

The Riesz Core of a Sequence

Celal ÇAKAN^{1,♠}, Abdullah M. ALOTAIBI²

¹İnönü University, Faculty of Education, 44280, Malatya, Turkey ²School of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received: 03/11/2010 Revised: 05/11/2010 Accepted: 08/11/2010

ABSTRACT

The Riesz sequence space ℓ_c^q including the space c has recently been defined in [14] and its some properties have been investigated. In the present paper, we introduce a new type core, K_q -core, of a complex valued sequence and also determine the required conditions for a matrix B for which K_q -core $(Bx) \subseteq K$ -core (x), K_q -core $(Bx) \subseteq St_A$ -core (x) and K_q -core $(Bx) \subseteq K_q$ -core (x) hold for all $x \in \ell_\infty$.

Keywords: Matrix transformations, core of a sequence, statistical convergence

1. INTRODUCTION

Let E be a subset of $N=\{0,1,2,\ldots\}$. Natural density δ of E is defined by

$$\delta(E) = \lim_{n} \frac{1}{n} |\{k \le n: k \in E\}|,$$

where the vertical bars indicate the number of elements in the enclosed set. A sequence $x = (x_k)$ is said to be statistically convergent to the number ℓ if for every \mathcal{E} , δ {k: $|x_k - \ell| \ge \mathcal{E}$ } = 0, [9]. By st and st_0 , we denote the sets of statistically convergent and statistically null sequences.

For a given nonnegative regular matrix $A=(a_{nk})$, the number $\delta_{A}(F)$ is defined by

$$\delta_A(F) = \lim_n \sum_{k \in F} a_{nk}$$

and it is said to be the *A*-density of $F \subseteq N$, [10]. A sequence $x=(x_k)$ is said to be *A*-statistically convergent to a number *s* if for every $\mathcal{E} > 0$ the set δ {k: $|x_k - s| \ge \mathcal{E}$ } has *A*-density zero, [4].

In this case, we write st_A - $lim\ x = s$. By st(A) and $st(A)_0$, we respectively denote the sets of all A-statistically convergent and A-statistically null sequences.

Let $x=(x_k)$ be a sequence in C, the set of all complex numbers, and R_k be the least convex closed region of complex plane containing x_k , x_{k+1} , x_{k+2} ,.... The Knopp Core (or K-core) of x is defined by the intersection of all R_k (k=1,2,...), [3, p.137]. In [15], it is shown that

$$K\text{-}core(x) = \bigcap_{z \in C} B_x(z)$$

for any bounded sequence $x=(x_k)$, where $B_x(z) = \{w \in C: |w-z| \le \limsup_k |x_k-z|\}$.

In [8], the notion of the statistical core of a complex valued sequence introduced by Fridy and Orhan [11] has been extended to the A-statistical core (or st_A -core) and it is shown for a A-statistically bounded sequence x that

$$st_A$$
-core(x) = $\bigcap_{z \in C} C_x(z)$,

where $C_x(z) = \{ w \in C: |w-z| \le \operatorname{st}_A - \lim \sup_k |x_k - z| \}.$

The inequalities related to the core of a sequence have been studied by many authors. For instance, see [1, 5, 6,

^{*}Corresponding author, e-mail: ccakan@inonu.edu.tr

7, 8, 11, 15] and the others. The matrix $R=(r_{nk})$ defined by

$$r_{nk} = \begin{cases} q_k / Q_n, k \le n \\ 0, k > n \end{cases}$$

is called Riesz matrix and denoted by (R, q_k) or shortly R, where (q_k) is a sequence of non-negative numbers which are not all zero and $Q_n = q_1 + q_2 + \ldots + q_n$, $n \in \mathbb{N}$; $q_1 > 0$. It is well-known that R is regular if and only if $\lim_n Q_n = \infty$, [14].

Using the convergence domain of the Riesz matrix, the new sequence spaces r_c^q and r_0^q respectively including the spaces c and c_0 have been constructed by Malkowsky & Rakòević in [13] and Altay & Başar in [2] and their some properties have been investigated, where c and c_0 are the spaces of all convergent and null sequences, respectively.

Let B be an infinite matrix of complex entries b_{nk} and $x = (x_k)$ be a sequence of complex numbers. Then $Bx = \{(Bx)_n\}$ is called the B transform of x, if $(Bx)_n = \sum_k b_{nk} x_k$ converges for each n. For two sequence spaces X and Y we say that $B = (b_{nk}) \in (X, Y)$ if $Bx \in Y$ for each $x = (x_k) \in X$. If X and Y are equipped with the limits X-lim and Y-lim, respectively, $B = (b_{nk}) \in (X, Y)$ and Y-lim, $(Bx)_n = X$ -limk xk for all $x = (x_k) \in X$, then we say B regularly transforms X into Y and write $B = (b_{nk}) \in (X, Y)_{reg}$.

In the present paper, we firstly introduce a new type core, $K_q\text{-}core$, of a complex valued sequence and also determine the necessary and sufficient conditions on a matrix B for which $K_q\text{-}core$ $(Bx) \subseteq K\text{-}core$ (x), $K_q\text{-}core$ $(Bx) \subseteq st_A\text{-}core$ (x) and $K_q\text{-}core$ $(Bx) \subseteq K_q\text{-}core$ (x) for all $x \in \ell_\infty$, where ℓ_∞ is the space of all bounded complex sequences. To do these, we need to characterize the classes $(c, r_c^q)_{\text{reg}}$, $(r_c^q, r_c^q)_{\text{reg}}$ and $(st(A) \cap \ell_\infty, r_c^q)_{\text{reg}}$.

2. LEMMAS

In this section, we prove some lemmas which will be useful to our main results. For brevity, in what follows we write \tilde{b}_{nk} in place of

$$\frac{1}{O}\sum_{k=0}^{n}q_{k}b_{nk}; (n,k \in N).$$

Lemma 2.1. $B \in (\ell_{\infty}, r_c^q)$ if and only if

$$\|\mathbf{B}\|_{\mathbf{r}} = \sup_{n} \sum_{k} \left| \tilde{b}_{nk} \right| < \infty, \tag{2.1}$$

$$\lim_{n \to \infty} \tilde{b}_{nk} = \alpha_k \quad \text{for each } k, \tag{2.2}$$

$$\lim_{n} \sum_{k} |\tilde{b}_{nk} - \alpha_k| = 0. \tag{2.3}$$

Proof. Let $x \in \ell_{\infty}$ and consider the equality

$$\frac{1}{Q_n} \sum_{j=0}^{n} q_k \sum_{k=0}^{m} b_{nk} x_k = \sum_{k=0}^{m} \frac{1}{Q_n} \sum_{j=0}^{n} q_k b_{jk} x_k; (m, n) \in N$$

which yields as $m \to \infty$ that

$$\frac{1}{Q_n} \sum_{j=0}^n q_k (Bx)_j = (Dx)_n; (n \in N),$$
 (2.4)

where $D = (d_{nk})$ defined by

$$d_{nk} = \begin{cases} \frac{1}{Q_n} \sum_{j=0}^{n} q_k b_{jk}, & 0 \le k \le n \\ 0, & k > n. \end{cases}$$

Therefore, one can easily see that $B \in (\ell_{\infty}, r_c^q)$ if and only if $D \in (\ell_{\infty}, c)$ (see [13]) and this completes the proof.

Lemma 2.2. $B \in (c, r_c^q)_{reg}$ if and only if the conditions (2.1) and (2.2) of the Lemma 2.1 hold with $\alpha_k = 0$ for all $k \in N$ and

$$\lim_{n} \sum_{k} \tilde{b}_{nk} = 1. \tag{2.5}$$

Since the proof is easy we omit it.

Lemma 2.3. $B \in (\operatorname{st}(A) \cap \ell_{\infty}, r_c^q)_{reg}$ if and only if $B \in (c, r_c^q)_{reg}$ and

$$\lim_{n} \sum_{k \in E} |\tilde{b}_{nk}| = 0 \tag{2.6}$$

for every $E \subset N$ with $\delta_A(E) = 0$.

Proof (Necessity). Because of $c \subset \operatorname{st}(A) \cap \ell_{\infty}$, $B \in (c, r_c{}^g)_{reg}$. Now, for any $x \in \ell_{\infty}$ and a set $E \subset N$ with $\delta_A(E) = 0$, let us define the sequence $z = (z_k)$ by

$$z_k = \begin{cases} x_k, k \in E \\ 0, k \notin E. \end{cases}$$

Then, since $z \in st(A)_0$, $Az \in r_0^q$, where r_0^q is the space of sequences consisting the Riesz transforms of them in c_0 . Also, since

$$\sum_{k} \tilde{b}_{nk} z_{k} = \sum_{k \in F} \tilde{b}_{nk} x_{k} ,$$

the matrix $D=(d_{nk})$ defined by $d_{nk}=\tilde{b}_{nk}$ $(k \in E)$, =0 $(k \notin E)$ is in the class (ℓ_{∞}, r_c^q) . Hence, the necessity of (2.6) follows from Lemma 2.1.

(Sufficiency). Let $x \in st(A) \cap \ell_{\infty}$ with st_A - $lim \ x = \ell$. Then, the set E defined by $E = \{k: |x_k - \ell| \ge \epsilon\}$ has A-density zero and $: |x_k - \ell| \le \epsilon$ if $k \notin E$. Now, we can write

$$\sum_{k} \tilde{b}_{nk} x_{k} = \sum_{k} \tilde{b}_{nk} (x_{k} - l) + k \sum_{k} \tilde{b}_{nk} . \qquad (2.7)$$

Since

$$\left|\sum_{k} \tilde{b}_{nk}(x_{k}-l)\right| \leq \|x\| \sum_{k\in E} \tilde{b}_{nk} + \varepsilon \|B\|,$$

letting $n \rightarrow \infty$ in (2.7) with (2.6), we have

$$\lim_{n} \sum_{k} \tilde{b}_{nk} x_{k} = \ell.$$

This implies that $B \in (\operatorname{st}(A) \cap \ell_{\infty}, r_c^q)_{reg}$ and the proof is completed. When B is chosen as the Cesáro matrix in Lemma 2.3, we have the following corollary.

Corollary 2.4. $B \in (\operatorname{st} \cap \ell_{\infty}, r_c^q)_{reg}$ if and only if $B \in (c, r_c^q)_{reg}$ and

$$\lim_{n} \sum_{k \in E} |\tilde{b}_{nk}| = 0$$

for every $E \subset N$ with $\delta(E) = 0$.

Lemma 2.5. $B \in (r_c^q, r_c^q)_{reg}$ if and only if $(b_{nk}) \in cs$ (2.8) holds and $C \in (c, r_c^q)$, where $C = (c_{nk})$ is defined by

$$c_{nk} = \Delta \left(\frac{b_{nk}}{q_k}\right) Q_k$$

for all $n,k \in N$ and cs is the space of all convergent series.

Proof. (Sufficiency). Take $x \in r_c^q$. Then, the sequence $\{b_{nk}\}_{k} \in \mathbb{N} \in [r_c^q]^{\beta}$ for all $n \in \mathbb{N}$ and thisimplies the existence of the *B*-transform of x.

Let us now consider the following equality derived by using the relation,

$$y_k = \sum_{i=0}^k \frac{q_i}{Q_k} x_i$$

from the m^{th} partial sum of the series $\sum_k b_{nk} x_k$,

$$\sum_{k=0}^{m} b_{nk} x_{k} = \sum_{k=0}^{m-1} \Delta \left(\frac{b_{nk}}{q_{k}} \right) Q_{k} y_{k} + \frac{b_{nm}}{q_{m}} Q_{m} y_{m} (m, n)$$

Then, using (2.1), we obtain from (2.9) as $m \to \infty$ that

$$\sum_{k} b_{nk} x_{k} = \sum_{k} \Delta \left(\frac{b_{nk}}{q_{k}} \right) Q_{k} y_{k} , \qquad (2.10)$$

i.e. Bx = Cy. Since $x \in r_c^q$ if and only if $y \in c$, (2.2) implies that $B \in (r_c^q, r_c^q)$.

(**Necessity**). Conversely, let $B \in (r_c^q, r_c^q)$. Then, since $\{b_{nk}\}_k \in {}_N \in [r_c^q]^\beta$ for all $n \in N$, the necessity of (2.1) is immediate. On the other hand, (2.2) follows from (2.4).

3. K_a -CORE

Let us write

$$t_n^{q}(x) = A^r(x) = \frac{1}{Q_n} \sum_{k=0}^n q_k x_k$$
.

Then, we can define K_q -core of a complex sequence as follows.

Definition 3.1. Let H_n be the least closed convex hull containing t_n^q ,

 t_{n+1}^{q} , t_{n+2}^{q} , Then, K_q -core of x is the intersection of all H_n , i.e.,

$$K_q$$
-core(x) = $\bigcap_{n=1}^{\infty} H_n$.

Note that, actually, we define K_q -core of x by the K-core of the sequence (t_n^q) . Hence, we can construct the following theorem which is an analogue of K-core, (see [16]).

Theorem 3.2. For any $z \in C$, let

$$G_x(z) = \{ \mathbf{w} \in C \colon |w - z| \le \limsup |t_n^q - z| \}.$$

Then, for any $x \in \ell_{\infty}$,

$$K_q$$
-core = $\bigcap_{z \in C} G_x(z)$.

Note that in the case q_n =1 for all n, the Riesz core is reduced to the Cesáro core.

Now, we may give some inclusion theorems.

Theorem 3.3. Let $B \in (c, r_c^q)_{reg}$. Then, K_q -core $(Bx) \subseteq K$ -core (x) for all $x \in \ell_\infty$ if and only if

$$\lim_{n} \sum_{k} |\tilde{b}_{nk}| = 1. \tag{3.1}$$

Proof (Necessity). Let us define a sequence $x = x^{(k)} = \{x^{(k)}_n\}$ by

$$x^{(k)}_{n} = sgn \ \tilde{b}_{nk}$$

for all $n \in N$. Then, since *limsup* $x^{(k)} = 1$ for all $n \in N$, $K\text{-}core(x) \subseteq B_1(0)$. Therefore, by hypothesis,

$$\left\{ w \in C : |w| \le \limsup_{n} \sum_{k} |\tilde{b}_{nk}| \right\} \subseteq B_{l}(0)$$

which gives the necessity of (3.1).

(Sufficiency). Let $w \in K_q$ -core(Bx). Then, for any given $z \in C$, we can write

$$|w-z| \le \limsup_{n} |t_n^q(Bx)-z|$$
(3.2)

$$= \limsup_{n} |z - \sum_{k} \tilde{b}_{nk} x_{k}|$$

$$\leq \limsup_{n} |\sum_{k} \tilde{b}_{nk}(z-x_{k})| + \limsup_{n} |z||1-$$

$$\sum_{\scriptscriptstyle k} \! ilde{b}_{\scriptscriptstyle nk}$$
 |

$$= \limsup_{n} |\sum_{k} \tilde{b}_{nk}(z - x_{k})|.$$

Now, let $limsup_k | x_k-z| = 1$. Then, for any $\varepsilon > 0$, $| x_k-z| \le \ell + \varepsilon$ whenever $k \ge k_0$. Hence, one can write that

$$\begin{split} & \sum_{k} \tilde{b}_{nk} (z - x_{k}) = \\ & | \sum_{k < k_{0}} \tilde{b}_{nk} (z - x_{k}) + \sum_{k \ge k_{0}} \tilde{b}_{nk} (z - x_{k}) | \\ & \le \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |\tilde{b}_{nk}| + (\ell + \varepsilon) \sum_{k \ge k_{0}} |\tilde{b}_{nk}| \\ & \le \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |\tilde{b}_{nk}| + (\ell + \varepsilon) \sum_{k} |\tilde{b}_{nk}|. \end{split}$$

$$(3.3)$$

Therefore, applying $limsup_n$ under the light of the hypothesis and combining (3.2) with (3.3), we have

$$|w-z| \leq \limsup_{n} |\sum_{k} \tilde{b}_{nk}(z-x_{k})| \leq \ell + \varepsilon$$

which means that $w \in K$ -core(x). This completes the proof.

Theorem 3.4. Let $B \in (\operatorname{st}(A) \cap \ell_{\infty}, r_c^q)_{\text{reg}}$. Then, K_q core $(Bx) \subseteq \operatorname{st}_A$ -core (x) for all $x \in \ell_{\infty}$ if and only if (3.1) holds.

Proof.(Necessity). Since st_a -core $(x) \subseteq K$ -core (x) for any sequence x [9], the necessity of the condition (3.1) follows from Theorem 3.3.

(Sufficiency). Take $w \in K_q$ -core (Bx). Then, we can write again (3.2). Now; if st_A -limsup $|x_k-z|=s$, then for any $\varepsilon > 0$, the set E defined by $E = \{k: |x_k-z| > s+\varepsilon \}$ has A-density zero, (see [9]). Now, we can write

$$\begin{split} &|\sum_{k} \tilde{b}_{nk} \left(z - x_{k}\right)| = |\sum_{k \in E} \tilde{b}_{nk} \left(z - x_{k}\right)| + \\ &\sum_{k \notin E} \tilde{b}_{nk} \left(z - x_{k}\right)| \\ &\leq \sup_{k} |z - x_{k}| \sum_{k \in E} |\tilde{b}_{nk}| + (s + \varepsilon) \sum_{k \notin E} |\tilde{b}_{nk}| \\ &\leq \sup_{k} |z - x_{k}| \sum_{k \in E} |\tilde{b}_{nk}| + (s + \varepsilon) \sum_{k} |\tilde{b}_{nk}|. \end{split}$$

Thus, applying the operator $limsup_n$ and using the condition (3.1) with (2.6), we get that

$$\limsup_{n} |\sum_{k} \tilde{b}_{nk} (z - x_{k})| \le s + \varepsilon.$$
 (3.4)

Finally, combining (3.2) with (3.4), we have $|w-z| \le st_A$ -limsup_k $|x_k-z|$ which means that $w \in st_A$ -core(x) and the proof is completed. As a consequence of Theorem 3.4, we have

Theorem 3.5. Let $B \in (\operatorname{st} \cap \ell_{\infty}, r_{\operatorname{c}}^{\operatorname{q}})_{\operatorname{reg}}$. Then, K_q -core $(Bx) \subseteq \operatorname{st-core}(x)$ for all $x \in \ell_{\infty}$ if and only if (3.1) holds.

Theorem 3.5. Let $B \in (r_c^q, r_c^q)_{reg}$. Then, K_q -core $(Bx) \subseteq K_q$ -core (x) for all $x \in \ell_\infty$ if and only if (3.1) holds.

Proof. (Necessity). Since K_q -core $(x) \subseteq K$ -core (x) for all $x \in \ell_{\infty}$, the necessity of the condition (3.1) follows from Theorem 3.3.

(Sufficiency). Let $w \in Kq$ -core (Bx). Then, we can write (3.2). Now; if $\limsup_k |t_k^q(x)-z| = v$, then for any $\varepsilon > 0$, $|t_k^q(x)-z| \le v + \varepsilon$ whenever $k \ge k_0$. Hence, we can write

$$\sum_{k} \tilde{b}_{nk}(x_{k} - z) = |\sum_{k < k_{0}} c_{nk}(t_{k}^{q}(x) - z) + \sum_{k \ge k_{0}} c_{nk}(t_{k}^{q}(x) - z) + \sum_{k \ge k_{0}} c_{nk}(t_{k}^{q}(x) - z) | \qquad (3.5)$$

$$\leq \sup_{k} |t_{k}^{q}(x) - z| \sum_{k < k_{0}} |c_{nk}| + (v + \varepsilon) \sum_{k \ge k_{0}} |c_{nk}| + (v + \varepsilon) \sum_{k \ge k_{0}} |c_{nk}|,$$

where c_{nk} is defined as in Lemma 2.5.

Therefore, considering the operator $limsup_n$ in (3.5) and using the hypothesis, we get that $|w-z| \le v + \varepsilon$. This means that $w \in K_q$ -core (x) and the proof is completed.

ACKNOWLEDGEMENT

We are grateful to the referees for their valuable suggestions which are improved the paper considerably.

REFERENCES

- Abdullah M. Alotaibi, "Cesáro statistical core of complex number sequences", *Inter. J. Math. Math.* Sci., Article ID 29869 (2007).
- [2] B. Altay, F. Başar, "Some paranormed Riesz sequence spaces of non-absolute type", *Southeast Asian Bull. Math.* 30(5): 591-608 (2006).
- [3] F. Başar, "A note on the triangle limitation methods", Firat Univ. Fen & Müh. Bil. Dergisi, 5(1): 113-117 (1993).
- [4] R. G. Cooke, "Infinite matrices and sequence spaces", *Macmillan*, New York (1950).
- [5] J. Connor, "On strong matrix summability with respect to a modulus and statistical convergence", *Canad. Math. Bull.* 32: 194-198 (1989).
- [6] C. Çakan, H. Çoşkun, "Some new inequalities related to the invariant means and uniformly bounded function sequences", *Applied Math. Lett.* 20(6): 605-609 (2007).
- [7] H. Çoşkun, C. Çakan, "A class of statistical and σ-conservative matrices", Czechoslovak Math. J. 55(3): 791-801 (2005).

- [8] H. Çoşkun, C. Çakan, Mursaleen, "On the statistical and σ –cores", *Studia Math.* 154(1):(2003).
- [9] K. Demirci, "A-statistical core of a sequence", *Demonstratio Math.*, 33: 43-51 (2000).
- [10] H. Fast, "Sur la convergence statisque", Colloq. Math., 2: 241-244 (1951).
- [11] A. R. Freedman, J. J. Sember, "Densities and summability", *Pasific J. Math.*, 95:293-305 (1981).
- [12] J. A. Fridy, C. Orhan, "Statistical core theorems", J. Math. Anal. Appl., 208: 520-527 (1997).
- [13] I. J. Maddox, "Elements of Functional Analysis", *Cambridge University Press*, Cambridge (1970).
- [14] E. Malkowsky, V. Rakoćević, "Measure of noncompactness of linear operators between spaces of sequences that are (\overline{N} , q) summable or bounded", *Czechoslovac Math. J.*, 51(126): 505-522 (2001).
- [15] G. M. Petersen, "Regular matrix transformations", McGraw-Hill, (1966).
- [16] A. A. Shcherbakov, "Kernels of sequences of complex numbers and their regular transformations", *Math. Notes*, 22: 948-953 (1977).