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Abstract

In this paper, inextensible flows of a spacelike curve on a ruled surface of type I in 3-dimensional pseudo-Galilean space G% are researched.
Firstly inextensible flows of these curves according to Darboux frame are determined then necessary and sufficient conditions for inextensible

flows of the curves are expressed as a partial differential equation involving the curvature with this frame in G_l,.
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1. Introduction

The flows of inextensible curve and surface are one of the tool to solve many problems in computer vision [8], [13], computer animation [2]
and even structural mechanics [17]. Especially the methods used in this study are improved in [6, 7]. The differentiation between heat flows
and inextensible flows of planar curves are studied by Kwon in [10]. Also, inextensible flows of curves and developable surfaces in R3 are
revealed by Kwon in [11]. After that a lot of works have been done by some authors. Such that Latifi et al. [12] investigated inextensible
flows of curves in Minkowski 3-space, Ogrenmis et al. [14] studied inextensible flows of curves in the 3-dimensional Galilean space G3 and
Oztekin et al. [15] researched this curves in the 4-dimensional Galilean space Gy.

In the differential geometry especially theory of surfaces the Darboux frame which is a natural moving frame constructed on a surface has an
important role. It is the analog of the Frenet Serret frame as applied to surface geometry. After the definition of this frame in the literature, a
significant number of results concerning of this frame are obtained for the different spaces, see [9, 19].

In the present study inextensible flows of a spacelike curve which is defined on a ruled surfaces of type-I according to Darboux frame in the
3-dimensional pseudo-Galilean Space Gé are examined. Besides, partial differential equations in terms of inextensible flows of curves with
respect to this frame in 3-dimensional pseudo-Galilean space Gé are obtained. After that necessary and sufficient conditions for inextensible
flows which are expressed as a partial differential equation involving the curvature are given in Gé.

2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries whose projective signature is (0,0,+,-). As in [3], pseudo-Galilean
inner product can be written as

<V1 V2>: X1x2 JAfx1 £0Vxy #£0
' YiY2 —2122 ifx1=0Ax; =0

where vi = (x1,y1,z1) and vy = (x2,y2,22). The pseudo-Galilean norm of the vector v = (x,y,z) defined by

|x] Jifx#0
Ivi= 2-2|  Lifx=0

In pseudo-Galilean space a curve is given by y: 1 — Gé

v(t) = (x(1),y(1),z(1)) 2.1)
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where I C R and x(¢),y(t),z(r) € C> . A curve y given by (2.1) is admissible if x' (£) # 0 [3]. An admissible curve in G% can be parametrized
by arc length t = s, given as follows,

Y(s) = (5,(s),2(s)) . (2.2)

For an admissible curve y: / C R — G, the curvature & (s) and the torsion 7 (s) are determined by

K'(X) — |y//2 _ Z"2|7 (2.3)

() = g e (9707 (5). 4

The associated trihedron is given by

T(s) = 7Y()=(1Y(.2(),
1

MO = = g 002 ). @3
Bs) = KES) (0,2 (5) 5" (5)) .

[4]. The vectors T (s),N (s) and B (s) are called the vectors of tangent, principal normal and binormal line of 7, respectively. The curve y
given by (2.2) is timelike (resp. spacelike) if n(s) is spacelike (resp. timelike) vector. For derivatives of tangent vector 7 (s), principal
normal vector N (s) and binormal vector B (s), respectively, the following Frenet formulas hold

T = KNG,
N(s) = 1(s)B(s), (2.6)
B'(s) = 7T(s)N(s).

Let M (x,v) be a ruled surface of type Iin G} then M can be represented by
M (x,v) = y(x) +va(x),

where ¥ (x) = (x,y(x),z(x)) is the directrix curve and a (x) = (1,a; (x) a3 (x)) is a unit generator vector field. The associated trihedron of
the ruled surface of type I in Gé is determined by

T = (Layas),

i
N = E(O,alz,ag), 2.7)
B o= (0dd).

where Kk =/ }(a’z)2 — (a’3)2| is the curvature and 7 is the central isotropic timelike normal vector field. In this paper n is taken as timelike.
The following frenet formulas hold,

/

T 0 x O T
N | =]0 01 N |. (2.8)
B 0 7 O B

—1
where 7 = = det (a,d’,d") is the torsion of the ruled surface. The surface frame {7, S,,S}} is defined as follows

My A\M,

T=a(x), ,Sp=—2"TV
A= g

Sp=8Su N T.

Assuming that 0 be the hyperbolic angle between the isotropic timelike vectors S, and n. So, the following matrix form can be expressed,

T 1 0 0 T
S, | =1 0 cosh® sinh@ N |. 2.9)
Sp 0 sinh® cosh6 B
The Darboux equations can be written
T 7' 0 x K T
Spo | =10 0 1 S |- (2.10)
Sp 0 Tg 0 Sb

where K, k; and T, are geodesic curvature, normal curvature and geodesic torsion, respectively, given by
K, = kcosh®, K, = —ksinh6, Tg=dO+71

[5, 1]. We refer to [16, 18] for detailed information about the pseudo-Galilean geometry.
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3. Inextensible Flows of Curves with Darboux Frame in pseudo-Galilean Space G%

Throughout this paper, we assume that y: [0,/] x [0,w] = M C G% is a one parameter family of smooth spacelike curve on a ruled surface of
type-I in 3-dimensional pseudo-Galilean space Gé, where [ is the arc length of the initial curve and u is the curve parametrization variable,
0 <u < [. The arc length of y is given by

U a
s(u):/ I du, 3.
0 |du
where
1
oy dy Ir\|?
— ==, 2
du ’<8u7 du (3.2
The operator o is given in terms of u by
s
9_19
ds  vou’
where v = ‘ a—z: and the arc length parameter is ds = vdu. Arbitrary flow of ¥ can be represented as
Iy
5 = NT +1250+ 135 (3.3)

where {T,S,,S,} is Darboux frame of the spacelike curve ¥ on a ruled surfaces of type-I in G% and f1, f», f3 are scalar speeds of the curve 7.
Let the arc length variation be

U
s(u,t):/ vdu .
0

In the 3-dimensional pseudo-Galilean space G% the requirement that the curve not be subject to any elongation or compression can be
expressed by the condition
u v

d
Es(u,t): A Eduzo, 34

forallu € [0,1].

d
Definition 3.1. Let y(u,t) be a curve evolution and gr be its flow in 3-dimensional pseudo-Galilean space G;. A curve evolution y(u,t) is

ot

inextensible if

9
ot

9y
u

d
ar_ AT+ 280+ f3Sp be a smooth flow of the curve y in Gé. Then the flow is inextensible if and only if

Lemma 3.2. Let =
ot

o _op
%= o 3.5)

d
Proof. Assuming that it be a smooth flow of the curve ¥ in Gé. Using definition of y, we have

ot

dy dy
2 _
Vo= <3u’8u> (3.6

. d d
Since — and - are commute we get

du ot

v Jay o
Ve = <£7£(flT+fZSn+f3Sb)>~

Using Darboux frame, we obtain

v afi af df3
VE:<T’ET+(E+f1K”+f3Tg Sp+ E‘i‘fl’(g"‘fZTg Sp)-

After necessary calculations from above equation, we have (3.5), which proves the lemma. O

Jy

Theorem 3.3. Let —
ot

= AT + f2Sn + f3Sp, be a smooth flow of the curve y in G%. Then the flow is inextensible if and only if

afi
I, 3.7)
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Proof. From (3.4), we have

Uy U afl
ES(M,I‘)— 0 Ed“— 0 E
Substituting (3.5) into (3.8) completes the proof. O

=0. (3.8)

After this arc length parametrized curves are used that is, v = 1 and the local coordinate u corresponds to the curve arc length s.

d
Lemma 3.4. Let ar_ AT + oS, + f3Sp be a inextensible flow of the curve y in G%. Then,

dt
% = (aafz+f1Kn+f3Tg)Sn+<%+f1’<g+f27g)sb’
(2
% = (—%—fﬂ(g—fﬂg)T‘

Proof. Nothing that,

aT ddy 4

5 =33~ 95 = (AT + faSu+ f35p) -

Thus, it is seen that

or  df of af

= o (e s (0 A ) 10

On the other hand substituting (3.7) into the equation (3.10), we get
aT d d . )
WZ <£+fl’<n+f3fg) Sy + (7];3+f17<g+f27g)sh

The differentiation of the Darboux frame with respect to ¢ is as follows:

d ISy
0 = E<T75n>:_(£+f17(n+f3€g> < ) 8St >7

d d as
0 = §<T7Sb>:(7j?+f1'fg+fzfg)+< 77b>

Considering the above equations, pseudo-Galilean inner product and the following statement
Sy a8y, ISy IS
—, S S .S, —.,8,)=0

<8t7"> <8t b o P ar " ’

we obtain
as,
2 = (£+flkn+f3rg)

ot
N df3
a (‘W‘f“‘g‘fﬂg) !

O

d
Corollary. Let a—r = fiT + £S5, + f3Sp be a inextensible flow of the curve y in Gé. Then, if y is a geodesic curve (not straight line) on the

surface then k; = 0. Therefore using this statement and the equation (3.9) we get the following differential equation system

2
37? = (aifz-l-flk'-ﬁ-fﬂ:) +(87f3+f27)5b
B (ﬁmmm) G.11)

as, f3
E (‘x‘fﬂ)

ay
Theorem 3.5. Let — FTi = fiT + f2S5n + f3S) be a inextensible flow of the curve y in G3 Then, the following system of partial differential

equations holds:

aKn 82 aK'n (9

o= f2 +hi5 8f3 g+f3 8 +f1’<g7g+f2(78) ’

K, 82 81( d

% _ b %%, g+f2(9 + Akt + £ (7)7,

d df

%% WP i+ firte. G-12)

ot ds
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Proof. Considering the equation (3.9) we obtain,
0 JT 2f2 8f] BK,, af’; afg
as ar (as2+a iy T s By )
2/
+ (a—f fi Kn—i-fgfg) (T4Sp)
223 Ofi ok, dfs I1,
* (Tz T ety s Ty )
af3
+ (Tf f1Kg+fzrg> (TgSn) - (3.13)
On the other hand we have,
d dT

Eg (KnSn+ Kng>

d
ot
of
<ai n+ 1 Kn) +f37gKn_£Kg_f1 (Kg)z—fngTg)T

(aa'j”) St (aa'(g) Sp. (3.14)

Hence from (3.7), (3.14) and (3.15), we get the desired result. Using the same method, the last equation of (3.13) can be obtained.
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