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CLASSICAL AND STRONGLY CLASSICAL 2-ABSORBING
SECOND SUBMODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

ABSTRACT. In this paper, we will introduce the concept of classical (resp.
strongly classical) 2-absorbing second submodules of modules over a commu-
tative ring as a generalization of 2-absorbing (resp. strongly 2-absorbing)
second submodules and investigate some basic properties of these classes of
modules.

1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity and “C"
will denote the strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r € R and m € M with rm € P, we have m € P or r € (P :g M) [II]. A non-
zero submodule S of M is said to be second if for each a € R, the homomorphism
S % S is either surjective or zero [I8]. In this case Anng(S) is a prime ideal of R.

The notion of 2-absorbing ideals as a generalization of prime ideals was intro-
duced and studied in [7]. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a,b,c € R and abc € I, then ab € I or ac € I or bc € I. The authors
in [I0] and [I5], extended 2-absorbing ideals to 2-absorbing submodules. A proper
submodule N of M is called a 2-absorbing submodule of M if whenever abm € N
for some a,b € R and m € M, then am € N or bm € N or ab € (N :g M).

A proper submodule N of M is said to be completely irreducible if N = (,.; Ny,
where {N;}ics is a family of submodules of M, implies that N = N; for some
1 € 1. Tt is easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [12].

In [5], the present authors introduced the dual notion of 2-absorbing submodules
(that is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and
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investigated some properties of these classes of modules. A non-zero submodule
N of M is said to be a 2-absorbing second submodule of M if whenever a,b € R,
L is a completely irreducible submodule of M, and abN C L, then aN C L or
bN C L or ab € Anng(N). A non-zero submodule N of M is said to be a strongly
2-absorbing second submodule of M if whenever a,b € R, K is a submodule of M,
and abN C K, then aN C K or bN C K or ab € Anng(N).

In [14], the authors introduced the notion of classical 2-absorbing submodules as
a generalization of 2-absorbing submodules and studied some properties of this class
of modules. A proper submodule N of M is called classical 2-absorbing submodule
if whenever a,b,c € R and m € M with abem € N, then abm € N or acm € N or
bem € N [14].

The purpose of this paper is to introduce the concepts of classical and strongly
classical 2-absorbing second submodules of an R-module M as dual notion of clas-
sical 2-absorbing submodules and provide some information concerning these new
classes of modules. We characterize classical (resp. strongly classical) 2-absorbing
second submodules in Theorem (resp. Theorem . Also, we consider the
relationship between classical 2-absorbing and strongly classical 2-absorbing sec-
ond submodules in Examples and Propositions Theorem m (resp.
Theorem of this paper shows that if M is an Artinian R-module, then every
non-zero submodule of M has only a finite number of maximal classical (resp.
strongly classical) 2-absorbing second submodules. Further, among other results,
we investigate strongly classical 2-absorbing second submodules of a finite direct
product of modules in Theorem [3.19]

2. CLASSICAL 2-ABSORBING SECOND SUBMODULES
We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M. To prove
N C K, it is enough to show that if L is a completely irreducible submodule of M
such that K C L, then N C L.

Definition 2.2. Let N be a non-zero submodule of an R-module M. We say that
N is a classical 2-absorbing second submodule of M if whenever a,b,c € R, L is a
completely irreducible submodule of M, and abcN C L, then abN C L or beN C L
or acN C L. We say M is a classical 2-absorbing second module if M is a classical
2-absorbing second submodule of itself.

Theorem 2.3. Let M be an R-module and N be a non-zero submodule of M. Then
the following statements are equivalent:

(a) N is a classical 2-absorbing second submodule of M ;

(b) For every a,b € R and completely irreducible submodule L of M with abN ¢
L, (L:gabN)=(L:gaN)U(L:g bN);

(¢) For everya,b € R and completely irreducible submodule L of M with abN €
L, (L:gabN)=(L:gaN) or (L:gabN)=(L:g bN);
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(d) For every a,b € R, every ideal I of R, and completely irreducible submodule
L of M with abIN C L, either abN C L or aIN C L or bIN C L;

(e) For everya € R, every ideal I of R, and completely irreducible submodule L
of M with aIN € L, (L :g aIN) = (L :g IN) or (L :g aIN) = (L :g aN);

(f) For every a € R, ideals I,J of R, and completely irreducible submodule L
of M with alJN C L, either aIN C L oraJN CL or IJN C L;

(g) For ideals I,J of R, and completely irreducible submodule L of M with
IJNZ L, (L:glJN)=(L:gIN)or(L:glJN)=(L:gJN);

(h) For ideals I, I, I3 of R, and completely irreducible submodule L of M with
11]213N g L, either I]_IQN g L or IllgN g L or IQIgN Q L,

(i) For each completely irreducible submodule L of M with N € L, (L :g N)
is a 2-absorbing ideal of R.

Proof. (a) = (b) Let t € (L :g abN). Then tabN C L. Since abN € L, atN C L or
btN C L as needed.

(b) = (¢) This follows from the fact that if an ideal is the union of two ideals,
then it is equal to one of them.

(¢) = (d) Let for some a,b € R, an ideal I of R, and completely irreducible
submodule L of M, abIN C L. Then I C (L :g abN). If abN C L, then we are
done. Assume that abN ¢ L. Then by part (¢), I C (L:g bN) or I C (L :g aN)
as desired.

(d) = (e) = (f) = (9) = (h) The proofs are similar to that of the previous
implications.

(h) = (a) Trivial.

(h) < (i) This is straightforward. O

We recall that an R-module M is said to be a cocyclic module if Socg(M) is
a large and simple submodule of M [19]. (Here Socg(M) denotes the sum of
all minimal submodules of M.) A submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module [I2].

Corollary 2.4. Let N be a classical 2-absorbing second submodule of a cocyclic
R-module M. Then Anng(N) is a 2-absorbing ideal of R.

Proof. This follows from Theorem (a) = (i), because (0) is a completely irre-
ducible submodule of M. O

Example 2.5. For any prime integer p, let M = Z,~ as a Z-module and G; =
(1/p* +Z) for i € N. Then G; is not a classical 2-absorbing second submodule of
M for each integers ¢ > 3.

Lemma 2.6. Every 2-absorbing second submodule of M is a classical 2-absorbing
second submodule of M.

Proof. Let N be a 2-absorbing second submodule of M, a,b,c € R, L a completely
irreducible submodule of M, and abeN C L. Then abN C (L :ps ¢). Thus aN C



126 H. ANSARI-TOROGHY AND F. FARSHADIFAR

(L :pr ¢) or DN C (L :pq ¢) or abN = 0 because by [6, Lemma 2.1, (L :ps ¢) is a
completely irreducible submodule of M. Hence acN C L or becN C L or abN C L
as needed. O

Example 2.7. Consider M = Z,, ® Q as a Z-module, where p, ¢ are prime integers.
Then M is a classical 2-absorbing second module which is not a strongly 2-absorbing
second module.

Proposition 2.8. Let N be a classical 2-absorbing second submodule of an R-
module M. Then we have the following.

(a) If a € R, then a"N = a" TN, for all n > 2.

(b) If L is a completely irreducible submodule of M such that N € L, then

V(L :g N) is a 2-absorbing ideal of R.

Proof. (a) It is enough to show that a2N = a3N. It is clear that a>N C a?N. Let
L be a completely irreducible submodule of M such that a>N C L. Since N is a
classical 2-absorbing second submodule, >N C L. This implies that a?N C a®N.
(b) Assume that a,b,c € R and abc € /(L :g N). Then there is a positive
integer ¢ such that a’b'c!N C L. By hypotheses, N is a classical 2-absorbing
second submodule of M, thus a’b!N C L or b*c!N C L or a’c! N C L. Therefore,

abe \/(L:g N)orbce/(L:gN)oracée /(L:grN). O

Theorem 2.9. Let N be a submodule of an R-module M. Then we have the
following.
(a) If N is a classical 2-absorbing second submodule of M, then IN is a classical
2-absorbing second submodule of M for all ideals I of R with I € Anng(N).
(b) If N is a classical 2-absorbing submodule of M, then (N :g I) is a classical
2-absorbing submodule of M for all ideals I of R with I € (N :g M).
(¢c) Let f: M — M be a monomorphism of R-modules. [fN s a classical 2-
absorbing second submodule of f(M), then f’l(]\/f) is a classical 2-absorbing
second submodule of M.

Proof. (a) Let I be an ideal of R with I € Anng(N), a,b,c € R, L be a completely
irreducible submodule of M, and abcIN C L. Then acN C L or ¢bIN C L or
abIN C L by Theorem (a) = (d). If ¢bIN C L or abIN C L, then we are
done. If acN C L, then acIN C acN implies that acIN C L, as needed. Since
I Z Anng(N), we have IN is a non-zero submodule of M.

(b) Use the technique of part (a) and apply [14, Theorem 2].

(¢) If f~Y(N) = 0, then f(M)NN = ff~Y(N) = f(0) = 0. Thus N = 0,

a contradiction. Therefore, f~1(N) # 0. Now let a,b,c € R, L be a completely
irreducible submodule of M, and abcf~!(N) C L. Then

abeN = abe(f(M) N N) = abef f~(N) C f(L).
By [} Lemma 3.14], f(L) is a completely irreducible submodule of f(M). Thus

7

as N is a classical 2-absorbing second submodule, abN C f(L) or beN C f(L) or
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acN C f(L). Therefore, abf~*(N) C f~'f(L) = L or bef " (N) C f~'f(L) = L
or acf~L(N) C f~1f(L) = L, as desired. 0

An R-module M is said to be a multiplication module if for every submodule N
of M there exists an ideal I of R such that N = IM [g].

An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :js I), equivalently, for each
submodule N of M, we have N = (0 :3y Anng(N)) [2].

Corollary 2.10. Let M be an R-module. Then we have the following.
(a) If M is a multiplication classical 2-absorbing second R-module, then every
non-zero submodule of M is a classical 2-absorbing second submodule of
M.
(b) If M is a comultiplication module and the zero submodule of M is a classical
2-absorbing submodule, then every proper submodule of M is a classical
2-absorbing submodule of M.

Proof. This follows from parts (a) and (b) of Lemma O

Proposition 2.11. Let M be an R-module and {K;};c; be a chain of classical 2-
absorbing second submodules of M. Then }_._; K; is a classical 2-absorbing second
submodule of M.

Proof. Let a,b,c € R, L be a completely irreducible submodule of M, and abe }_ K; C
iel

L. Assume that ab)_,.; K; € L and ac)_,.; K; € L. Then there are m,n € I

where abK,, € L and acK,, € L. Hence, for every K,, C K, and every K,,, C K4

we have that abKs € L and acKy € L. Therefore, for each submodule K} such

that K,, C K} and K,, C K, we have bcK;,, C L. Hence bcziel K; C L, as

needed. O

icl

Definition 2.12. We say that a classical 2-absorbing second submodule N of an
R-module M is a mazximal classical 2-absorbing second submodule of a submodule K
of M, if N C K and there does not exist a classical 2-absorbing second submodule
T of M such that N C T C K.

Lemma 2.13. Let M be an R-module. Then every classical 2-absorbing second
submodule of M is contained in a maximal classical 2-absorbing second submodule
of M.

Proof. This is proved easily by using Zorn’s Lemma and Proposition [2.11 (I

Theorem 2.14. Let M be an Artinian R-module. Then every non-zero submodule
of M has only a finite number of mazimal classical 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has
an infinite number of maximal classical 2-absorbing second submodules. Let S be
a submodule of M chosen minimal such that S has an infinite number of maximal
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classical 2-absorbing second submodules because M is an Artinian R-module. Then
S is not a classical 2-absorbing second submodule. Thus there exist a,b,c € R
and a completely irreducible submodule L of M such that abcS C L but abS € L,
acS € L,and bcS & L. Let V be a maximal classical 2-absorbing second submodule
of M contained in S. Then abV C L or acV C L or beV C L. Thus V C (L :ps ab)
or V.C (L :p ac) or V. C (L :pr be). Therefore, V C (L :g ab) or V C (L :5 ac)
or V.C (L :g bc). By the choice of S, the modules (L :g ab), (L :s ac), and
(L :5 be) have only finitely many maximal classical 2-absorbing second submodules.
Therefore, there is only a finite number of possibilities for the module S, which is
a contradiction. O

3. STRONGLY CLASSICAL 2-ABSORBING SECOND SUBMODULES

Definition 3.1. Let N be a non-zero submodule of an R-module M. We say that
N is a strongly classical 2-absorbing second submodule of M if whenever a,b,c € R,
L1, Lo, L3 are completely irreducible submodules of M, and abcN C Ly N Ly N L,
then abN - LlﬂLgmLQg or bcN - LlﬂLgmLQg or acN - LlﬂLgmL;g. ‘We
say M is a strongly classical 2-absorbing second module if M is a strongly classical
2-absorbing second submodule of itself.

Clearly every strongly classical 2-absorbing second submodule is a classical 2-
absorbing second submodule.

Question 3.2. Let M be an R-module. Is every classical 2-absorbing second
submodule of M a strongly classical 2-absorbing second submodule of M?

Example 3.3. The Z-module Z has no strongly classical 2-absorbing second sub-
module.

Theorem 3.4. Let M be an R-module and N be a non-zero submodule of M. Then
the following statements are equivalent:

(a) N is strongly classical 2-absorbing second;

(b) If a,b,c € R, K is a submodule of M, and abcN C K, then abN C K or
bcN C K oracN C K;

(¢c) For every a,b,c € R, abcN = abN or abcN = acN or abcN = beN;

(d) For every a,b € R and submodule K of M with abN € K, (K :g abN) =
(K:raN)U (K :g bN);

(e) For every a,b € R and submodule K of M with abN € K, (K :p abN) =
(K :gaN) or (K :gpabN) = (K :g bN);

(f) For everya,b € R, every ideal I of R, and submodule K of M with abIN C
K, either abN C K oralN C K orbIN C K;

(g) For everya € R, every ideal I of R, and submodule K of M with aIN € K,
(K:gaIN)=(K:gIN) or (K :gaIN)= (K :g aN);

(h) For every a € R, ideals I, J of R, and submodule K of M with al N C K,
either alN C K oraJN CK orIJN C K;
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(i) Forideals I, J of R, and submodule K of M with IJN ¢ K, (K :g IJN) =
(K :p IN) or (K :p IJN) = (K :p JN);

(j) Forideals I, Is,Is of R, and submodule K of M with I1IoIsN C K, either
IllgN Q K or Ilng g K or IQIgN g K;

(k) For each submodule K of M with N € K, (K :g N) is a 2-absorbing ideal
of R.

Proof. (a) = (b) Let a,b,c € R, K is a submodule of M, and abcN C K. Assume
on the contrary that abN ¢ K, bcN ¢ K, and acN ¢ K. Then there exist
completely irreducible submodules Lq, Lo, L3 of M such that K is a submodule of
them but abN & Ly, bcN & Ls, and acN ¢ L3. Now we have abcN C LiNLyNL3.
Thus by part (a), abN C LiNLyN L3 or beN C LiNLyNLsoracN C LiNLyNLs.
Therefore, abN C Ly or beN C L or acN C L3 which are contradictions.

(b) = (c) Let a,b,c € R. Then abcN C abeN implies that abN C abeN or
becN C abeN or acN C abeN by part (b). Thus abN = abeN or beN = abeN or
acN = abcN because the reverse inclusions are clear.

(¢) = (d) Let t € (K :g abN). Then tabN C K. Since abN € K, atN C K or
btN C K as needed.

(d) = (e) This follows from the fact that if an ideal is the union of two ideals,
then it is equal to one of them.

(e) = (f) Let for some a,b € R, an ideal I of R, and submodule K of M,
abIN C K. Then I C (K :g abN). If abN C K, then we are done. Assume that
abN ¢ K. Then by part (d), I C (K :g bN) or I C (K :g aN) as desired.

(9) = (h) = (i) = (h) = (j) Have proofs similar to that of the previous
implications.

(4) = (a) Trivial.

(4) & (k) This is straightforward. O

Let N be a submodule of an R-module M. Then Theorem [3.4] (a) < (c) shows
that N is a strongly classical 2-absorbing second submodule of M if and only if IV
is a strongly classical 2-absorbing second module.

Corollary 3.5. Let N be a strongly classical 2-absorbing second submodule of an
R-module M and I be an ideal of R. Then I"N = I"*!N, for all n > 2.

Proof. It is enough to show that I2N = I?N. By Theorem [3.4) I?N = I*N. (]

Example 3.6. Clearly every strongly 2-absorbing second submodule is a strongly
classical 2-absorbing second submodule. But the converse is not true in general.
For example, consider M = Z,4 ® Q as a Z-module. Then M is a strongly classical
2-absorbing second module. But M is not a strongly 2-absorbing second module.

A non-zero submodule N of an R-module M is said to be a weakly second sub-
module of M if rsN C K, where r,s € R and K is a submodule of M, implies
either rN C K or sN C K [I].
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Proposition 3.7. Let M be an R-module. Then we have the following.

(a) If M is a comultiplication R-module and N is a strongly classical 2-absorbing
second submodule of M, then N is a strongly 2-absorbing second submod-
ule of M.

(b) If Ny, Ny are weakly second submodules of M, then Ny 4+ N» is a strongly
classical 2-absorbing second submodule of M.

(c) If N is a strongly classical 2-absorbing second submodule of M, then IN
is a strongly classical 2-absorbing second submodule of M for all ideals I
of R with I € Anng(N).

(d) If M is a multiplication strongly classical 2-absorbing second R-module,
then every non-zero submodule of M is a classical 2-absorbing second sub-
module of M.

(e) If M is a strongly classical 2-absorbing second R-module, then every non-
zero homomorphic image of M is a classical 2-absorbing second R-module.

Proof. (a) By Theorem (a) = (k), Anng(N) is a 2-absorbing ideal of R. Now
the result follows from [5, Theorem 3.10].

(b) Let Ny, N2 be weakly second submodules of M and a,b,c € R. Since Nj is
a weakly second submodule, we may assume that abcN; = aN;. Likewise, assume
that abcNy = bNy. Hence abc(Ny + Na) = ab(Ny + Na) which implies Ny + Nj is a
classical 2-absorbing second submodule by Theorem (¢) = (a).

(c) Use the technique of the proof of Theorem E(-a)

(d) This follows from part (c).

(e) This is straightforward. O

For a submodule N of an R-module M the second radical (or second socle) of
N is defined as the sum of all second submodules of M contained in N and it is
denoted by sec(N) (or soc(N)). In case N does not contain any second submodule,
the second radical of N is defined to be (0) (see [9] and [3]).

Theorem 3.8. Let M be a finitely generated comultiplication R-module. If N is
a strongly classical 2-absorbing second submodule of M, then sec(N) is a strongly
2-absorbing second submodule of M.

Proof. Let N be a strongly classical 2-absorbing second submodule of M. By
Proposition[3.7 (a), Anng(N) is a 2-absorbing ideal of R. Thus by [7, Theorem 2.1],

Anng(N) is a 2-absorbing ideal of R. By [4, Theorem 2.12], Anng(sec(N)) =
VAnng(N). Therefore, Anng(sec(N)) is a 2-absorbing ideal of R. Now the result
follows from [B, Theorem 3.10]. O

The following examples show that the two concepts of classical 2-absorbing sub-
modules and strongly classical 2-absorbing second submodules are different in gen-
eral.

Example 3.9. The submodule 27 of the Z-module Z is a classical 2-absorbing
submodule which is not a strongly classical 2-absorbing second module.
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Example 3.10. The submodule (1/p + Z) of the Z-module Z,~ is a a strongly
classical 2-absorbing second module which is not a classical 2-absorbing submodule
of Z,oc .

A commutative ring R is said to be a u-ring provided R has the property that an
ideal contained in a finite union of ideals must be contained in one of those ideals;
and a um-ring is a ring R with the property that an R-module which is equal to a
finite union of submodules must be equal to one of them [16].

In the following proposition, we investigate the relationships between strongly
classical 2-absorbing second submodules and classical 2-absorbing submodules.

Proposition 3.11. Let M be a non-zero R-module. Then we have the following.

(a) If M is a finitely generated strongly classical 2-absorbing second R-module,
then the zero submodule of M is a classical 2-absorbing submodule.

(b) If M is a multiplication strongly classical 2-absorbing second R-module,
then the zero submodule of M is a classical 2-absorbing submodule.

(¢) Let R be a um-ring. If M is a Artinian R-module and the zero submodule
of M is a classical 2-absorbing submodule, then M is a strongly classical
2-absorbing second R-module.

(d) Let R be a um-ring. If M is a comultiplication R-module and the zero
submodule of M is a classical 2-absorbing submodule, then M is a strongly
classical 2-absorbing second R-module.

Proof. (a) Let a,b,c € R, m € M, and abem = 0. By Theorem [3.4] we can assume
that abcM = acM. Since M is finitely generated, by using [13, Theorem 76],
Anng(abM) + Re = R. Tt follows that (0 :p; abc) = (0 :ps ab). This implies that
abm = 0, as needed.

(b) Let a,b,c € R, m € M, and abem = 0. Then by Theorem we can assume
that abcM = acM. Thus

0 = abe((0 :pr abe) :g M)M = (((0 :asr abe) :r M)M)ab.

Since M is a multiplication module, ((0 :pr abc) :g M)M = (0 :pr abc). Therefore,
(0 :pr abc)ab = 0. Tt follows that (0 :pr abe) C (0 :pr ab). Thus (0 :p7 abe) = (0 :py
ab) because the reverse inclusion is clear. Hence abm = 0, as required.

(c) Let a,b,c € R. Then by [14, Theorem 4], we can assume that (0 :p; abc) =
(0 :ar ab). Hence (0 :pr/(0:pa0) ¢) = 0. Since M is Artinian, it follows that
cM + (0 :ps ab) = M. Therefore, abcM = abM. Thus by Theorem [3.4] (¢) = (a),
M is a classical 2-absorbing second R-module.

(d) Let a,b,c € R. Then by [14, Theorem 4], we can assume that (0 :as abc) =
(0 :pr ab). Since M is a comultiplication R-module, this implies that

M = ((0:p1 abe) :ar Anng(abeM) = ((0 :pr ab) :pr Anng(abeM)) = (abeM :py ab).

It follows that abM C abcM. Thus abM = abcM because the reverse implication
is clear and this completed the proof. (I
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Proposition 3.12. Let M be an R-module and {K;};c; be a chain of strongly
classical 2-absorbing second submodules of M. Then ), ; K; is a strongly classical
2-absorbing second submodule of M.

Proof. Use the technique of Proposition [2.11 O

Definition 3.13. We say that a strongly classical 2-absorbing second submodule
N of an R-module M is a maximal strongly classical 2-absorbing second submodule
of a submodule K of M, if N C K and there does not exist a strongly classical
2-absorbing second submodule T of M such that N C T C K.

Lemma 3.14. Let M be an R-module. Then every strongly classical 2-absorbing
second submodule of M is contained in a maximal strongly classical 2-absorbing
second submodule of M.

Proof. This is proved easily by using Zorn’s Lemma and Proposition [3.12 (]

Theorem 3.15. Let M be an Artinian R-module. Then every non-zero submodule
of M has only a finite number of mazimal strongly classical 2-absorbing second
submodules.

Proof. Use the technique of Theorem any apply Lemma O

Theorem 3.16. Let f : M — M be a monomorphism of R-modules. Then we
have the following.
(a) If N is a strongly classical 2-absorbing second submodule of M, then f(N)
is a strongly classical 2-absorbing second submodule of M.
(b) If N is a strongly classical 2-absorbing second submodule of f(M), then
ffl(]\?) 1s a strongly classical 2-absorbing second submodule of M.

Proof. (a) Since N # 0 and f is a monomorphism, we have f(NN) # 0. Let a,b,c €
R. Then by Theorem (a) = (c), we can assume that abcN = abN. Thus

abef(N) = f(abeN) = f(abN) = abf(N).

Hence f(N) is a strongly classical 2-absorbing second submodule of M by Theorem
(¢) = (a).

(b) If f~Y(N) = 0, then f(M)NN = ff~X(N) = f(0) = 0. Thus N = 0, a
contradiction. Therefore, f’l(]\’f) # 0. Now let a,b,c € R, K be a submodule of
M, and abef1(N) C K. Then

abeN = abe(f(M)NN) = abef f~H(N) C f(K).

Thus as N is a strongly classical 2-absorbing second submodule, abN C f(K)
or beN C f(K) or acN C f(K). Therefore, abf~*(N) C f~1f(K) =
bef~Y(N) C f~Lf(K) =K or acf~*(N) C f~1f(K) = K, as desired. O
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Let R; be a commutative ring with identity and M; be an R;-module for ¢ = 1, 2.
Let R = Ry X Ry. Then M = M, x M is an R-module and each submodule of M
is in the form of N = N; x Ny for some submodules N; of M; and Ny of M.

Theorem 3.17. Let R = Ry X Ry be a decomposable ring and let M = My x My be
an R-module, where My is an Ry-module and My is an Ro-module. Suppose that
N = N X Ny is a non-zero submodule of M. Then the following conditions are
equivalent:

(a) N is a strongly classical 2-absorbing second submodule of M ;

(b) Either Ny =0 and N3 is a strongly classical 2-absorbing second submodule
of Ms or No = 0 and N is a strongly classical 2-absorbing second submodule
of My or Ny, Ns are weakly second submodules of My, Ms, respectively.

Proof. (a) = (b). Suppose that N is a strongly classical 2-absorbing second sub-
module of M such that Ny = 0. From our hypothesis, N is non-zero, so N1 # 0. Set
M = M; x0. One can see that N = N1 x0isa strongly classical 2-absorbing second
submodule of M. Also observe that M =2 M and N = N;. Thus N; is a strongly
classical 2-absorbing second submodule of M;. Suppose that N; # 0 and Ny # 0.
We show that V7 is a weakly second submodule of M;. Since Ny # 0, there exists
a completely irreducible submodule Loy of Ms such that No & Lo. Let abN; C K
for some a,b € R; and submodule K of M;. Thus (a,1)(b,1)(1,0)(Ny x N3) =
CLle x 0 - K x L2. So either (a,l)(b,l)(N1 X NQ) = CLle X N2 - K x LQ or
(a, 1)(1,0)(N1 XNQ) = aN1 x0 - KXLQ or (b, 1)(1,0)(N1 XNQ) = le x0 - KXLQ.
If abNy x Ny C K X Lo, then Ny C Lo, a contradiction. Hence either aN; C K or
bN; C K which shows that Ny is a weakly second submodule of M;. Similarly, we
can show that N is a weakly second submodule of Ms.

(b) = (a). Suppose that N = N; x 0, where Ny is a strongly classical 2-
absorbing (resp. weakly) second submodule of M;. Then it is clear that N is a
strongly classical 2-absorbing (resp. weakly) second submodule of M. Now, assume
that N = N; X Ny, where N; and N> are weakly second submodules of M; and
My, respectively. Hence (N7 x 0) 4+ (0 x N3) = Ny x Ny = N is a strongly classical
2-absorbing second submodule of M, by Proposition (b). O

Lemma 3.18. Let R = R; X Ry X --- X R, be a decomposable ring and M =
My x My - -+ x M,, be an R-module where for every 1 < ¢ < n, M; is an R;-module,
respectively. A non-zero submodule N of M is a weakly second submodule of M if
and only if N = x_; N; such that for some k € {1,2,...,n}, Nj is a weakly second
submodule of My, and N; = 0 for every i € {1,2,...,n} \ {k}.

Proof. (=) Let N be a weakly second submodule of M. We know N = x| N;
where for every 1 < i < n, N, is a submodule of M;, respectively. Assume that
N, is a non-zero submodule of M, and N, is a non-zero submodule of M for some
1 <r < s<mn. Since N is a weakly second submodule of M,

(07 70a1Rr707"' ,0)(0, 7071R5707"' 70)N:(07 7071Rr707"' 70)N
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or
(Oa 70a1RTa07"' ,0)(07 a0a1R3707"' aO)N:(07 7071R5a07"' aO)N

Thus N, = 0 or Ny = 0. This contradiction shows that exactly one of the IV;’s is
non-zero, say Ni. Now, we show that Ny is a weakly second submodule of Mj. Let
a,b € Rg. Since N is a weakly second submodule of M,

(Oa ,O,G/,O,"' 70)(07 a07b707 7O)N:(Oa 7Oaa707"' aO)N

or
(Oa 70,&,0,"' 70)(07 707b70a 7O)N:(O’ 70ab507 ’O)N

Thus abN,, = alNj, or abN;,, = bN;, as needed.
(<) This is clear. O

Theorem 3.19. Let R=R; X Ro X -+ X R, (2 <n < o0) be a decomposable ring
and M = My x My --- x M, be an R-module, where for every 1 < i < n, M; is
an R;-module, respectively. Then for a non-zero submodule N of M the following
conditions are equivalent:

(a) N is a strongly classical 2-absorbing second submodule of M ;

(b) Either N = x}_;N; such that for some k € {1,2,...,n}, Ny is a strongly
classical 2-absorbing second submodule of My, and N; = 0 for every i €
{1,2,...,n}\{k} or N = xI_| N; such that for some k,m € {1,2,....n}, Nj
is a weakly second submodule of My, N,, is a weakly second submodule of
M, and N; =0 for every i € {1,2,...,n} \ {k,m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem [3.17 Now
suppose that the result is valid when K = M; x --- x M, for each t < n. We show
that the result holds when M = K x M,,. By Theorem[3.17] N is a strongly classical
2-absorbing second submodule of M if and only if either N = L x 0 for some strongly
classical 2-absorbing second submodule L of K or N = 0 x L, for some strongly
classical 2-absorbing second submodule L,, of M, or N = L x L,, for some weakly
second submodule L of K and some weakly second submodule L,, of M,,. Note that
by Lemma [3:18 a non-zero submodule L of K is a weakly second submodule of K
if and only if L = x?;llNi such that for some k € {1,2,...,n — 1}, Ni is a weakly
second submodule of M}, and N; = 0 for every ¢ € {1,2,...,n — 1} \ {k}. Hence the
claim is proved. [

Example 3.20. Let R be a Noetherian ring and let £ = @,,cnranr)E(R/m).
Then for each 2-absorbing ideal P of R, (0 :g P) is a strongly classical 2-absorbing
second submodule of E.

Proof. By using [I7, p. 147], Homg(R/P,E) # 0. Now since (0 :g P)
Homg(R/P,E), (0 :g P) is a strongly 2-absorbing second submodule of FE by
[5, Theorem 3.27]. Now the result follows from Example O



CLASSICAL AND STRONGLY CLASSICAL 2-ABSORBING SECOND SUBMODULES 135

Theorem 3.21. Let R be a um-ring and M be an R-module. If E is an injective R-
module and N is a classical 2-absorbing submodule of M such that Homr(M /N, E) #
0, then Homp(M /N, E) is a strongly classical 2-absorbing second R-module.

Proof. Let a,b,c € R. Since N is a classical 2-absorbing submodule of M, we
can assume that (N :p; abe) = (N :p ab) by [14, Theorem 4]. Since E is an
injective R-module, by replacing M with M /N in [I, Theorem 3.13 (a)], we have
Homp(M/(N :p 1), E) =rHomgr(M/N, E) for each r € R. Therefore,

abcHomp(M/N,E) = Homr(M/(N :p abe), E) =
Homp(M/(N :p ab), E) = abHomg(M/N, E),
as needed g

Theorem 3.22. Let M be a strongly classical 2-absorbing second R-module and
F be a right exact linear covariant functor over the category of R-modules. Then
F(M) is a strongly classical 2-absorbing second R-module if F(M) # 0.

Proof. This follows from [I, Lemma 3.14] and Theorem (a) = (c). O

Corollary 3.23. Let M be an R-module, S be a multiplicative subset of R and
N be a strongly classical 2-absorbing second submodule of M. Then S™!N is a
strongly classical 2-absorbing second submodule of S™'M if STIN # 0.

Proof. This follows from Theorem [3.22 O
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