On C-Bochner Curvature Tensor in $(L C S)_{n}$-Manifolds

Ümit Yildirim *, Mehmet Atc̣eken and Süleyman Dirik

Abstract
The object of the present paper is to study the C-Bochner curvature tensor in $(L C S)_{n}$-manifolds.
\section*{Keywords and 2010 Mathematics Subject Classification}
Keywords: $(L C S)_{n}$-manifold- C-Bochner curvature tensor- projective tensor
MSC: 53C15, 53C25
Department of Mathematics, University of Gaziosmanpasa, 60100, Tokat, TURKEY
Department of Mathematics, University of Gaziosmanpasa, 60100, Tokat, TURKEY
Department of Statistics, University of Amasya, 05100, Amasya, TURKEY
Corresponding author: umit.yildirim@gop.edu.tr
Article History: Received 27 June 2019; Accepted 19 September 2019

1. Introduction

In 2003, Shaikh [18] introduced the notion of Lorentzian concircular structure manifolds (briefly, $(L C S)_{n}$-manifolds) with an example, which generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto [14] and also by Mihai and Rosca [15]. Then Shaikh and Baishya [19] investigated the applications of $(L C S)_{n}$-manifolds to the general theory of relativity and cosmology. The $(L C S)_{n}$-manifolds are also studied by Atçeken et. al. [1, 2, 3, 11], Hui [10], Narain and Yadav [16] many authors.

Motivated by the studies of the above authors, in this paper we classify $(L C S)_{n}$-manifolds, which satisfy the curvature conditions $R(\xi, X) B=0, B(\xi, X) P=0, B(\xi, X) S=0$ and C-Bochner flat, where B is the C-Bochner curvature tensor, P is the projective curvature tensor and S is the Ricci tensor.

2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in M$, the tensor $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is non-degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} M$ denotes the tangent vector space of M at p and \mathbb{R} is the real number space. A non-zero vector $v \in T_{p} M$ is said to be timelike (resp., non-spacelike, null, spacelike) if satisfies $g_{p}(v, v)<0$ (resp., $\left.\leq 0,=0,>0\right)$ [17]. The category to which a given vector falls is called its casual chatacter.

Definition 1. In a Lorentzian manifold (M, g), a vector field P defined by

$$
g(X, P)=A(X)
$$

for any $X \in \Gamma(T M)$ is said to be a concircular vector field if

$$
\left(\nabla_{X} A\right) Y=\alpha\{g(X, Y)+\omega(X) A(Y)\}
$$

for $Y \in \Gamma(T M)$, where α is a nonzero scalar function, A is a 1-form, ω is also closed 1 -form, and ∇ denotes the Levi-Civita connection on M.

Let M be a Lorentzian manifold admitting a unit timelike concircular vector field ξ, called the characteristic vector field of the manifold. Then we have

$$
g(\xi, \xi)=-1
$$

Since ξ is a unit vector field, there exists a nonzero 1-form η such that

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{1}
\end{equation*}
$$

The equation of the following form holds:

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=\alpha\{g(X, Y)+\eta(X) \eta(Y)\}, \alpha \neq 0 \tag{2}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$, where α is nonzero scalar function satisfying

$$
\begin{equation*}
\nabla_{X} \alpha=X(\alpha)=d \alpha(X)=\rho \eta(X) \tag{3}
\end{equation*}
$$

ρ being a certain scalar function given by $\rho=-\xi(\alpha)$. Let us put

$$
\begin{equation*}
\nabla_{X} \xi=\alpha \phi x \tag{4}
\end{equation*}
$$

then from (2) and (4), we can derive

$$
\begin{equation*}
\phi X=X+\eta(X) \xi \tag{5}
\end{equation*}
$$

which tells us that ϕ is symmetric (1,1)-tensor. Thus the Lorentzian manifold M together with the unit timelike concircular vector field ξ, its associated 1 -form η and (1,1)-type tensor field ϕ is said to be a Lorentzian concircular structure manifold. A differentiable manifold M of dimension n is called $(L C S)$-manifold if it admits a (1,1)-type tensor field ϕ, a covariant vector field η and a Lorentzian metric g which satisfy

$$
\begin{align*}
& \eta(\xi)=g(\xi, \xi)=-1 \tag{6}\\
& \phi^{2} X=X+\eta(X) \xi \tag{7}\\
& g(X, \xi)=\eta(X) \xi \tag{8}\\
& \phi \xi=0, \quad \eta \circ \phi=0 \tag{9}
\end{align*}
$$

for all $X \in \Gamma(T M)$. Particulary, if we take $\alpha=1$, then we can obtain the $L P$-Sasakian structure of Matsumoto [14].
Also, in an $(L C S)_{n}$-manifold M, the following conditions are satisfied

$$
\begin{align*}
& \eta(R(X, Y) Z)=\left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{10}\\
& R(\xi, X) Y=\left(\alpha^{2}-\rho\right)[g(X, Y) \xi-\eta(Y) X] \tag{11}\\
& R(X, Y) \xi=\left(\alpha^{2}-\rho\right)[\eta(Y) X-\eta(X) Y] \tag{12}\\
& \left(\nabla_{X} \phi\right) Y=\alpha[g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X] \tag{13}\\
& S(X, \xi)=(n-1)\left(\alpha^{2}-\rho\right) \eta(X) \tag{14}\\
& S(\phi X, \phi Y)=S(X, Y)+(n-1)\left(\alpha^{2}-\rho\right) \eta(X) \eta(Y) \tag{15}
\end{align*}
$$

for all X, Y, Z on M, where R is the Riemannian curvature tensor and S is the Ricci tensor. Q is also the Ricci operator given by $S(X, Y)=g(Q X, Y)[18]$.
S. Bochner [5] introduced a Kähler analogue of the Weyl conformal curvature tensor by purely formal considerations, which is now well known as the Bochner curvature tensor. A geometric meaning of the Bochner curvature tensor was given by D. E . Blair [4]. By using the Boothby-Wangs fibration [6], M. Matsumoto and G. Chuman [13] constructed the C-Bochner curvature tensor from the Bochner curvature tensor.

The C-Bochner curvature tensor is given by

$$
\begin{align*}
B(X, Y) Z & =R(X, Y) Z+\frac{1}{n+3}[S(X, Z) Y-S(Y, Z) X+g(X, Z) Q Y \\
& -g(Y, Z) Q X+S(\phi X, Z) \phi Y-S(\phi Y, Z) \phi X \\
& +g(\phi X, Z) Q \phi Y-g(\phi Y, Z) Q \phi X+2 S(\phi X, Y) \phi Z \\
& +2 g(\phi X, Y) Q \phi Z-S(X, Z) \eta(Y) \xi \\
& +S(Y, Z) \eta(X) \xi-\eta(X) \eta(Z) Q Y+\eta(Y) \eta(Z) Q X] \\
& -\frac{p+n-1}{n+3}[g(\phi X, Z) Y-g(\phi Y, Z) \phi X+2 g(\phi X, Y) \phi Z] \\
& -\frac{p-4}{n+3}[g(X, Z) Y-g(Y, Z) X] \\
& +\frac{p}{n+3}[g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi \\
& +\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X] \tag{16}
\end{align*}
$$

where S is the Ricci tensor of type $(0,2), Q$ is the Ricci operator defined by $g(Q X, Y)=S(X, Y)$ and $p=\frac{n+r-1}{n+1}, r$ is the scalar curvature of the manifold.

The projective curvature tensor P of n-dimensional Riemann manifold is defined by

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{(n-1)}[S(Y, Z) X-S(X, Z) Y] \tag{17}
\end{equation*}
$$

where S is the Ricci tensor of the manifold [21].
In $(L C S)_{n}$-manifold M, the following conditions are satisfied

$$
\begin{align*}
B(\xi, Y) Z & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right][g(Y, Z) \xi-\eta(Z) Y] \\
& +\frac{2}{n+3}[\eta(Z) Q Y-S(Y, Z) \xi] \tag{18}\\
B(X, Y) \xi & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right][\eta(Y) X-\eta(X) Y] \\
& +\frac{2}{n+3}[\eta(X) Q Y-\eta(Y) Q X] \tag{19}\\
B(\xi, Y) \xi & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right][\eta(Y) \xi+Y] \\
& -\frac{2}{n+3}\left[Q Y+(n-1)\left(\alpha^{2}-\rho\right) \eta(Y) \xi\right] \tag{20}\\
P(\xi, Y) Z= & \left(\alpha^{2}-\rho\right) g(Y, Z) \xi-\frac{1}{n-1} S(Y, Z) \xi \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
P(X, Y) \xi=P(\xi, Y) \xi=0 . \tag{22}
\end{equation*}
$$

Theorem 2. If an $(L C S)_{n}$-manifold M is C-Bochner flat, then M reduces to an η-Einstein Manifold.

Proof. Suppose that an $(L C S)_{n}$-manifold M is C-Bochner flat. Then we have,

$$
\begin{equation*}
B(X, Y) Z=0 \tag{23}
\end{equation*}
$$

In (16), putting $Z=\xi$, we have

$$
\begin{align*}
0 & =R(X, Y) \xi+\frac{1}{n+3}[S(X, \xi) Y-S(Y, \xi) X \\
& +g(X, \xi) Q Y-g(Y, \xi) Q X-S(X, \xi) \eta(Y) \xi \\
& +S(Y, \xi) \eta(X) \xi+\eta(X) Q Y-\eta(Y) Q X] \\
& -\frac{p-4}{n+3}[g(X, \xi) Y-g(Y, \xi) X] \\
& +\frac{p}{n+3}[g(X, \xi) \eta(Y) \xi-g(Y, \xi) \eta(X) \xi \\
& +\eta(Y) X-\eta(X) Y] \tag{24}
\end{align*}
$$

In (24), by using the equations (6),(8),(9),(12) and (14), we obtain

$$
\begin{align*}
0 & =\left[\alpha^{2}-\rho+\frac{2 p-4}{n+3}-\frac{(n-1)\left(\alpha^{2}-\rho\right)}{n+3}\right][\eta(Y) X-\eta(X) Y] \\
& +\frac{2}{n+3}[\eta(X) Q Y-\eta(Y) Q X] \tag{25}
\end{align*}
$$

Putting $X=\xi$ in (25) and by using (14), we obtain

$$
\begin{align*}
\frac{2}{n+3} Q Y & =\left[\alpha^{2}-\rho+\frac{2 p-4}{n+3}-\frac{\left.3(n-1)\left(\alpha^{2}-\rho\right)\right)}{n+3}\right] \eta(Y) \xi \\
& +\left[\alpha^{2}-\rho+\frac{2 p-4}{n+3}-\frac{(n-1)\left(\alpha^{2}-\rho\right)}{n+3}\right] Y \tag{26}
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
Q Y=\left[2 p-4+4\left(\alpha^{2}-\rho\right)\right] Y+\left[2 p-4-\left(\alpha^{2}-\rho\right)(2 n-6)\right] \eta(Y) \xi \tag{27}
\end{equation*}
$$

Inner product both sides of the equation by $W \in \chi(M)$ and taking into account $p=\frac{n+r-1}{n+1}$, we conclude

$$
\begin{aligned}
S(Y, W) & =\left[2\left(\alpha^{2}-\rho\right)-\left(1+\frac{r}{n+1}\right)\right] g(Y, W) \\
& +\left[(3-n)\left(\alpha^{2}-\rho\right)-\left(1+\frac{r}{n+1}\right)\right] \eta(Y) \eta(W)
\end{aligned}
$$

Theorem 3. Let M be an $(L C S)_{n}$-manifold. Then, $R(\xi, Y) B$ is always identically zero, for any $Y \in \chi(M)$.
Proof. For any $X, Y, U, W, Z \in \chi(M)$ on M, we have

$$
\begin{align*}
(R(X, Y) B)(U, W, Z) & =R(X, Y) B(U, W) Z-B(R(X, Y) U, W) Z \\
& -B(U, R(X, Y) W) Z-B(U, W) R(X, Y) Z \tag{28}
\end{align*}
$$

In (28), for $X=\xi$, we have

$$
\begin{align*}
(R(\xi, Y) B)(U, W, Z) & =R(\xi, Y) B(U, W) Z-B(R(\xi, Y) U, W) Z \\
& -B(U, R(\xi, Y) W) Z-B(U, W) R(\xi, Y) Z \tag{29}
\end{align*}
$$

By using (11) in (29), we obtain

$$
\begin{align*}
(R(\xi, Y) B)(U, W, Z) & =\left(\alpha^{2}-\rho\right)[g(Y, B(U, W) Z) \xi-\eta(B(U, W) Z) Y \\
& -B(g(Y, U) \xi-\eta(U) Y, W) Z \\
& -B(U, g(Y, W) \xi-\eta(W) Y) Z \\
& -B(U, W)(g(Y, Z) \xi-\eta(Z) Y)] \tag{30}
\end{align*}
$$

Now, by using (18),(19) and choosing $U=Z=\xi$, we obtain

$$
\begin{align*}
(R(\xi, Y) B)(\xi, W, \xi) & =g\left(Y, A \eta(W)+A W-\frac{2}{n+3} Q W-D \eta(W) \xi\right) \xi \\
& -\eta\left(A \eta(W) \xi+A W-\frac{2}{n+3} Q W-D \eta(W)\right) Y \\
& -2 \eta(Y)\left(A \eta(W) \xi+A W-\frac{2}{n+3} Q W-D \eta(W)\right) \\
& -A \eta(W) Y+2 A \eta(Y) W-\frac{4}{n+3} \eta(Y) Q W+\frac{2}{n+3} \eta(W) Q Y \\
& +\eta(W)\left[A \eta(Y) \xi+A Y-\frac{2}{n+3}-D \eta(Y) \xi\right] \\
& -A g(W, Y) \xi+\frac{2}{n+3} S(W, Y) \xi \tag{31}
\end{align*}
$$

where, $A=\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}$ and $D=\frac{2(n-1)\left(\alpha^{2}-\rho\right)}{n+3}$.
We easily obtain from (31) that

$$
\begin{equation*}
(R(\xi, Y) B)(\xi, W, \xi)=0 \tag{32}
\end{equation*}
$$

3. $(L C S)_{n}$-Manifolds Satisfying Conditions $(B, \xi) P=0$ and $(B, \xi) S=0$

Theorem 4. Let M be an $(L C S)_{n}$-manifold. Then the manifold satisfies $B(\xi, Y) P=0$ if and only if there is the following relations

$$
\|Q\|^{2}=n\left[(n-1)\left(\alpha^{2}-\rho\right)\right]^{2}\left[2\left(\alpha^{2}-\rho\right)+p-2\right]+r\left[\left(\alpha^{2}-\rho\right)(n+1)+p-2\right] .
$$

Proof. In order to prove our theorem, we assume that $B((\xi, Y) P)(U, W) Z=0$, for all $\xi, Y, U, W, Z \in \chi(M)$. Then we have

$$
\begin{align*}
0 & =B(\xi, Y) P(U, W) Z-P(B(\xi, Y) U, W) Z \\
& -P(U, B(\xi, Y) W) Z-P(U, W) B(\xi, Y) Z \tag{33}
\end{align*}
$$

In (33), by using the equation (18) we obtain

$$
\begin{align*}
0 & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right][g(Y, P(U, W) Z) \xi-\eta(P(U, W) Z) Y \\
& -g(Y, U) P(\xi, W) Z+\eta(U) P(Y, W) Z \\
& -g(Y, W) P(U, \xi) Z+\eta(W) P(U, Y) Z \\
& -g(Y, Z) P(U, W) \xi+\eta(Z) P(U, W) Y] \\
& +\frac{2}{n+3}[\eta(P(U, W) Z) Q Y-S(Y, P(U, W) Z) \xi \\
& -\eta(U) P(Q Y, W) Z+S(Y, U) P(\xi, W) Z \\
& -\eta(W) P(U, Q Y) Z+S(Y, W) P(U, \xi) Z \\
& -\eta(Z) P(U, W) Q Y+S(Y, Z) P(U, W) \xi] \tag{34}
\end{align*}
$$

Here, substituting $U=\xi$ in (34), we have

$$
\begin{align*}
0 & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right][g(Y, P(\xi, W) Z) \xi-\eta(P(\xi, W) Z) Y \\
& -\eta(Y) P(\xi, W) Z-P(Y, W) Z+P(\xi, Y) Z+\eta(Z) P(\xi, W) Y] \\
& +\frac{2}{n+3}[\eta(P(\xi, W) Z) Q Y-S(Y, P(\xi, W) Z) \xi \\
& +P(Q Y, W) Z-\eta(W) P(\xi, Q Y) Z-\eta(Z) P(\xi, W) Q Y] \\
& +\frac{2(n-1)\left(\alpha^{2}-\rho\right)}{n+3} \eta(Y) P(\xi, W) Z . \tag{35}
\end{align*}
$$

Let $Z=\xi$ be in (35), then also by using (6), (21) and (22), we obtain

$$
\begin{equation*}
\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right] P(\xi, W) Q Y+\frac{2}{n+3} P(\xi, W) Y=0 \tag{36}
\end{equation*}
$$

Again by using (21) in (36), we get

$$
\begin{aligned}
0 & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right]\left[\left(\alpha^{2}-\rho\right) g(W, Y) \xi-\frac{1}{n-1} S(W, Y) \xi\right] \\
& -\frac{2}{n+3}\left[\left(\alpha^{2}-\rho\right) g(W, Q Y) \xi-\frac{1}{n-1} S(W, Q Y) \xi\right]
\end{aligned}
$$

which implies that

$$
\begin{align*}
S(W, Q Y) & =\left[\left(\alpha^{2}-\rho\right)(n+1)+p-2\right] S(Y, W) \\
& -(n-1)\left(\alpha^{2}-\rho\right)\left[2\left(\alpha^{2}-\rho\right)+p-2\right] g(W, Y) \tag{37}
\end{align*}
$$

Now, for $\left[e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right]$ orthonormal basis of M from (37), we conclude

$$
\|Q\|^{2}=n\left[(n-1)\left(\alpha^{2}-\rho\right)\right]^{2}\left[2\left(\alpha^{2}-\rho\right)+p-2\right]+r\left[\left(\alpha^{2}-\rho\right)(n+1)+p-2\right]
$$

which proves our assertion. The converse is obvious.
Theorem 5. Let M be an $(L C S)_{n}$-manifold. Then $B(\xi, Y) S=0$ if and only if there is the following relations

$$
\|Q\|^{2}=n\left[(n-1)\left(\alpha^{2}-\rho\right)\right]^{2}\left[2\left(\alpha^{2}-\rho\right)+p-2\right]+r\left[\left(\alpha^{2}-\rho\right)(n+1)+p-2\right] .
$$

Proof. We suppose that $(B(\xi, Y) S)(U, W)=0$. Then for all $\xi, Y, U, W \in \chi(M)$ we have

$$
\begin{equation*}
S(B(\xi, Y) U, W)+S(U, B(\xi, Y) W)=0 \tag{38}
\end{equation*}
$$

In (38), by using (18) we get

$$
\begin{align*}
0 & =\left[\frac{4\left(\alpha^{2}-\rho\right)+2 p-4}{n+3}\right][g(Y, U) S(\xi, W)-\eta(U) S(Y, W) \\
& +g(Y, W) S(U, \xi)-\eta(W) S(U, Y)] \\
& +\frac{2}{n+3}[\eta(U) S(Q Y, W)-S(Y, U) S(\xi, W) \\
& +\eta(W) S(U, Q Y)-S(Y, W) S(U, \xi)] \tag{39}
\end{align*}
$$

Now, in (39) substituting $U=\xi$ we obtain

$$
\begin{align*}
S(Q Y, W) & =\left[\left(\alpha^{2}-\rho\right)(n+1)+p-2\right] S(Y, W) \\
& +\left[\left(\alpha^{2}-\rho\right)(n-1)\right]\left[2\left(\alpha^{2}-\rho\right)+p-2\right] g(Y, W) \tag{40}
\end{align*}
$$

Again for $\left[e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right]$ orthonormal basis of M from (40), we conclude

$$
\|Q\|^{2}=n\left[(n-1)\left(\alpha^{2}-\rho\right)\right]^{2}\left[2\left(\alpha^{2}-\rho\right)+p-2\right]+r\left[\left(\alpha^{2}-\rho\right)(n+1)+p-2\right]
$$

4. Conclusion

In the present paper, we have studied the C-Bochner curvature tensor of $(L C S)_{n}$-manifolds satisfying the conditions C-Bochner flat, $R . B=0, B . P=0$ and $B . S=0$. According these cases, we classified $(L C S)_{n}$-manifolds. The same classification can be made for other curvature tensors.

References

${ }^{[1]}$ Atceken, M. and Hui, S. K., Slant and pseudo-slant submanifolds of $(L C S)_{n}$ manifolds, Czechoslovak Math. J., 63 (2013), 177-190.
${ }^{[2]}$ Atceken, M., On geometry of submanifolds of $(L C S)_{n}$-manifolds, Int. J. Math. and Math. Sci., 2012, doi:10.1155/2012/304647.
[3] Atçeken, M. and Yıldırım, Ü., Weakly symmetric and weakly Ricci symmetric conditions on $(L C S)_{n}$-manifolds, African Journal of Mathematics and Computer Science Research, Vol. 6(6), (2013), 129-134.
${ }^{[4]}$ Blair, D. E., On the geometric meaning of the Bochner tensor, Geom. Dedicata, 4, 33-38, 1975.
${ }^{[5]}$ Bochner, S., Curvature and Betti numbers, Ann. of Math. 50 (1949)77-93.
${ }^{[6]}$ Boothby, W. M. and Wang, H. C., On contact manifolds. Annals of Math., 68 (1958), 721-734
${ }^{[7]}$ De, U.C. Samui, S., E-Bochner curvature tensor on (κ, μ)-contact metric manifolds, Int. Electron. J. Geom. 7(1)(2014)143-153.
${ }^{[8]}$ De, U.C.and Ghosh, S., E-Bochner curvature tensor on $N(k)$-contact metric mnifolds, Hacettepe Journal of Mathematics and Statistics, 43(3), (2014), 365-374.
${ }^{[9]}$ Endo, H., On K-contact Reimannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq. Math. 62(1991), 293-297.
${ }^{[10]}$ Hui, S. K., On ϕ-pseudo symmetries of (LCS)n-manifolds, Kyungpook Math. J., 53 (2013), 285-294.
${ }^{[11]}$ Hui, S. K. and Atceken, M., Contact warped product semi-slant submanifolds of (LCS)n-manifolds, Acta Univ. Sapientiae Mathematica, 3(2) (2011), 212-224.
${ }^{[12]}$ Kaneyuki,S. and Williams, F. L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187.
[13] Matsumoto, M. and Chuman, G., On the C-Bochner curvature tensor,TRUMath.5(1969)21-30
${ }^{[14]}$ Matsumoto, K., On Lorentzian paracontact manifolds, Bulletin of Yamagata University, vol. 12, no. 2, pp. 151-156, 1989.
${ }^{[15]}$ Mihai, I. and Rosca, R., On Lorentzian para-Sasakian manifolds, Classical Anal., World Sci. Publ., Singapore, (1992), 155-169.
${ }^{[16]}$ Narain, D. and Yadav, S., On weak concircular symmetries of $(L C S)_{2 n+1-}$ manifolds, Global J. Sci. Frontier Research, 12 (2012), 85-94.
${ }^{[17]}$ O’ Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
${ }^{[18]}$ Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Mathematical Journal, vol. 43, no. 2, pp. 305-314, 2003.
${ }^{[19]}$ Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes II, American J. Appl. Sci., 3(4) (2006), 1790-1794.
${ }^{[20]}$ Shaikh, A. A., Some results on $(L C S)_{n}$-manifolds, J. Korean Math. Soc. 46 (2009), No. 3, pp. 449-461.
${ }^{[21]}$ Yano, K. and Kon, M., Structures of manifolds, World Scientific Publishing, Singapore 1984.

