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CLASSICAL AND STRONGLY CLASSICAL 2-ABSORBING
SECOND SUBMODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

Abstract. In this paper, we will introduce the concept of classical (resp.
strongly classical) 2-absorbing second submodules of modules over a commu-
tative ring as a generalization of 2-absorbing (resp. strongly 2-absorbing)
second submodules and investigate some basic properties of these classes of
modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and “⊂"
will denote the strict inclusion. Further, Z will denote the ring of integers.
Let M be an R-module. A proper submodule P of M is said to be prime if for

any r ∈ R and m ∈M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [11]. A non-
zero submodule S of M is said to be second if for each a ∈ R, the homomorphism
S

a→ S is either surjective or zero [18]. In this case AnnR(S) is a prime ideal of R.
The notion of 2-absorbing ideals as a generalization of prime ideals was intro-

duced and studied in [7]. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. The authors
in [10] and [15], extended 2-absorbing ideals to 2-absorbing submodules. A proper
submodule N of M is called a 2-absorbing submodule of M if whenever abm ∈ N
for some a, b ∈ R and m ∈M , then am ∈ N or bm ∈ N or ab ∈ (N :R M).
A proper submodule N ofM is said to be completely irreducible if N =

⋂
i∈I Ni,

where {Ni}i∈I is a family of submodules of M , implies that N = Ni for some
i ∈ I. It is easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [12].
In [5], the present authors introduced the dual notion of 2-absorbing submodules

(that is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and
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investigated some properties of these classes of modules. A non-zero submodule
N of M is said to be a 2-absorbing second submodule of M if whenever a, b ∈ R,
L is a completely irreducible submodule of M , and abN ⊆ L, then aN ⊆ L or
bN ⊆ L or ab ∈ AnnR(N). A non-zero submodule N of M is said to be a strongly
2-absorbing second submodule of M if whenever a, b ∈ R, K is a submodule of M ,
and abN ⊆ K, then aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N).
In [14], the authors introduced the notion of classical 2-absorbing submodules as

a generalization of 2-absorbing submodules and studied some properties of this class
of modules. A proper submodule N of M is called classical 2-absorbing submodule
if whenever a, b, c ∈ R and m ∈ M with abcm ∈ N , then abm ∈ N or acm ∈ N or
bcm ∈ N [14].
The purpose of this paper is to introduce the concepts of classical and strongly

classical 2-absorbing second submodules of an R-module M as dual notion of clas-
sical 2-absorbing submodules and provide some information concerning these new
classes of modules. We characterize classical (resp. strongly classical) 2-absorbing
second submodules in Theorem 2.3 (resp. Theorem 3.4). Also, we consider the
relationship between classical 2-absorbing and strongly classical 2-absorbing sec-
ond submodules in Examples 3.9, 3.10, and Propositions 3.11. Theorem 2.14 (resp.
Theorem 3.15) of this paper shows that if M is an Artinian R-module, then every
non-zero submodule of M has only a finite number of maximal classical (resp.
strongly classical) 2-absorbing second submodules. Further, among other results,
we investigate strongly classical 2-absorbing second submodules of a finite direct
product of modules in Theorem 3.19.

2. Classical 2-absorbing second submodules

We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M . To prove
N ⊆ K, it is enough to show that if L is a completely irreducible submodule of M
such that K ⊆ L, then N ⊆ L.

Definition 2.2. Let N be a non-zero submodule of an R-module M . We say that
N is a classical 2-absorbing second submodule of M if whenever a, b, c ∈ R, L is a
completely irreducible submodule of M , and abcN ⊆ L, then abN ⊆ L or bcN ⊆ L
or acN ⊆ L. We say M is a classical 2-absorbing second module if M is a classical
2-absorbing second submodule of itself.

Theorem 2.3. LetM be an R-module and N be a non-zero submodule ofM . Then
the following statements are equivalent:

(a) N is a classical 2-absorbing second submodule of M ;
(b) For every a, b ∈ R and completely irreducible submodule L ofM with abN 6⊆

L, (L :R abN) = (L :R aN) ∪ (L :R bN);
(c) For every a, b ∈ R and completely irreducible submodule L ofM with abN 6⊆

L, (L :R abN) = (L :R aN) or (L :R abN) = (L :R bN);
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(d) For every a, b ∈ R, every ideal I of R, and completely irreducible submodule
L of M with abIN ⊆ L, either abN ⊆ L or aIN ⊆ L or bIN ⊆ L;

(e) For every a ∈ R, every ideal I of R, and completely irreducible submodule L
of M with aIN 6⊆ L, (L :R aIN) = (L :R IN) or (L :R aIN) = (L :R aN);

(f) For every a ∈ R, ideals I, J of R, and completely irreducible submodule L
of M with aIJN ⊆ L, either aIN ⊆ L or aJN ⊆ L or IJN ⊆ L;

(g) For ideals I, J of R, and completely irreducible submodule L of M with
IJN 6⊆ L, (L :R IJN) = (L :R IN) or (L :R IJN) = (L :R JN);

(h) For ideals I1, I2, I3 of R, and completely irreducible submodule L of M with
I1I2I3N ⊆ L, either I1I2N ⊆ L or I1I3N ⊆ L or I2I3N ⊆ L;

(i) For each completely irreducible submodule L of M with N 6⊆ L, (L :R N)
is a 2-absorbing ideal of R.

Proof. (a)⇒ (b) Let t ∈ (L :R abN). Then tabN ⊆ L. Since abN 6⊆ L, atN ⊆ L or
btN ⊆ L as needed.

(b) ⇒ (c) This follows from the fact that if an ideal is the union of two ideals,
then it is equal to one of them.

(c) ⇒ (d) Let for some a, b ∈ R, an ideal I of R, and completely irreducible
submodule L of M , abIN ⊆ L. Then I ⊆ (L :R abN). If abN ⊆ L, then we are
done. Assume that abN 6⊆ L. Then by part (c), I ⊆ (L :R bN) or I ⊆ (L :R aN)
as desired.

(d) ⇒ (e) ⇒ (f) ⇒ (g) ⇒ (h) The proofs are similar to that of the previous
implications.

(h)⇒ (a) Trivial.
(h)⇔ (i) This is straightforward. �

We recall that an R-module M is said to be a cocyclic module if SocR(M) is
a large and simple submodule of M [19]. (Here SocR(M) denotes the sum of
all minimal submodules of M .) A submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module [12].

Corollary 2.4. Let N be a classical 2-absorbing second submodule of a cocyclic
R-module M . Then AnnR(N) is a 2-absorbing ideal of R.

Proof. This follows from Theorem 2.3 (a) ⇒ (i), because (0) is a completely irre-
ducible submodule of M . �

Example 2.5. For any prime integer p, let M = Zp∞ as a Z-module and Gi =
〈1/pi + Z〉 for i ∈ N. Then Gi is not a classical 2-absorbing second submodule of
M for each integers i ≥ 3.

Lemma 2.6. Every 2-absorbing second submodule of M is a classical 2-absorbing
second submodule of M .

Proof. Let N be a 2-absorbing second submodule of M , a, b, c ∈ R, L a completely
irreducible submodule of M , and abcN ⊆ L. Then abN ⊆ (L :M c). Thus aN ⊆
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(L :M c) or bN ⊆ (L :M c) or abN = 0 because by [6, Lemma 2.1], (L :M c) is a
completely irreducible submodule of M . Hence acN ⊆ L or bcN ⊆ L or abN ⊆ L
as needed. �
Example 2.7. ConsiderM = Zpq ⊕Q as a Z-module, where p, q are prime integers.
ThenM is a classical 2-absorbing second module which is not a strongly 2-absorbing
second module.

Proposition 2.8. Let N be a classical 2-absorbing second submodule of an R-
module M . Then we have the following.

(a) If a ∈ R, then anN = an+1N , for all n ≥ 2.
(b) If L is a completely irreducible submodule of M such that N 6⊆ L, then√

(L :R N) is a 2-absorbing ideal of R.

Proof. (a) It is enough to show that a2N = a3N . It is clear that a3N ⊆ a2N . Let
L be a completely irreducible submodule of M such that a3N ⊆ L. Since N is a
classical 2-absorbing second submodule, a2N ⊆ L. This implies that a2N ⊆ a3N .
(b) Assume that a, b, c ∈ R and abc ∈

√
(L :R N). Then there is a positive

integer t such that atbtctN ⊆ L. By hypotheses, N is a classical 2-absorbing
second submodule of M , thus atbtN ⊆ L or btctN ⊆ L or atctN ⊆ L. Therefore,
ab ∈

√
(L :R N) or bc ∈

√
(L :R N) or ac ∈

√
(L :R N). �

Theorem 2.9. Let N be a submodule of an R-module M . Then we have the
following.

(a) If N is a classical 2-absorbing second submodule ofM , then IN is a classical
2-absorbing second submodule ofM for all ideals I of R with I 6⊆ AnnR(N).

(b) If N is a classical 2-absorbing submodule of M , then (N :R I) is a classical
2-absorbing submodule of M for all ideals I of R with I 6⊆ (N :R M).

(c) Let f : M → Ḿ be a monomorphism of R-modules. If Ń is a classical 2-
absorbing second submodule of f(M), then f−1(Ń) is a classical 2-absorbing
second submodule of M .

Proof. (a) Let I be an ideal of R with I 6⊆ AnnR(N), a, b, c ∈ R, L be a completely
irreducible submodule of M , and abcIN ⊆ L. Then acN ⊆ L or cbIN ⊆ L or
abIN ⊆ L by Theorem 2.3 (a) ⇒ (d). If cbIN ⊆ L or abIN ⊆ L, then we are
done. If acN ⊆ L, then acIN ⊆ acN implies that acIN ⊆ L, as needed. Since
I 6⊆ AnnR(N), we have IN is a non-zero submodule of M .
(b) Use the technique of part (a) and apply [14, Theorem 2].
(c) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus Ń = 0,

a contradiction. Therefore, f−1(Ń) 6= 0. Now let a, b, c ∈ R, L be a completely
irreducible submodule of M , and abcf−1(Ń) ⊆ L. Then

abcŃ = abc(f(M) ∩ Ń) = abcff−1(Ń) ⊆ f(L).

By [5, Lemma 3.14], f(L) is a completely irreducible submodule of f(M). Thus
as Ń is a classical 2-absorbing second submodule, abŃ ⊆ f(L) or bcŃ ⊆ f(L) or
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acŃ ⊆ f(L). Therefore, abf−1(Ń) ⊆ f−1f(L) = L or bcf−1(Ń) ⊆ f−1f(L) = L

or acf−1(Ń) ⊆ f−1f(L) = L, as desired. �
An R-module M is said to be a multiplication module if for every submodule N

of M there exists an ideal I of R such that N = IM [8].
An R-module M is said to be a comultiplication module if for every submodule

N of M there exists an ideal I of R such that N = (0 :M I), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N)) [2].

Corollary 2.10. Let M be an R-module. Then we have the following.
(a) If M is a multiplication classical 2-absorbing second R-module, then every

non-zero submodule of M is a classical 2-absorbing second submodule of
M .

(b) IfM is a comultiplication module and the zero submodule ofM is a classical
2-absorbing submodule, then every proper submodule of M is a classical
2-absorbing submodule of M .

Proof. This follows from parts (a) and (b) of Lemma 2.9. �
Proposition 2.11. Let M be an R-module and {Ki}i∈I be a chain of classical 2-
absorbing second submodules ofM . Then

∑
i∈I Ki is a classical 2-absorbing second

submodule of M .

Proof. Let a, b, c ∈ R, L be a completely irreducible submodule ofM , and abc
∑
i∈I
Ki ⊆

L. Assume that ab
∑

i∈I Ki 6⊆ L and ac
∑

i∈I Ki 6⊆ L. Then there are m,n ∈ I
where abKn 6⊆ L and acKm 6⊆ L. Hence, for every Kn ⊆ Ks and every Km ⊆ Kd

we have that abKs 6⊆ L and acKd 6⊆ L. Therefore, for each submodule Kh such
that Kn ⊆ Kh and Km ⊆ Kh, we have bcKh ⊆ L. Hence bc

∑
i∈I Ki ⊆ L, as

needed. �
Definition 2.12. We say that a classical 2-absorbing second submodule N of an
R-moduleM is amaximal classical 2-absorbing second submodule of a submoduleK
of M , if N ⊆ K and there does not exist a classical 2-absorbing second submodule
T of M such that N ⊂ T ⊂ K.

Lemma 2.13. Let M be an R-module. Then every classical 2-absorbing second
submodule of M is contained in a maximal classical 2-absorbing second submodule
of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.11. �
Theorem 2.14. Let M be an Artinian R-module. Then every non-zero submodule
of M has only a finite number of maximal classical 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has
an infinite number of maximal classical 2-absorbing second submodules. Let S be
a submodule of M chosen minimal such that S has an infinite number of maximal



128 H. ANSARI-TOROGHY AND F. FARSHADIFAR

classical 2-absorbing second submodules becauseM is an Artinian R-module. Then
S is not a classical 2-absorbing second submodule. Thus there exist a, b, c ∈ R
and a completely irreducible submodule L of M such that abcS ⊆ L but abS 6⊆ L,
acS 6⊆ L, and bcS 6⊆ L. Let V be a maximal classical 2-absorbing second submodule
of M contained in S. Then abV ⊆ L or acV ⊆ L or bcV ⊆ L. Thus V ⊆ (L :M ab)
or V ⊆ (L :M ac) or V ⊆ (L :M bc). Therefore, V ⊆ (L :S ab) or V ⊆ (L :S ac)
or V ⊆ (L :S bc). By the choice of S, the modules (L :S ab), (L :S ac), and
(L :S bc) have only finitely many maximal classical 2-absorbing second submodules.
Therefore, there is only a finite number of possibilities for the module S, which is
a contradiction. �

3. Strongly classical 2-absorbing second submodules

Definition 3.1. Let N be a non-zero submodule of an R-module M . We say that
N is a strongly classical 2-absorbing second submodule of M if whenever a, b, c ∈ R,
L1, L2, L3 are completely irreducible submodules of M , and abcN ⊆ L1 ∩ L2 ∩ L3,
then abN ⊆ L1 ∩ L2 ∩ L3 or bcN ⊆ L1 ∩ L2 ∩ L3 or acN ⊆ L1 ∩ L2 ∩ L3. We
say M is a strongly classical 2-absorbing second module if M is a strongly classical
2-absorbing second submodule of itself.

Clearly every strongly classical 2-absorbing second submodule is a classical 2-
absorbing second submodule.

Question 3.2. Let M be an R-module. Is every classical 2-absorbing second
submodule of M a strongly classical 2-absorbing second submodule of M?

Example 3.3. The Z-module Z has no strongly classical 2-absorbing second sub-
module.

Theorem 3.4. LetM be an R-module and N be a non-zero submodule ofM . Then
the following statements are equivalent:

(a) N is strongly classical 2-absorbing second;
(b) If a, b, c ∈ R, K is a submodule of M , and abcN ⊆ K, then abN ⊆ K or

bcN ⊆ K or acN ⊆ K;
(c) For every a, b, c ∈ R, abcN = abN or abcN = acN or abcN = bcN ;
(d) For every a, b ∈ R and submodule K of M with abN 6⊆ K, (K :R abN) =

(K :R aN) ∪ (K :R bN);
(e) For every a, b ∈ R and submodule K of M with abN 6⊆ K, (K :R abN) =

(K :R aN) or (K :R abN) = (K :R bN);
(f) For every a, b ∈ R, every ideal I of R, and submodule K of M with abIN ⊆

K, either abN ⊆ K or aIN ⊆ K or bIN ⊆ K;
(g) For every a ∈ R, every ideal I of R, and submodule K ofM with aIN 6⊆ K,

(K :R aIN) = (K :R IN) or (K :R aIN) = (K :R aN);
(h) For every a ∈ R, ideals I, J of R, and submodule K of M with aIJN ⊆ K,

either aIN ⊆ K or aJN ⊆ K or IJN ⊆ K;



CLASSICAL AND STRONGLY CLASSICAL 2-ABSORBING SECOND SUBMODULES 129

(i) For ideals I, J of R, and submodule K ofM with IJN 6⊆ K, (K :R IJN) =
(K :R IN) or (K :R IJN) = (K :R JN);

(j) For ideals I1, I2, I3 of R, and submodule K of M with I1I2I3N ⊆ K, either
I1I2N ⊆ K or I1I3N ⊆ K or I2I3N ⊆ K;

(k) For each submodule K of M with N 6⊆ K, (K :R N) is a 2-absorbing ideal
of R.

Proof. (a)⇒ (b) Let a, b, c ∈ R, K is a submodule of M , and abcN ⊆ K. Assume
on the contrary that abN 6⊆ K, bcN 6⊆ K, and acN 6⊆ K. Then there exist
completely irreducible submodules L1, L2, L3 of M such that K is a submodule of
them but abN 6⊆ L1, bcN 6⊆ L2, and acN 6⊆ L3. Now we have abcN ⊆ L1∩L2∩L3.
Thus by part (a), abN ⊆ L1∩L2∩L3 or bcN ⊆ L1∩L2∩L3 or acN ⊆ L1∩L2∩L3.
Therefore, abN ⊆ L1 or bcN ⊆ L2 or acN ⊆ L3 which are contradictions.

(b) ⇒ (c) Let a, b, c ∈ R. Then abcN ⊆ abcN implies that abN ⊆ abcN or
bcN ⊆ abcN or acN ⊆ abcN by part (b). Thus abN = abcN or bcN = abcN or
acN = abcN because the reverse inclusions are clear.

(c) ⇒ (d) Let t ∈ (K :R abN). Then tabN ⊆ K. Since abN 6⊆ K, atN ⊆ K or
btN ⊆ K as needed.

(d) ⇒ (e) This follows from the fact that if an ideal is the union of two ideals,
then it is equal to one of them.

(e) ⇒ (f) Let for some a, b ∈ R, an ideal I of R, and submodule K of M ,
abIN ⊆ K. Then I ⊆ (K :R abN). If abN ⊆ K, then we are done. Assume that
abN 6⊆ K. Then by part (d), I ⊆ (K :R bN) or I ⊆ (K :R aN) as desired.

(g) ⇒ (h) ⇒ (i) ⇒ (h) ⇒ (j) Have proofs similar to that of the previous
implications.

(j)⇒ (a) Trivial.
(j)⇔ (k) This is straightforward. �

Let N be a submodule of an R-module M . Then Theorem 3.4 (a)⇔ (c) shows
that N is a strongly classical 2-absorbing second submodule of M if and only if N
is a strongly classical 2-absorbing second module.

Corollary 3.5. Let N be a strongly classical 2-absorbing second submodule of an
R-module M and I be an ideal of R. Then InN = In+1N , for all n ≥ 2.

Proof. It is enough to show that I2N = I3N . By Theorem 3.4, I2N = I3N . �

Example 3.6. Clearly every strongly 2-absorbing second submodule is a strongly
classical 2-absorbing second submodule. But the converse is not true in general.
For example, consider M = Z6 ⊕Q as a Z-module. Then M is a strongly classical
2-absorbing second module. But M is not a strongly 2-absorbing second module.

A non-zero submodule N of an R-module M is said to be a weakly second sub-
module of M if rsN ⊆ K, where r, s ∈ R and K is a submodule of M , implies
either rN ⊆ K or sN ⊆ K [1].
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Proposition 3.7. Let M be an R-module. Then we have the following.
(a) IfM is a comultiplicationR-module andN is a strongly classical 2-absorbing

second submodule of M , then N is a strongly 2-absorbing second submod-
ule of M .

(b) If N1, N2 are weakly second submodules of M , then N1 +N2 is a strongly
classical 2-absorbing second submodule of M .

(c) If N is a strongly classical 2-absorbing second submodule of M , then IN
is a strongly classical 2-absorbing second submodule of M for all ideals I
of R with I 6⊆ AnnR(N).

(d) If M is a multiplication strongly classical 2-absorbing second R-module,
then every non-zero submodule of M is a classical 2-absorbing second sub-
module of M .

(e) If M is a strongly classical 2-absorbing second R-module, then every non-
zero homomorphic image of M is a classical 2-absorbing second R-module.

Proof. (a) By Theorem 3.4 (a)⇒ (k), AnnR(N) is a 2-absorbing ideal of R. Now
the result follows from [5, Theorem 3.10].
(b) Let N1, N2 be weakly second submodules of M and a, b, c ∈ R. Since N1 is

a weakly second submodule, we may assume that abcN1 = aN1. Likewise, assume
that abcN2 = bN2. Hence abc(N1 +N2) = ab(N1 +N2) which implies N1 +N2 is a
classical 2-absorbing second submodule by Theorem 3.4 (c)⇒ (a).
(c) Use the technique of the proof of Theorem 2.9 (a).
(d) This follows from part (c).
(e) This is straightforward. �
For a submodule N of an R-module M the second radical (or second socle) of

N is defined as the sum of all second submodules of M contained in N and it is
denoted by sec(N) (or soc(N)). In case N does not contain any second submodule,
the second radical of N is defined to be (0) (see [9] and [3]).

Theorem 3.8. Let M be a finitely generated comultiplication R-module. If N is
a strongly classical 2-absorbing second submodule of M , then sec(N) is a strongly
2-absorbing second submodule of M .

Proof. Let N be a strongly classical 2-absorbing second submodule of M . By
Proposition 3.7 (a), AnnR(N) is a 2-absorbing ideal of R. Thus by [7, Theorem 2.1],√
AnnR(N) is a 2-absorbing ideal of R. By [4, Theorem 2.12], AnnR(sec(N)) =√
AnnR(N). Therefore, AnnR(sec(N)) is a 2-absorbing ideal of R. Now the result

follows from [5, Theorem 3.10]. �
The following examples show that the two concepts of classical 2-absorbing sub-

modules and strongly classical 2-absorbing second submodules are different in gen-
eral.

Example 3.9. The submodule 2Z of the Z-module Z is a classical 2-absorbing
submodule which is not a strongly classical 2-absorbing second module.
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Example 3.10. The submodule 〈1/p + Z〉 of the Z-module Zp∞ is a a strongly
classical 2-absorbing second module which is not a classical 2-absorbing submodule
of Zp∞ .

A commutative ring R is said to be a u-ring provided R has the property that an
ideal contained in a finite union of ideals must be contained in one of those ideals;
and a um-ring is a ring R with the property that an R-module which is equal to a
finite union of submodules must be equal to one of them [16].
In the following proposition, we investigate the relationships between strongly

classical 2-absorbing second submodules and classical 2-absorbing submodules.

Proposition 3.11. Let M be a non-zero R-module. Then we have the following.

(a) IfM is a finitely generated strongly classical 2-absorbing second R-module,
then the zero submodule of M is a classical 2-absorbing submodule.

(b) If M is a multiplication strongly classical 2-absorbing second R-module,
then the zero submodule of M is a classical 2-absorbing submodule.

(c) Let R be a um-ring. If M is a Artinian R-module and the zero submodule
of M is a classical 2-absorbing submodule, then M is a strongly classical
2-absorbing second R-module.

(d) Let R be a um-ring. If M is a comultiplication R-module and the zero
submodule ofM is a classical 2-absorbing submodule, thenM is a strongly
classical 2-absorbing second R-module.

Proof. (a) Let a, b, c ∈ R, m ∈M , and abcm = 0. By Theorem 3.4, we can assume
that abcM = acM . Since M is finitely generated, by using [13, Theorem 76],
AnnR(abM) + Rc = R. It follows that (0 :M abc) = (0 :M ab). This implies that
abm = 0, as needed.
(b) Let a, b, c ∈ R, m ∈M , and abcm = 0. Then by Theorem 3.4, we can assume

that abcM = acM . Thus

0 = abc((0 :M abc) :R M)M = (((0 :M abc) :R M)M)ab.

Since M is a multiplication module, ((0 :M abc) :R M)M = (0 :M abc). Therefore,
(0 :M abc)ab = 0. It follows that (0 :M abc) ⊆ (0 :M ab). Thus (0 :M abc) = (0 :M
ab) because the reverse inclusion is clear. Hence abm = 0, as required.
(c) Let a, b, c ∈ R. Then by [14, Theorem 4], we can assume that (0 :M abc) =

(0 :M ab). Hence (0 :M/(0:Mab) c) = 0. Since M is Artinian, it follows that
cM + (0 :M ab) = M . Therefore, abcM = abM . Thus by Theorem 3.4 (c) ⇒ (a),
M is a classical 2-absorbing second R-module.
(d) Let a, b, c ∈ R. Then by [14, Theorem 4], we can assume that (0 :M abc) =

(0 :M ab). Since M is a comultiplication R-module, this implies that

M = ((0 :M abc) :M AnnR(abcM) = ((0 :M ab) :M AnnR(abcM)) = (abcM :M ab).

It follows that abM ⊆ abcM . Thus abM = abcM because the reverse implication
is clear and this completed the proof. �
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Proposition 3.12. Let M be an R-module and {Ki}i∈I be a chain of strongly
classical 2-absorbing second submodules ofM . Then

∑
i∈I Ki is a strongly classical

2-absorbing second submodule of M .

Proof. Use the technique of Proposition 2.11. �

Definition 3.13. We say that a strongly classical 2-absorbing second submodule
N of an R-module M is a maximal strongly classical 2-absorbing second submodule
of a submodule K of M , if N ⊆ K and there does not exist a strongly classical
2-absorbing second submodule T of M such that N ⊂ T ⊂ K.

Lemma 3.14. Let M be an R-module. Then every strongly classical 2-absorbing
second submodule of M is contained in a maximal strongly classical 2-absorbing
second submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 3.12. �

Theorem 3.15. Let M be an Artinian R-module. Then every non-zero submodule
of M has only a finite number of maximal strongly classical 2-absorbing second
submodules.

Proof. Use the technique of Theorem 2.14 any apply Lemma 3.14. �

Theorem 3.16. Let f : M → Ḿ be a monomorphism of R-modules. Then we
have the following.

(a) If N is a strongly classical 2-absorbing second submodule of M , then f(N)

is a strongly classical 2-absorbing second submodule of Ḿ .
(b) If Ń is a strongly classical 2-absorbing second submodule of f(M), then

f−1(Ń) is a strongly classical 2-absorbing second submodule of M .

Proof. (a) Since N 6= 0 and f is a monomorphism, we have f(N) 6= 0. Let a, b, c ∈
R. Then by Theorem 3.4 (a)⇒ (c), we can assume that abcN = abN . Thus

abcf(N) = f(abcN) = f(abN) = abf(N).

Hence f(N) is a strongly classical 2-absorbing second submodule of Ḿ by Theorem
3.4 (c)⇒ (a).
(b) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus Ń = 0, a

contradiction. Therefore, f−1(Ń) 6= 0. Now let a, b, c ∈ R, K be a submodule of
M , and abcf−1(Ń) ⊆ K. Then

abcŃ = abc(f(M) ∩ Ń) = abcff−1(Ń) ⊆ f(K).

Thus as Ń is a strongly classical 2-absorbing second submodule, abŃ ⊆ f(K)

or bcŃ ⊆ f(K) or acŃ ⊆ f(K). Therefore, abf−1(Ń) ⊆ f−1f(K) = K or
bcf−1(Ń) ⊆ f−1f(K) = K or acf−1(Ń) ⊆ f−1f(K) = K, as desired. �
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Let Ri be a commutative ring with identity andMi be an Ri-module for i = 1, 2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and each submodule of M
is in the form of N = N1 ×N2 for some submodules N1 of M1 and N2 of M2.

Theorem 3.17. Let R = R1×R2 be a decomposable ring and let M = M1×M2 be
an R-module, where M1 is an R1-module and M2 is an R2-module. Suppose that
N = N1 × N2 is a non-zero submodule of M . Then the following conditions are
equivalent:

(a) N is a strongly classical 2-absorbing second submodule of M ;
(b) Either N1 = 0 and N2 is a strongly classical 2-absorbing second submodule

ofM2 or N2 = 0 and N1 is a strongly classical 2-absorbing second submodule
of M1 or N1, N2 are weakly second submodules of M1, M2, respectively.

Proof. (a) ⇒ (b). Suppose that N is a strongly classical 2-absorbing second sub-
module ofM such that N2 = 0. From our hypothesis, N is non-zero, so N1 6= 0. Set
Ḿ = M1×0. One can see that Ń = N1×0 is a strongly classical 2-absorbing second
submodule of Ḿ . Also observe that Ḿ ∼= M1 and Ń ∼= N1. Thus N1 is a strongly
classical 2-absorbing second submodule of M1. Suppose that N1 6= 0 and N2 6= 0.
We show that N1 is a weakly second submodule of M1. Since N2 6= 0, there exists
a completely irreducible submodule L2 of M2 such that N2 6⊆ L2. Let abN1 ⊆ K
for some a, b ∈ R1 and submodule K of M1. Thus (a, 1)(b, 1)(1, 0)(N1 × N2) =
abN1 × 0 ⊆ K × L2. So either (a, 1)(b, 1)(N1 × N2) = abN1 × N2 ⊆ K × L2 or
(a, 1)(1, 0)(N1×N2) = aN1×0 ⊆ K×L2 or (b, 1)(1, 0)(N1×N2) = bN1×0 ⊆ K×L2.
If abN1 ×N2 ⊆ K × L2, then N2 ⊆ L2, a contradiction. Hence either aN1 ⊆ K or
bN1 ⊆ K which shows that N1 is a weakly second submodule of M1. Similarly, we
can show that N2 is a weakly second submodule of M2.

(b) ⇒ (a). Suppose that N = N1 × 0, where N1 is a strongly classical 2-
absorbing (resp. weakly) second submodule of M1. Then it is clear that N is a
strongly classical 2-absorbing (resp. weakly) second submodule ofM . Now, assume
that N = N1 × N2, where N1 and N2 are weakly second submodules of M1 and
M2, respectively. Hence (N1 × 0) + (0×N2) = N1 ×N2 = N is a strongly classical
2-absorbing second submodule of M , by Proposition 3.7 (b). �

Lemma 3.18. Let R = R1 × R2 × · · · × Rn be a decomposable ring and M =
M1×M2 · · · ×Mn be an R-module where for every 1 ≤ i ≤ n, Mi is an Ri-module,
respectively. A non-zero submodule N of M is a weakly second submodule of M if
and only if N = ×ni=1Ni such that for some k ∈ {1, 2, ..., n}, Nk is a weakly second
submodule of Mk, and Ni = 0 for every i ∈ {1, 2, ..., n} \ {k}.

Proof. (⇒) Let N be a weakly second submodule of M . We know N = ×ni=1Ni
where for every 1 ≤ i ≤ n, Ni is a submodule of Mi, respectively. Assume that
Nr is a non-zero submodule of Mr and Ns is a non-zero submodule of Ms for some
1 ≤ r < s ≤ n. Since N is a weakly second submodule of M ,

(0, · · · , 0, 1Rr
, 0, · · · , 0)(0, · · · , 0, 1Rs

, 0, · · · , 0)N = (0, · · · , 0, 1Rr
, 0, · · · , 0)N
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or

(0, · · · , 0, 1Rr , 0, · · · , 0)(0, · · · , 0, 1Rs , 0, · · · , 0)N = (0, · · · , 0, 1Rs , 0, · · · , 0)N.

Thus Nr = 0 or Ns = 0. This contradiction shows that exactly one of the Ni’s is
non-zero, say Nk. Now, we show that Nk is a weakly second submodule ofMk. Let
a, b ∈ Rk. Since N is a weakly second submodule of M ,

(0, · · · , 0, a, 0, · · · , 0)(0, · · · , 0, b, 0, · · · , 0)N = (0, · · · , 0, a, 0, · · · , 0)N

or
(0, · · · , 0, a, 0, · · · , 0)(0, · · · , 0, b, 0, · · · , 0)N = (0, · · · , 0, b, 0, · · · , 0)N

Thus abNk = aNk or abNk = bNk as needed.
(⇐) This is clear. �

Theorem 3.19. Let R = R1 ×R2 × · · · ×Rn (2 ≤ n <∞) be a decomposable ring
and M = M1 ×M2 · · · ×Mn be an R-module, where for every 1 ≤ i ≤ n, Mi is
an Ri-module, respectively. Then for a non-zero submodule N of M the following
conditions are equivalent:

(a) N is a strongly classical 2-absorbing second submodule of M ;
(b) Either N = ×ni=1Ni such that for some k ∈ {1, 2, ..., n}, Nk is a strongly

classical 2-absorbing second submodule of Mk, and Ni = 0 for every i ∈
{1, 2, ..., n}\{k} or N = ×ni=1Ni such that for some k,m ∈ {1, 2, ..., n}, Nk
is a weakly second submodule of Mk, Nm is a weakly second submodule of
Mm, and Ni = 0 for every i ∈ {1, 2, ..., n} \ {k,m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem 3.17. Now
suppose that the result is valid when K = M1 × · · · ×Mt for each t < n. We show
that the result holds whenM = K×Mn. By Theorem 3.17, N is a strongly classical
2-absorbing second submodule ofM if and only if either N = L×0 for some strongly
classical 2-absorbing second submodule L of K or N = 0 × Ln for some strongly
classical 2-absorbing second submodule Ln of Mn or N = L× Ln for some weakly
second submodule L of K and some weakly second submodule Ln ofMn. Note that
by Lemma 3.18, a non-zero submodule L of K is a weakly second submodule of K
if and only if L = ×n−1i=1 Ni such that for some k ∈ {1, 2, ..., n − 1}, Nk is a weakly
second submodule of Mk and Ni = 0 for every i ∈ {1, 2, ..., n− 1} \ {k}. Hence the
claim is proved. �

Example 3.20. Let R be a Noetherian ring and let E = ⊕m∈Max(R)E(R/m).
Then for each 2-absorbing ideal P of R, (0 :E P ) is a strongly classical 2-absorbing
second submodule of E.

Proof. By using [17, p. 147], HomR(R/P,E) 6= 0. Now since (0 :E P ) ∼=
HomR(R/P,E), (0 :E P ) is a strongly 2-absorbing second submodule of E by
[5, Theorem 3.27]. Now the result follows from Example 3.6. �
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Theorem 3.21. Let R be a um-ring andM be an R-module. If E is an injective R-
module and N is a classical 2-absorbing submodule ofM such that HomR(M/N,E) 6=
0, then HomR(M/N,E) is a strongly classical 2-absorbing second R-module.

Proof. Let a, b, c ∈ R. Since N is a classical 2-absorbing submodule of M , we
can assume that (N :M abc) = (N :M ab) by [14, Theorem 4]. Since E is an
injective R-module, by replacing M with M/N in [1, Theorem 3.13 (a)], we have
HomR(M/(N :M r), E) = rHomR(M/N,E) for each r ∈ R. Therefore,

abcHomR(M/N,E) = HomR(M/(N :M abc), E) =

HomR(M/(N :M ab), E) = abHomR(M/N,E),

as needed �
Theorem 3.22. Let M be a strongly classical 2-absorbing second R-module and
F be a right exact linear covariant functor over the category of R-modules. Then
F (M) is a strongly classical 2-absorbing second R-module if F (M) 6= 0.

Proof. This follows from [1, Lemma 3.14] and Theorem 3.4 (a)⇒ (c). �
Corollary 3.23. Let M be an R-module, S be a multiplicative subset of R and
N be a strongly classical 2-absorbing second submodule of M . Then S−1N is a
strongly classical 2-absorbing second submodule of S−1M if S−1N 6= 0.

Proof. This follows from Theorem 3.22. �
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