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ABSTRACT 

A semi-automatic algorithm for finite element analysis is presented to obtain the stress and strain distribution in 
shear wall-frame structures. In the study, a constant strain triangle with six degrees of freedom and mesh 
refinement - coarsening algorithms were used in Matlab® environment. Initially the proposed algorithm 
generates a coarse mesh automatically for the whole domain and the user refines this finite element mesh at 
required regions. These regions are mostly the regions of geometric discontinuities. Deformation, normal and 
shear stresses are presented for an illustrative example. Consistent displacement and stress results have been 
obtained from comparisons with widely used engineering software. 
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1. INTRODUCTION 

In the last two decades, shear walls became an 
important part of our mid and high rise residential 
buildings in Turkey. As part of an earthquake resistant 
building design, these walls are placed in building plans 
reducing lateral displacements under earthquake loads 
so shear-wall frame structures are obtained. Since the 
1960’s several approaches have been adopted to solve 
displacements and stress distribution of shear wall 
structures. Continuous medium approaches, and frame 
analogy models are the examples of these approaches 
[1-4]. In the past and today, numerical solution methods 
are the main effort area because of the accuracy of 
solution and the ease of usage in 2D and 3D analysis of 
shear walls [5-7].  
 
Shear walls with openings, coupled shear walls and 
combined shear wall frame structures can be modeled 
as thin plates where the loading is uniformly distributed 
over the thickness, in the plane of the plate. This 2D 
domain can be subdivided into a finite number of 
geometrical shapes. In the finite element method 
(FEM), these simple shaped elements such as triangles  

 
or quadrilaterals (in 2D) are called elements. The 
connection of these individual elements at nodes and 
along interelement boundaries covering the whole 
problem domain is called finite element mesh or grid. In  
the literature meshes can be grouped into two main 
categories such as structured and unstructured meshes. 
Structured meshes are constructed with geometrically 
similar triangular or quadrilateral elements. They are 
suitable especially for problems with simple geometry 
and boundary shapes (Figure 1-a). Although structured 
meshes can be constructed as simple-time saving 
routines, regarding complicated domains with complex 
boundaries, it is a problem to fit the boundary shape. To 
circumvent this difficulty, unstructured meshes are used 
to discretize the complicated domains with internal 
boundaries (Figure 1-b). While it is a time consuming 
procedure, unstructured meshes are also suitable for 
local mesh refinement and coarsening. The aim of this 
work is to get a good quality unstructured mesh which 
will have smaller elements at the geometric 
discontinuities and bigger elements at other regions for 
a shear wall frame geometry. 
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2. TRIANGULAR FINITE ELEMENTS 

2.1. Element Formulation 

The first advantage of using triangular elements is that 
almost any plane geometry may be discretized using 
triangles. These elements have six degrees of freedom, 
two translations at each node (Figure 2). Because of the 
three nodes, the element has linear shape functions that 
are an additional benefit because of simplified 
mathematics. However, these functions generate 
constant strain and stress throughout the element. To 
surmount this disadvantage, smaller elements must be 
employed where strain and stress vary rapidly.  
 

CST element has displacement functions and shape 
functions as follows, 

333211),( uNuNuNyxu ++= , 

332211),( vNvNvNyxv ++=    (1) 

( ) ( ) ( ) ( )[ ]yxxxyyyxyx
A

yxN
e

232323321 2
1, −+−−−=

 (2) 

( ) ( ) ( ) ( )[ ]yxxxyyyxyx
A

yxN
e

313131132 2
1, −+−−−=

 (3) 

( ) ( ) ( ) ( )[ ]yxxxyyyxyx
A

yxN
e

121212213 2
1, −+−−−=

 (4]) 

where 1u , 2u  and 3u  nodal displacements in x 
direction corresponding to nodes 1, 2 and 3 
respectively. 1v , 2v  and 3v  nodal displacements in y 

direction and 1N , 2N  and 3N  are linear shape 
functions. x and y are the coordinates of corresponding 
nodes and eA  is area of the element. In the finite 
element method, nodal displacements are obtained from 
the solution of the linear system of equations, that is 

fKu =     (5) 
where, K is stiffness matrix, u is nodal displacement 
vector, and f is nodal load vector. Stiffness matrix may 
be calculated as 
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and differential operator is, 
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and the elasticity matris is defined by 
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where E is modulus of elasticity and v is the Poisson’s 
ratio.  
 

2.2. Mesh Generation and Refinement 

Unstructured mesh generation procedure consists of 
some basic steps. These are the generations of boundary 
and interior nodes and connection of these nodes which 
has a specific name as triangulation for triangular finite 
elements. In this work, a random point generation 
scheme is used to form interior nodes that were 
explained by Fukuda and Suhura in detail [8]. This 
procedure uses subsquares in which only one node is 
generated randomly. Although, here, node generation is 
a random process, we can define some restriction on 
this generation. For example, we can say that the 
distance between any two nodes must not be less than a 
minimum value which can be taken as the width of a 
subsquare. In fact this random procedure is a time 
consuming procedure, but this is not too long for 
today’s desktop computers for initial node generation. 
Other algorithms can be used in large scale finite 
element problems. For example, instead of generating 
interior nodes by random trials, a rectangular grid could 
be used creating one node in each rectangle. The width 
and height of the rectangles are in the ratio of 2/√3 and 
they are placed in a zigzag manner and nodes are placed 
at the center of the rectangles. The ratio helps ensure 
equilateral triangles [9]. Another node generation 
scheme in which imaginary horizontal lines cut the 
domain in an even number of points could also be used. 
Interior nodes are generated on the horizontal line 
between the cuts according to a prescribed spacing 
parameter [10].  
 

For the triangulation step, a number of algorithms have 
been suggested by various authors. These techniques 
involve simple automatic triangulation methods [8,9], 
advancing front methods [10,11], domain 
decomposition methods [12,13], and coordinate 
transformation methods [14]. In the present work, 
triangular elements in the problem domain are obtained 
using a condition known as Delaunay or empty circle 
criterion [15-18]. According to this rule, in a 
circumcircle of a triangle no node must exist in the 
problem domain (Figure 3). The nodes in the problem 
domain are scanned from the first node to the last node 
selecting three candidate nodes which will obey the 
empty circle criterion. This criterion is very useful to 
eliminate intersection check of the interelement 
boundaries. 
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(a) (b) 
Figure 1. Structured (a) and unstructured mesh (b) 

 

 
Figure 2. Constant strain triangular finite element 
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(a) (b)  
Figure 3. A triangulation which obeys the empty circle criterion (a), triangulation which does not obey the criterion (b). 

                      
(a)                                     (b)                                       (c) 

Figure 4. First kind of  triangles (a), second kind of  triangles (b), and after refinement (c) 
 selected point for refinement. 
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Initially we could not know the necessary degree of 
smallness of finite elements to represent the stress 
distribution accurately. For that reason, a few numbers 
of initial nodes are used for triangulation giving an 
initial triangulation. Around geometrical discontinuities 
such as interior holes at shear walls and shear wall 
frame connection points, a local mesh refinement must 
be done by inserting new nodes and repeating the 
triangulation procedure. At this stage, a number of 
alternative algorithms could be employed to get a fine 
mesh where it is necessary. Those are, 

• One point mesh refinement 
• Line or polygon mesh refinement 
• Central point mesh refinement 
• and, Delaunay point mesh refinement 

 
In FEM, all generated nodes and elements have some 
special id denoted by numbers. When this number is 
known for a node, it is easy to search surrounding 
elements of this node. For the first algorithm mentioned 
above, once these elements are determined, they are 
grouped forming first kind of triangles which are 
affected by refining. Some second kinds of triangles 
exist, which are the neighboring triangles to the first 
kind. According to the one point local mesh refinement 
algorithm, four new triangles are generated in the first 
kind of triangles and two new triangles are generated in 
the second kind of triangles and old ones are deleted 
(Figure 4-a and b). Line and polygon local mesh 
refinement algorithms also use the same logic which 
differs from the first one in such a way that, selected 
nodes make a line or a closed polygon. In the third 
refinement algorithm, a point is added into a triangle, 
using the geometrical center of apex nodes. The last 
algorithm, named the Delaunay point mesh refinement, 
adds a node into the triangulation at the center of the 
circumcircle of a selected triangle.  
 
A mesh smoothing process was made to improve the 
quality of triangles after triangulation. In any branch of 
mechanics, the shape of triangles is an important factor 
for finite element meshes. Especially in solid mechanics 
triangles are regarded as good if they are nearly 
equiangular [19]. In computational fluid dynamics, 
problems concerning boundary layers and shocks, 
skinny and long triangles provide a better solution [20]. 
In order to obtain well-distributed good quality 
triangles, here, we used a Laplacian smoothing method 
which uses neighboring triangles for node repositioning 
(Figure 5). This is an iterative method in which a node 
is moved to the centroid of the nodes to which it is 
connected [21]. One or two iterations for moving the 
nodes are sufficient but iterations could be continued 
until each movement satisfies a convergence distance. 
The new coordinates defined as, 
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n represents the number of surrounding nodes and zero 
indices represent initial values. 
 

3. THE SHEAR WALL - FRAME PROBLEM 

A shear wall model with small window openings 
connected to a beam column system was considered to 
perform a FEM analysis using unstructured mesh 
generation with refinement. This shear wall frame 
structure was loaded as tip load but the loading was 
distributed to the nodes at the top of the frame. The 
necessary dimensions of geometry are given in Figure 
6-a. Boundary nodes were generated in a direct manner 
using the width of a column as a spacing parameter. A 
few initial nodes were obtained using the random 
procedure given in section 2 (Figure 6-b). Line mesh 
refinement algorithm was used to refine the mesh at the 
beams and columns. One point mesh refinement 
algorithm was used around sharp corners of window 
openings and beam shear-wall connections, in order to 
get the final mesh (Figure 7). The deformed shape and 
stress distributions obtained using the final mesh is 
given in Figure 8.  
 

4. CONCLUSIONS 

In order to get an accurate solution for stress 
distribution at beam to column and beam to shear wall 
connections, we developed a finite element program in 
MATLAB environment. Although the geometry of the 
problem is quite complex because of interior holes, the 
problem domain was discretized with an unstructured 
finite element with refinement.  
 

1) The element mesh was refined employing 
small triangles at the regions of geometric 
discontinuities. Smooth transitions from small 
to large triangles were obtained. Good quality 
equiangular elements were obtained using 
empty circle criterion and Laplace smoothing.  

2) A good agreement exists between ANSYS 
(PLANE2 elements) results and the work 
presented here in lateral displacements and 
shear stresses. Comparisons are given in 
Table 1 and Table 2 for lateral displacements 
and shear stresses respectively for a load 
value of P=100N. 

3) The algorithm reviewed here falls into the 
semi automatic approach category. There is 
an automatic mesh generation for arbitrary 
domain with inner holes. A manual decision is 
required for the refinement regions. 

4) In fact, the work presented here provided us 
with a springboard for further developments 
to get an adaptive finite element procedure for 
shear wall frame structures. 
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Table 1. Lateral displacement of shear wall structure with openings. 
 

Location xu , Lateral disp.  

(m) 

xu , Lateral disp. (m)  

ANSYS (PLANE2) 

Error 

(%) 

mN8  41073.2 −×  41083.2 −×  4.8 

mN 4  41003.1 −×  41006.1 −×  2.8 
 

mN8 : Nodes at 8 m height. 

mN 4 : Nodes at 4 m height. 

 

 

Table 2. Shear stress, xyσ , values at some points given in Figure 5. 

 

Location Stress (Pa) 
Stress (Pa) 

ANSYS (PLANE2) 
Error (%) 

P1 205.6 222.15 7.4 

P2 189.25 175.06 8,1 

P3 36.75 40.13 8.4 

P4 180.35 164.38 9.8 
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(a)                                          (b)                                         (c) 

Figure 5. Before smoothing (a), neighboring nodes (b), after Laplacian smoothing (c). 
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Figure 6. Example problem a) dimensions, loading and b) initial node generation. 

 

 
Figure 7. After mesh refinement. 



 G.U. J. Sci., 20(1):7-14 (2007)/, Bahadır ALYAVUZ 13 

 

  
(a) Deformed geometry (b) Normal stress in horizontal direction 

  
(c) Normal stress in vertical direction (d) Shear stress distribution 

 
Figure 8. Graphical results after analysis. 
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