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Abstract

In this paper, inextensible flows of a spacelike curve on a ruled surface of type I in 3-dimensional pseudo-Galilean space G1
3 are researched.

Firstly inextensible flows of these curves according to Darboux frame are determined then necessary and sufficient conditions for inextensible
flows of the curves are expressed as a partial differential equation involving the curvature with this frame in G1

3.
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1. Introduction

The flows of inextensible curve and surface are one of the tool to solve many problems in computer vision [8], [13], computer animation [2]
and even structural mechanics [17]. Especially the methods used in this study are improved in [6, 7]. The differentiation between heat flows
and inextensible flows of planar curves are studied by Kwon in [10]. Also, inextensible flows of curves and developable surfaces in R3 are
revealed by Kwon in [11]. After that a lot of works have been done by some authors. Such that Latifi et al. [12] investigated inextensible
flows of curves in Minkowski 3-space, Ogrenmis et al. [14] studied inextensible flows of curves in the 3-dimensional Galilean space G3 and
Oztekin et al. [15] researched this curves in the 4-dimensional Galilean space G4.

In the differential geometry especially theory of surfaces the Darboux frame which is a natural moving frame constructed on a surface has an
important role. It is the analog of the Frenet Serret frame as applied to surface geometry. After the definition of this frame in the literature, a
significant number of results concerning of this frame are obtained for the different spaces, see [9, 19].

In the present study inextensible flows of a spacelike curve which is defined on a ruled surfaces of type-I according to Darboux frame in the
3-dimensional pseudo-Galilean Space G1

3 are examined. Besides, partial differential equations in terms of inextensible flows of curves with
respect to this frame in 3-dimensional pseudo-Galilean space G1

3 are obtained. After that necessary and sufficient conditions for inextensible
flows which are expressed as a partial differential equation involving the curvature are given in G1

3.

2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries whose projective signature is (0,0,+,-). As in [3], pseudo-Galilean
inner product can be written as

〈v1,v2〉=
{

x1x2 , i f x1 6= 0∨ x2 6= 0
y1y2− z1z2 , i f x1 = 0∧ x2 = 0

where v1 = (x1,y1,z1) and v2 = (x2,y2,z2). The pseudo-Galilean norm of the vector v = (x,y,z) defined by

‖v‖=

{
|x| , i f x 6= 0√∣∣y2− z2

∣∣ , i f x = 0

In pseudo-Galilean space a curve is given by γ : I→ G1
3

γ (t) = (x(t) ,y(t) ,z(t)) (2.1)
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where I ⊆R and x(t) ,y(t) ,z(t)∈C3 . A curve γ given by (2.1) is admissible if x′ (t) 6= 0 [3]. An admissible curve in G1
3 can be parametrized

by arc length t = s, given as follows,

γ (s) = (s,y(s) ,z(s)) . (2.2)

For an admissible curve γ : I ⊆ R→ G1
3, the curvature κ (s) and the torsion τ (s) are determined by

κ (x) =
√∣∣y′′2− z′′2

∣∣, (2.3)

τ (s) =
1

κ2 (s)
det
(
γ
′ (s) ,γ ′′ (s) ,γ ′′′ (s)

)
. (2.4)

The associated trihedron is given by

T (s) = γ
′ (s) =

(
1,y′ (s) ,z′ (s)

)
,

N(s) =
1

κ (s)
γ
′′ (s) =

1
κ (s)

(
0,y′′ (s) ,z′′ (s)

)
, (2.5)

B(s) =
1

κ (s)

(
0,z′′ (s) ,y′′ (s)

)
.

[4]. The vectors T (s),N (s) and B(s) are called the vectors of tangent, principal normal and binormal line of γ , respectively. The curve γ

given by (2.2) is timelike (resp. spacelike) if n(s) is spacelike (resp. timelike) vector. For derivatives of tangent vector T (s), principal
normal vector N (s) and binormal vector B(s), respectively, the following Frenet formulas hold

T ′ (s) = κ (s)N (s) ,

N′ (s) = τ (s)B(s) , (2.6)

B′ (s) = τ (s)N (s) .

Let M (x,v) be a ruled surface of type I in G1
3 then M can be represented by

M (x,v) = γ (x)+ va(x) ,

where γ (x) = (x,y(x) ,z(x)) is the directrix curve and a(x) = (1,a2 (x) ,a3 (x)) is a unit generator vector field. The associated trihedron of
the ruled surface of type I in G1

3 is determined by

T = (1,a2,a3) ,

N =
1
κ

(
0,a′2,a

′
3
)
, (2.7)

B =
1
κ

(
0,a′3,a

′
2
)
.

where κ =
√∣∣(a′2)2− (a′3)

2
∣∣ is the curvature and n is the central isotropic timelike normal vector field. In this paper n is taken as timelike.

The following frenet formulas hold,  T
N
B

′ =
 0 κ 0

0 0 τ

0 τ 0

 T
N
B

 . (2.8)

where τ =
−1
κ2 det

(
a,a′,a′′

)
is the torsion of the ruled surface. The surface frame {T,Sn,Sb} is defined as follows

T = a(x), ,Sn =
Mx∧Mv

‖Mx∧Mv‖
, ,Sb = Sn∧T.

Assuming that θ be the hyperbolic angle between the isotropic timelike vectors Sn and n. So, the following matrix form can be expressed, T
Sn
Sb

=

 1 0 0
0 coshθ sinhθ

0 sinhθ coshθ

 T
N
B

 . (2.9)

The Darboux equations can be written  T
Sn
Sb

′ =
 0 κn κg

0 0 τg
0 τg 0

 T
Sn
Sb

 . (2.10)

where κg, κn and τg are geodesic curvature, normal curvature and geodesic torsion, respectively, given by

κn = κ coshθ , ,κg =−κ sinhθ , ,τg = dθ + τ

[5, 1]. We refer to [16, 18] for detailed information about the pseudo-Galilean geometry.
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3. Inextensible Flows of Curves with Darboux Frame in pseudo-Galilean Space G1
3

Throughout this paper, we assume that γ : [0, l]× [0,w]→M ⊂ G1
3 is a one parameter family of smooth spacelike curve on a ruled surface of

type-I in 3-dimensional pseudo-Galilean space G1
3, where l is the arc length of the initial curve and u is the curve parametrization variable,

0≤ u≤ l. The arc length of γ is given by

s(u) =
∫ u

0

∣∣∣∣∂γ

∂u

∣∣∣∣du , (3.1)

where∣∣∣∣∂γ

∂u

∣∣∣∣= ∣∣∣∣〈∂γ

∂u
,

∂γ

∂u

〉∣∣∣∣ 1
2

. (3.2)

The operator
∂

∂ s
is given in terms of u by

∂

∂ s
=

1
v

∂

∂u
,

where v =
∣∣∣∣∂γ

∂u

∣∣∣∣ and the arc length parameter is ds = vdu. Arbitrary flow of γ can be represented as

∂γ

∂ t
= f1T + f2Sn + f3Sb (3.3)

where {T,Sn,Sb} is Darboux frame of the spacelike curve γ on a ruled surfaces of type-I in G1
3 and f1, f2, f3 are scalar speeds of the curve γ .

Let the arc length variation be

s(u, t) =
∫ u

0
vdu .

In the 3-dimensional pseudo-Galilean space G1
3 the requirement that the curve not be subject to any elongation or compression can be

expressed by the condition

∂

∂ t
s(u, t) =

∫ u

0

∂v
∂ t

du = 0 , (3.4)

for all u ∈ [0, l].

Definition 3.1. Let γ (u, t) be a curve evolution and
∂γ

∂ t
be its flow in 3-dimensional pseudo-Galilean space G1

3. A curve evolution γ (u, t) is

inextensible if

∂

∂ t

∣∣∣∣∂γ

∂u

∣∣∣∣= 0.

Lemma 3.2. Let
∂γ

∂ t
= f1T + f2Sn + f3Sb be a smooth flow of the curve γ in G1

3. Then the flow is inextensible if and only if

∂v
∂ t

=
∂ f1
∂u

. (3.5)

Proof. Assuming that
∂γ

∂ t
be a smooth flow of the curve γ in G1

3. Using definition of γ , we have

v2 =

〈
∂γ

∂u
,

∂γ

∂u

〉
(3.6)

Since
∂

∂u
and

∂

∂ t
are commute we get

v
∂v
∂ t

=

〈
∂γ

∂u
,

∂

∂u
( f1T + f2Sn + f3Sb)

〉
.

Using Darboux frame, we obtain

v
∂v
∂ t

=

〈
T,

∂ f1
∂u

T +

(
∂ f2
∂u

+ f1κn + f3τg

)
Sn +

(
∂ f3
∂u

+ f1κg + f2τg

)
Sb

〉
.

After necessary calculations from above equation, we have (3.5), which proves the lemma.

Theorem 3.3. Let
∂γ

∂ t
= f1T + f2Sn + f3Sb be a smooth flow of the curve γ in G1

3. Then the flow is inextensible if and only if

∂ f1
∂ s

= 0. (3.7)
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Proof. From (3.4), we have

∂

∂ t
s(u, t) =

∫ u

0

∂v
∂ t

du =
∫ u

0

∂ f1
∂u

= 0. (3.8)

Substituting (3.5) into (3.8) completes the proof.

After this arc length parametrized curves are used that is, v = 1 and the local coordinate u corresponds to the curve arc length s.

Lemma 3.4. Let
∂γ

∂ t
= f1T + f2Sn + f3Sb be a inextensible flow of the curve γ in G1

3. Then,

∂T
∂ t

=

(
∂ f2
∂ s

+ f1κn + f3τg

)
Sn +

(
∂ f3
∂ s

+ f1κg + f2τg

)
Sb,

∂Sn

∂ t
=

(
∂ f2
∂ s

+ f1κn + f3τg

)
T, (3.9)

∂Sb

∂ t
=

(
−∂ f3

∂ s
− f1κg− f2τg

)
T.

Proof. Nothing that,

∂T
∂ t

=
∂

∂ t
∂γ

∂ s
=

∂

∂ s
( f1T + f2Sn + f3Sb) .

Thus, it is seen that

∂T
∂ t

=
∂ f1
∂ s

T +

(
∂ f2
∂ s

+ f1κn + f3τg

)
Sn +

(
∂ f3
∂ s

+ f1κg + f2τg

)
Sb. (3.10)

On the other hand substituting (3.7) into the equation (3.10), we get

∂T
∂ t

=

(
∂ f2
∂ s

+ f1κn + f3τg

)
Sn +

(
∂ f3
∂ s

+ f1κg + f2τg

)
Sb.

The differentiation of the Darboux frame with respect to t is as follows:

0 =
∂

∂ t
〈T,Sn〉=−

(
∂ f2
∂ s

+ f1κn + f3τg

)
+

〈
T,

∂Sn

∂ t

〉
,

0 =
∂

∂ t
〈T,Sb〉=

(
∂ f3
∂ s

+ f1κg + f2τg

)
+

〈
T,

∂Sb

∂ t

〉
.

Considering the above equations, pseudo-Galilean inner product and the following statement〈
∂Sn

∂ t
,Sn

〉
=

〈
∂Sb

∂ t
,Sb

〉
=

〈
∂Sn

∂ t
,Sb

〉
=

〈
∂Sb

∂ t
,Sn

〉
= 0,

we obtain

∂Sn

∂ t
=

(
∂ f2
∂ s

+ f1κn + f3τg

)
T,

∂Sb

∂ t
=

(
−∂ f3

∂ s
− f1κg− f2τg

)
T.

Corollary. Let
∂γ

∂ t
= f1T + f2Sn + f3Sb be a inextensible flow of the curve γ in G1

3. Then, if γ is a geodesic curve (not straight line) on the
surface then κg = 0. Therefore using this statement and the equation (3.9) we get the following differential equation system

∂T
∂ t

=

(
∂ f2
∂ s

+ f1κ + f3τ

)
Sn +

(
∂ f3
∂ s

+ f2τ

)
Sb,

∂Sn

∂ t
=

(
∂ f2
∂ s

+ f1κ + f3τ

)
T, (3.11)

∂Sb

∂ t
=

(
−∂ f3

∂ s
− f2τ

)
T.

Theorem 3.5. Let
∂γ

∂ t
= f1T + f2Sn + f3Sb be a inextensible flow of the curve γ in G1

3. Then, the following system of partial differential

equations holds:

∂κn

∂ t
=

∂ 2 f2
∂ s2 + f1

∂κn

∂ s
+2

∂ f3
∂ s

τg + f3
∂τg

∂ s
+ f1κgτg + f2

(
τg
)2

,

∂κg

∂ t
=

∂ 2 f3
∂ s2 + f1

∂κg

∂ s
+2

∂ f2
∂ s

τg + f2
∂τg

∂ s
+ f1κnτg + f3

(
τg
)2

,

∂τg

∂ t
=

∂ f2
∂ s

κg + f1κnκg + f3κgτg. (3.12)
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Proof. Considering the equation (3.9) we obtain,

∂

∂ s
∂T
∂ t

=

(
∂ 2 f2
∂ s2 +

∂ f1
∂ s

κn + f1
∂κn

∂ s
+

∂ f3
∂ s

τg + f3
∂τg

∂ s

)
Sn

+

(
∂ f2
∂ s

+ f1κn + f3τg

)(
τgSb

)
+

(
∂ 2 f3
∂ s2 +

∂ f1
∂ s

κg + f1
∂κg

∂ s
+

∂ f2
∂ s

τg + f2
∂τg

∂ s

)
Sb

+

(
∂ f3
∂ s

+ f1κg + f2τg

)(
τgSn

)
. (3.13)

On the other hand we have,

∂

∂ t
∂T
∂ s

=
∂

∂ t

(
κnSn +κgSb

)
=

(
∂ f2
∂ s

κn + f1 (κn)
2 + f3τgκn−

∂ f3
∂ s

κg− f1
(
κg
)2− f2κgτg

)
T

+

(
∂κn

∂ t

)
Sn +

(
∂κg

∂ t

)
Sb. (3.14)

Hence from (3.7), (3.14) and (3.15), we get the desired result. Using the same method, the last equation of (3.13) can be obtained.
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