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Abstract

The proximal point algorithm is an approximation method for finding a minimizer of a convex function. In
this paper, using the properties of the resolvent which was proposed by the authors, we show the proximal
point algorithm using a suitable notion of weak convergence in complete geodesic spaces with negative
curvature.
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1. Introduction

The proximal point algorithm is an approximation method for finding a minimizer of a proper lower
semicontinuous convex function. The resolvent of this function plays an important role in this algorithm.

Let X be a complete CAT(0) space and f a proper lower semicontinuous convex function of X into
|—00, 00]. Then the resolvent of \f is defined by

1
Jyz = argmin {f(y) + 5 d(y, x)z}
yeX A

for all z € X and A > 0. In 1998, Mayer [10] showed that it is well-defined as a single valued mapping.
The proximal point algorithm is one of the most famous methods for approximating a minimizer of a convex
function. This algorithm was originally proposed by Martinet [9] and Rockafellar [11] considered more general
settings. In a complete CAT(0) space, the following theorem was shown by Bacak [1] in 2013.
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Theorem 1.1 (Bacak [1]). Let X be a complete CAT(0) space, f a proper lower semicontinuous convex
function of X into |—00, 00| such that argminy f is nonempty, and {\,} a sequence of positive real numbers
with Y07 | Ap = 00. If a sequence {x,} of X is defined by 1 € X and xp11 = Jy, 2z, for n € N, then {z,}
is A-convergent to an element of argmin y f.

Let X be a complete CAT(1) space satisfying d(u,v) < /2 for all u,v € X and f a proper lower
semicontinuous convex function of X into |—oo, oo]. Then the resolvent of Af is defined by

Q) x = argmin {f(y) + 1 tand(y, x) sind(y, a:)}
yeX A

for all x € X and A > 0. Kimura and Kohsaka [6] showed its well-definedness and the following theorem.

Theorem 1.2 (Kimura and Kohsaka [7]). Let X be a complete CAT(1) space satisfying d(u,v) < 7/2 for
all u,v € X, f a proper lower semicontinuous convex function of X into |—o0, 00| satisfying argminy f # 0,
and {An} a sequence of positive real numbers satisfying > o2 1 Ap = 00. If a sequence {x,} of X is defined
by 1 € X and xpy1 = Q, xn for n € N, then {z,} is A-convergent to an element of argminy f.

In this paper, we propose the proximal point algorithm in a complete CAT(—1) space. In Section 2, we
introduce the definition of CAT(k) spaces and resolvents in a complete CAT(—1) space. In Section 3, we
give several results which are necessary to prove the main theorem. In Section 4, we show the proximal point
algorithm in a complete CAT(—1) space and prove A-convergence of the generated sequence.

2. Preliminaries

Let X be a metric space with metric d. We denote by F(T) the set of all fixed points of a mapping T of
X into itself. For z,y € X, a continuous mapping c : [0,1] — X is called geodesic joining x and y if ¢ satisfies
c(0) = z,c(l) =y and d(c(s), c(t)) = |s — t| for all s,t € [0,1]. Its image, which is denoted by [z, y], is called
a geodesic segment with endpoints x and y. X is said to be a geodesic space if there exists a geodesic joining
any two points in X. In this paper, when X is a geodesic metric space, a geodesic joining any two points of
X is always assumed to be unique.

Let X be a geodesic metric space. For all z,y € X and « € [0, 1], there exists a unique point z € X such
that d(z,2) = (1 — a)d(x,y) and d(z,y) = ad(z,y). This point is called a convex combination of z and y
which is denoted by az @ (1 —a)y. A subset C' C X is called convex if [z,y] C X for all z,y € C. A geodesic
triangle with vertices x,y, z € X is defined by [z,y] U [y, 2] U [z, 2], which is denoted by A(z,y, 2).

Let M? be a two dimensional model space for all x € R. For example, Mg = R2, M? is two-dimensional
unit sphere S?, and M2, is two-dimensional hyperbolic space H?. A comparison triangle to A(z,y,z) C X
with vertices z, 7,z € M2 is defined by [Z,9] U [y, 2] U [, Z] with d(z,y) = d(%,%),d(y,z) = d(y, %), and
d(z,r) = d(z,7), which is denoted by A(Z,7,2). w € [Z,7] is called a comparison point of w € [x,y] if
d(x,w) = d(Z,w) holds. For k € R, X is called a CAT (k) space if d(p,q) < d(p, ) holds whenever p and
g € A are the comparison points for p and ¢ € A, respectively. In general, if & < &, then the CAT (k) spaces
are CAT(x’) spaces [3]. We know that the following lemma holds, which is called the midpoint theorem.

Lemma 2.1 ([3]). Let X be a CAT(—1) space, z,y,z € X and o € [0,1]. Then

coshd(azx @ (1 — a)y, z) sinh d(z, y)
< coshd(z, z) sinh ad(z, y) 4+ coshd(y, z) sinh(1 — a)d(z, y).

Corollary 2.2 (|5]). Let X,z,y and z be the same as in Lemma 2.1. Then

1 1 1 1 1
coshd (233 ) 2 z> cosh §d(x,y) < 5 coshd(z, z) + 3 coshd(y, z).
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Let X be a metric space and {x,} a sequence in X. An asymptotic center of {x,} is defined by

{ueX

which is denoted by A({zy}). A sequence {z,} A-converges to a point u in X if

A({zn, }) = {u}

lim sup d(u, x,) = inf limsup d(y,xn)} ,

n—00 yeEX n—oco

for all subsequences {zy,} of {z,}, which is denoted by x,, A 4. In this case, u is called a A-limit of {z,}.

A subset C' of X is said to be A-closed if v € C' whenever {z,,} C C and z, A . Fora sequence {z,}
in X, we denoted by wa({z,}) the set of all u € X such that there exists a subsequence of {z,,} which is
A-convergent to u. We know that the following fundamental properties hold.

Lemma 2.3 ([4]). Let X be a complete CAT(0) space and {x,} a bounded sequence in X. Then A({z,})
consists of one point and wa({xy}) is nonempty.

Lemma 2.4 (|2]). Let X be a complete CAT(0) space and {x,} a bounded sequence in X. If {d(z,x,)} is
convergent for all z € wa({xn}), then {x,} is A-convergent.

Let X be a geodesic metric space and f a function of X into |—oo, 0o]. We say that f is lower semicontin-
uous if the set {z € X | f(z) < a} is closed for all a € R. If f is continuous, then it is lower semicontinuous.
The function f is said to be A-lower semicontinuous if

f(u) < liminf f(z,)

n—oo

whenever {z,} is A-convergent to u. The domain of f is defined by {x € X | f(x) € R}, which is denoted
by domf. The function f is said to be proper if domf is nonempty. f is said to be convex if

flaz® (1 —a)y) < af (@) + (1 —a)f(y)
holds for all z,y € X and a € ]0,1].

Lemma 2.5 (|2]). Let X be a complete CAT(0) space and f a proper lower semicontinuous convez function
of X into |—o00,00]. Then f is A-lower semicontinuous.

Let X be a complete CAT(—1) space and f a proper lower semicontinuous convex function of X into
|—00, 00]. Then the resolvent of f is defined by

Ryx = argmin { f(y) + tanh d(y, z) sinh d(y, z)}
yeX

for all x € X. The authors [5] showed that it is well-defined and the following important properties hold:
e Ry is firmly hyperbolically vicinal in the sense that,
(C2(1 4 C)Cy + Co(1 4 CF)Cy) coshd(Ryx, Ryy) (1)
<1+ Cg) coshd(Ryx,y) + C’S(l + C?) coshd(z, Ryy)
for all z,y € X, where C; = coshd(Ryz, z) for z € X. See also [§];
e F(Ry) = argminyf;

o if F(Rs) is nonempty, then Ry is quasi-nonexpansive, that is, d(Rsz,z) < d(z,z) for x € X and
VRS ,/T(Rf).
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3. Fundamental properties of the resolvents

In this section, we show some important properties which are needed to show the proximal point algorithm
in complete CAT(—1) spaces.

Theorem 3.1. Let X be a complete CAT(—1) space, f a proper lower semicontinuous convex function of
X into |—00,00] and Ry a resolvent of \f for X > 0. Set C), = coshd(Ryz,z) for all z € X. Then the
mequalities

A(f(Raz) — f(Ruy)) sinhd(Ryz, R,y) (2)

1
< <C2 + 1) d(Ryz, R,y) (coshd(R,y, x) — Cy ; coshd(Ryz, R,y))
Az

and
(AC3 (1 +C2)Cpy + nCr (14 C3 ,)Cxz) coshd(Raz, Ryy) (3)
< /\Cix(l + Ciy) coshd(Ryx,y) + uCiy(l + C;x) coshd(R,y, z)

hold for all z,y € X and A, u > 0.

Proof. Let A\, > 0and z,y € X. Set 2y = tR,y® (1 —t)Ryx for t € ]0,1[ and let D = d(Ryz, R,y). By the
definition of Ry and the convexity of f, we have

Af(Ryx) + tanh d(Ryx, ) sinh d(Ryx, x)
< AMf(z) + tanh d(z, z) sinh d(z, x)
S tAf(Ruy) + (1 — )M f(Ryx) + tanh d(z, ) sinh d(z, x)

and hence
At (f(Rax) = f(Ruy))
< tanh d(z¢, z) sinh d(z¢, ) — tanh d( Rz, x) sinh d(Ryx, )

1
B (cosh d(Ryz,x)

coshd(z, ) + 1) (coshd(z, x) — coshd(Ryz, x)).

Then multiplying (sinh D)/t and using Lemma 2.1, we get

A(f(Baz) — f(Ruy)) sinh D

s ! +1
coshd(Ryz, x) coshd(z, )
1
X ;(cosh d(zt, x)sinh D — cosh d(Ryz, x) sinh D)

[IA

1
1
(cosh d(Ryz, x) cosh d(zt, x) * )
1
X ;(cosh d(Ryy,z)sinhtD — coshd(Ryz, z)(sinh D — sinh(1 — ) D))

1 2 t
- 1) Zsinh (LD
<coshd(R)\x,aj) coshd(z, z) + ) o <2 )

t t
X [cosh d(Ryy, ) cosh <2D> — cosh d(Ryx, z) cosh ((1 — 2) D)] .
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Letting ¢ | 0, we have
1
A(f(Ryx) — f(Ruy))sinh D < (02 + 1) D (coshd(R,y,x) — Cy 4 cosh D)
A,z

and this inequality is (2).
From (2), we have

. 1
p (f(Raz) — f(Ruy))sinh D < uD (Ci + 1) (coshd(R,y,x) — C 5 cosh D)
and

. 1
pX (f(Ruy) — f(Ryz))sinh D < AD <C2 + 1) (coshd(Ryx,y) — Cy,ycosh D).
15y

Adding these inequalities, we get

1
0= uD (C’z + 1) (coshd(R,y,x) — C) 5 cosh D)
Az

)

1
+ D (% + 1) (coshd(Ryx,y) — Cyy cosh D)

and hence we obtain (3). O

The inequality (3) is a generalization of (1). In fact, if A = =1, then (3) becomes (1). Using Theorem
3.1, we obtain the following corollary.

Corollary 3.2. Let X, f, A and Ry be the same as in Theorem 3.1. If argminy f is nonempty, then the
following hold:

(i) A f(Raz) — f(u)) < 2(coshd(u,x) — C) , coshd(u, Ryx));
(ii) Cyzcoshd(u, Ryx) < coshd(u,x)

forallx € X and v € argminy f.

Proof. We first show (i). Let z € X and u € argminy f. Since F(Ry) = argminy f, it follows from (2) that
A(f(Rax) — f(u))sinh d(u, Ryx)

< (cﬁ + 1) d(u, Ryz)(cosh d(u, #) — Cy., coshd(u, Ry.0))-
A,z

Suppose that u # Ryz. Since 0 < t/sinht < 1 and cosht = 1 for all ¢t > 0, we get
AMf(Raz) — f(u)

1 d(u, Ryx)
< | = 41 )] AR h _ b
) (0§x+ >sinhd<u,m> (coshd(u,) = Oy cosh d(, Fo))

< 2(coshd(u,x) — Cy ; coshd(u, Ry ;)).

If w = Ryx, then it is obvious to hold with equality. Thus we obtain (i).
We next show (ii). Since u € argminy f, (i) implies that

0 = 2(coshd(u,x) — C) , coshd(u, Ryx))

and hence we get the conclusion. O
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4. The proximal point algorithm

In this section, we show the proximal point algorithm in complete CAT(—1) spaces. We remark that the
following important properties hold:

o F(R)) = argminy f;
e if 7(R)) is nonempty, then R) is quasi-nonexpansive.

Theorem 4.1. Let X be a complete CAT(—1) space, {z,} a bounded sequence in X, {B,} a sequence of
positive real numbers with Y ° | B = 0o and

1 n
9(y) =limsup =z—— > Brcoshd(y, zx)
n—o00 Zl:l Bl ;

for ally € X. Then argminyg consists of one point.

Proof. Fix y € X. Since {z,} is bounded, there exists K > 0 such that
coshd(y, z) < cosh K
and hence g(y) < oco. Therefore it follows that

1< inf < 00.
_ylgxg(y) o0

Let {yn} be a sequence in X with ¢g(yn+1) < ¢(yn) and lim, g(yn) = I, where | = inf g(X). From
Corollary 2.2, we get

1

1 1 1 1
coshd (2yn ® =Ym, zk) coshd (2d<yn,ym>) < 5 coshd(yn, 21) + 5 cosh d(ym, 2¢)

2

and hence

1 1 1 1 1
[ cosh <2d(ymym)> <g <2yn @ zym> cosh <2d(yn,ym)> < §g(yn) + 29(Ym)-

Suppose that m = n. Then, by the definition of {y,} and 1 <1 < cosh K, we have
1 n
cosh <2d(yn,ym)> < Q(Zl/) — 1.

This implies that {y,} is a Cauchy sequence. Further, since X is complete, we know that {y,} is convergent
to some p € X. By the continuity of g, we have g(p) = lim,, g(y,) = I. Thus we have p € argminyg.

We next show the uniqueness of p. Let p,q € argminyg. Then, from the proof above, we know that the
inequality

1 1 1
Leosh ( Sd(p,q) ) = 59(p) + 59(q) =1
2 2 2
holds. This inequality implies that p = ¢. Thus argminyg consists of one point. O

Theorem 4.2. Let X be a complete CAT(—1) space, f a proper lower semicontinuous convez function of X
into | —00,00], and {\,} a sequence of positive real numbers with > > | Ay = 00. If a sequence {z,} of X is
defined by x1 € X and

1
Tp41 = argmin {f(y) + — tanh d(y, z,,) sinh d(y, xn)}
yeX /\n

for allm € N, then argminy f is nonempty if and only if {x,,} is bounded.
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Proof. We first suppose that argminy f is nonempty and show that {z,} is bounded. Let u € argminy f.
Then, since R}, is quasi-nonexpansive, we have

d(uv xn+1) g d(u,l‘n) g e g d(u7x1)'

This inequality implies the conclusion.
We next show the other direction. Suppose that {z,} is bounded. Put

nCS .
bn=1rcr

n>Tn

for all n € N. Then it is obvious that 3, > 0. Further, since

2 2
1+C3 . ~ 26} 2 —~ " ’

n,Tn

n

we get » >, B, = 0o. Thus, by Theorem 4.1, we know that argminy g is nonempty, where

1 n
g(y) = limsup —=7—— Brcoshd(y, x
(y) ST 5 > B (Y, Th41)

for all y € X.
Let p € argminyg and p > 0. Using Lemma 3.1, we have

< MCR o, (1+C2 ) coshd(wyi1,p) + pC2 (1 + CK, 4, ) coshd(R,.p, zy)

and hence
)\kcﬁk -
——=t coshd(xpy1, Rup)
1 + Ci/mxk
)\kC§ ,UCQ
< — 2% coshd(zpy, p) + —=£— (cosh d(R,p, 1) — cosh d(R,p, x .
B 1+C§k750k; (k+1,7) 1+C;37p( (Ryp, ) (Rups Tt1))

Put 0, = Y-, ;. Adding both sides of the inequality above from k =1 to k = n, we get

1 n
- > Brcoshd(wyy1, Rup)
" k=1

1+C7, On .

1 n
< —> Brcoshd(zpy1,p) +
On
k=1
Since lim,, o, = 00, we obtain

. 1<
g(p) = g(R,p) = limsup — Z Br cosh d(zp41, Rup)

o
n—00 L

. 1 ¢
< limsup — Z Br coshd(zpy1,p) = g(p)-
k=1

n—oo On

This implies that R,p = p. Further, since F(R)) = argminy f, p is an element of argminy f. O

We finally show the proximal point algorithm in complete CAT(—1) spaces.
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Theorem 4.3. Let X be a complete CAT(—1) space, f a proper lower semicontinuous convex function of X
into |—oo, oo] with argminy f is nonempty, and {\,} a sequence of positive real numbers with Y > | A, = 00.
If a sequence {xy} of X is defined by 1 € X and

1
fer = argmin {f(y) + L tanh d(y, 2) sinh d(y, m} ,
yeX >\n
then the following hold:
(i) If u € argminy f, then

(f (#n41) — min f(X)) (coshd(u, z1) — 1)

S
> k=1An
for all n € N;

(ii) {xn} is A-convergent to an element of argminy f .

Proof. We first show (i). Let w € argminy f. By the definition of R, , we have

f(u) = f(eni) (4)
< flzpt1) + )\1n tanh d(zy41, ) sinh d(xy41, T5)
S flan)
On the other hand, from Corollary 3.2, we know that the inequality
An(f(Zn1 = f(w))) = 2(coshd(u, z,) — cosh d(u, 2n11)) (5)

holds. Using (4) and (5), we get
Ae(f (Tnt1) = f(u)) = Me(f(@pr1) — f(u)

< 2(coshd(u, zy) — coshd(u, xp11))

for all n € Nand k € {1,2,...,n}. Adding both sides from k = 1 to k = n, we have

(f(xp41) — min f(X)) Z A =2 Z(cosh d(u,zy) — coshd(u, x41))

k=1 k=1
= 2(coshd(u,x1) — coshd(u, zp+1))
< 2(coshd(u,z1) — 1)

and hence we obtain (i).
We next show (ii). From (i), we have

lim f(z,) = inf f(X).

n— o0

Further, since R), is quasi-nonexpansive, we get
d(u,$n+1) é d(U‘?xTL) é T é d(uaxl) (6)

for all u € argminy f and hence {z,} is bounded. Therefore wa ({z,}) is nonempty and let z € wa({zn}).
Then we can find a subsequence {z,,} of {z,,} whose A-limit is z. By Lemma 2.5, we have
f(Z) = liminff(xm) = lim f(-rn) = inff(X)
1— 00 n—oo
and hence z € argminy f. From the inequality (6), we know that {d(z,z,)} is convergent. Further, from
Lemma 2.4, we know that {z,} is A-convergent and hence it is obvious that its A-limit is an element of
argminy f. Thus we get the conclusion. O
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Using Theorems 4.2 and 4.3, we obtain the following corollary.

Corollary 4.4. Let X be a complete CAT(—1) space, f a proper lower semicontinuous convez function of
X into |—o0,00] and Ry a resolvent of f. Then the following hold:

(i) argminy f is nonempty if and only if {R}La:} is bounded for some x € X;

(ii) if argminy f is nonempty then {R?m} is A-convergent to an element of argminy f for each x € X.

Proof. Put A\, =1 for all n € N. Then, we have X\, > 0 for all n € N and > 2, A\, = co. Thus, using
Theorems 4.2 and 4.3, we get (i) and (ii). O

We may unify Theorems 1.1, 1.2, and 4.3 by using the following notation and function. For x € R, let X
be a CAT(k) space. We denote by D, the diameter of the model space M2, that is,

D, — 7 (k> 0);
oo (k20)
Next we define a function ¢, : R — R as follows:
onl) =4 S+ e i
%tan(\/ﬁt) sin(y/kt) (k> 0);
=9t (k= 0);

1
— tanh(y/—xt) sinh(y/—kt) (k <0).
—K
Using the notation and function, we unify Theorems 1.1, 1.2, and 4.3 by the following result.

Theorem 4.5. For k € R, let X a CAT (k) space satisfying d(u,v) < Dy /2 for all u,v € X and f a proper
lower semicontinuous convex function of X into |—oo, 00| satisfying argminy f # 0, and {\,} a sequence of
positive real numbers satisfying > o2 | A, = 00. If a sequence {xn} of X is defined by v1 € X and

Tn+l = argmin {f(y) + )\igoﬂ(d(yv xn))} ’
yeX n

then {x,} is A-convergent to an element of argminy f.

References

[1] M. Bacak, The prozimal point algorithm in metric spaces, Isreal J. Math. 29 (2013), 689-701.
[2] M. Bacak, Conver Analysis and Optimization in Hadamard Spaces, De Gruyter, Wiirzbrung, 2014.
[3] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.
[4] S. Dhompongsa, W. A. Kirk, B. Sims, Fized points of uniformly lipschitzian mappings, Nonlinear Analysis. 65 (2006),
762-772.
[5] T. Kajimura and Y. Kimura, Resolvents of convezx functions in complete geodesic spaces with negative curvature, J. Fixed
Point Theory Appl. 21 (2019).
[6] Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of conver functions in geodesic spaces, J. Fixed Point
Theory Appl. 18 (2016), 93-115.
[7] Y. Kimura and F. Kohsaka, The prozimal point algorithm in geodesic spaces with curvature bounded above, Linear and
Nonlinear Analysis 3, No. 1 (2017), 73-86.
[8] F. Kohsaka, Existence and approzimation of fized points of vicinal mappings in geodesic spaces, Pure Appl. Funct. Anal. 3
(2018), 91-106.
[9] B. Martinet, Régularisation d’inéquations wvariationnelles par approzimations successives, Rev. Francaise Informat.
Recherche Opérationnelle 4 (1970), 154-158.
[10] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998),
199-206.
[11] R. T. Rockafellar, Monotone operators and the prozimal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898.



	Introduction
	Preliminaries
	Fundamental properties of the resolvents
	The proximal point algorithm

