = 0

Theorem 4. Let M be an (LCS)n-manifold. Then the manifold satisfies B(ξ ,Y )P= 0 if and only if there is the following relations

‖Q‖2 = n
[
(n−1)(α2−ρ)

]2[2(α2−ρ)+ p−2
]
+ r

[
(α2−ρ)(n+1)+ p−2

]
.

Proof. In order to prove our theorem, we assume that B((ξ ,Y )P)(U,W )Z = 0, for all ξ ,Y,U,W,Z ∈ χ(M). Then we have

0 = B(ξ ,Y )P(U,W )Z−P(B(ξ ,Y )U,W )Z

− P(U,B(ξ ,Y )W )Z−P(U,W )B(ξ ,Y )Z (33)

In (33), by using the equation (18) we obtain

0 =
[4(α2−ρ)+2p−4

n+3
][

g(Y,P(U,W )Z)ξ −η(P(U,W )Z)Y

− g(Y,U)P(ξ ,W )Z +η(U)P(Y,W )Z

− g(Y,W )P(U,ξ )Z +η(W )P(U,Y )Z

− g(Y,Z)P(U,W )ξ +η(Z)P(U,W )Y
]

+
2

n+3
[
η(P(U,W )Z)QY −S(Y,P(U,W )Z)ξ

− η(U)P(QY,W )Z +S(Y,U)P(ξ ,W )Z

− η(W )P(U,QY )Z +S(Y,W )P(U,ξ )Z

− η(Z)P(U,W )QY +S(Y,Z)P(U,W )ξ
]
. (34)
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Here, substituting U = ξ in (34), we have

0 =
[4(α2−ρ)+2p−4

n+3
][

g(Y,P(ξ ,W )Z)ξ −η(P(ξ ,W )Z)Y

− η(Y )P(ξ ,W )Z−P(Y,W )Z +P(ξ ,Y )Z +η(Z)P(ξ ,W )Y
]

+
2

n+3
[
η(P(ξ ,W )Z)QY −S(Y,P(ξ ,W )Z)ξ

+ P(QY,W )Z−η(W )P(ξ ,QY )Z−η(Z)P(ξ ,W )QY
]

+
2(n−1)(α2−ρ)

n+3
η(Y )P(ξ ,W )Z. (35)

Let Z = ξ be in (35), then also by using (6), (21) and (22), we obtain[4(α2−ρ)+2p−4
n+3

]
P(ξ ,W )QY +

2
n+3

P(ξ ,W )Y = 0. (36)

Again by using (21) in (36), we get

0 =
[4(α2−ρ)+2p−4

n+3
][
(α2−ρ)g(W,Y )ξ − 1

n−1
S(W,Y )ξ

]
− 2

n+3
[
(α2−ρ)g(W,QY )ξ − 1

n−1
S(W,QY )ξ

]
which implies that

S(W,QY ) =
[
(α2−ρ)(n+1)+ p−2

]
S(Y,W )

− (n−1)(α2−ρ)
[
2(α2−ρ)+ p−2

]
g(W,Y ). (37)

Now, for
[
e1,e2, ...,en−1,ξ

]
orthonormal basis of M from (37), we conclude

‖Q‖2 = n
[
(n−1)(α2−ρ)

]2[2(α2−ρ)+ p−2
]
+ r

[
(α2−ρ)(n+1)+ p−2

]
,

which proves our assertion. The converse is obvious. �

Theorem 5. Let M be an (LCS)n-manifold. Then B(ξ ,Y )S = 0 if and only if there is the following relations

‖Q‖2 = n
[
(n−1)(α2−ρ)

]2[2(α2−ρ)+ p−2
]
+ r

[
(α2−ρ)(n+1)+ p−2

]
.

Proof. We suppose that (B(ξ ,Y )S)(U,W ) = 0. Then for all ξ ,Y,U,W ∈ χ(M) we have

S(B(ξ ,Y )U,W )+S(U,B(ξ ,Y )W ) = 0. (38)

In (38), by using (18) we get

0 =
[4(α2−ρ)+2p−4

n+3
][

g(Y,U)S(ξ ,W )−η(U)S(Y,W )

+ g(Y,W )S(U,ξ )−η(W )S(U,Y )
]

+
2

n+3
[
η(U)S(QY,W )−S(Y,U)S(ξ ,W )

+ η(W )S(U,QY )−S(Y,W )S(U,ξ )
]
. (39)

Now, in (39) substituting U = ξ we obtain

S(QY,W ) =
[
(α2−ρ)(n+1)+ p−2

]
S(Y,W )

+
[
(α2−ρ)(n−1)

][
2(α2−ρ)+ p−2]g(Y,W ). (40)

Again for
[
e1,e2, ...,en−1,ξ

]
orthonormal basis of M from (40), we conclude

‖Q‖2 = n
[
(n−1)(α2−ρ)

]2[2(α2−ρ)+ p−2
]
+ r

[
(α2−ρ)(n+1)+ p−2

]
,

�
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4. Conclusion
In the present paper, we have studied the C-Bochner curvature tensor of (LCS)n-manifolds satisfying the conditions C-Bochner
flat, R.B = 0, B.P = 0 and B.S = 0. According these cases, we classified (LCS)n-manifolds. The same classification can be
made for other curvature tensors.
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