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ABSTRACT 

Interdischarge interval (IDI) is one of the basic parameters to study in motor unit firing analysis. Discharge intervals of a 
single motor unit vary over time and they are unpredictable. IDI sequences can be considered to comprise two components, 
namely a long term signal, an IDI trend, and a white noise process, instantaneous firing variability (IFV). In this paper a 
stochastic model of the IDI signal has been developed in order to estimate the elements of an IDI sequence. IDI sequences of 
several patients have been recorded at a clinic and a Kalman filter has been constructed based on the developed stochastic 
model. The Kalman filter is utilized to decompose the recorded IDI sequences into the IDI trend and IFV components. The 
obtained decomposed signals, especially the IDI trend component, may provide valuable information on motor unit firing 
performance and help diagnose neurological diseases.  

 
 

Key Words: Motor unit firing, IDI sequences, state-space modeling, Kalman filter.  

 
1. INTRODUCTION 

Motor units are structural components of a muscle that 
are composed of a single motor neuron, its nerve fiber 
(i.e., axon) and all the muscle fibers to which the axon 
connects. Motor units are considered as the smallest 
functional units of the motor system. Muscular force is 
generated based on 2 mechanisms; i) order of 
recruitment and ii) modulation of motor unit firing 
frequency. Motor units are recruited according to the 
size principle. As shown in Figure 1, smaller motor 
units, i.e., fewer muscle fibers, (indicated by black 

color) have a small motor neuron and a low threshold for 
activation and these units are recruited first. As more 
force is demanded by an activity, progressively larger 
motor units (indicated by gray color) are recruited. 
Moreover, slow units operate at a lower frequency range 
than faster units. Within that range, the force generated 
by a motor unit increases with the increasing firing 
frequency. If an action potential reaches a muscle fiber 
before it has completely relaxed from a previous 
impulse, then force summation will occur. By this 
method, firing frequency affects muscular force 
generated by each motor unit. It is possible to extract 
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information about motor unit discharge pattern by 
measuring the firing frequency of a single motor unit. 
Motor unit discharge depends on firing characteristic of 
lower motor neurons controlled by higher motor centers. 
Changes in motor unit discharge behavior have been 
documented for both upper [1, 2] and lower motor 
neuron lesions [3, 4]. Motor unit firing rate may be 
quantified by analyzing the time interval between 
consecutive discharges of the same potential, which is 

called as the interdischarge interval (IDI). Statistical 
properties of IDI, including mean, standard deviation, 
skewness and distribution of the density function have 
been extensively studied [5, 6, 7]. Joint interval 
histogram, another statistical analysis technique, has also 
been employed to study the temporal relationship 
between the consecutive discharges of a single motor 
neuron[8,9]. 

 

Figure 1. Illustration of motor unit; motor neuron, axon and muscle fibers. 

 

Discrete-time linear state space models have been 
employed since 1960’s, mostly in the control and signal 
processing areas, and Kalman filtering [10] has emerged 
as the most commonly used tool.  The Kalman filter has 
been extensively employed in many areas of estimation 
the extensions and applications of discrete-time linear 
state space models can be found in almost all disciplines 
[10, 11, 12]. The Kalman filter has also been utilized in 
electrophysiological signal analysis and compared 
favorably with other approaches [13, 14].  

This paper presents the use of Kalman filtering in the 
analysis of the IDI sequence of a motor unit. The 
approach takes a recorded IDI sequence and decomposes 
this sequence into a long term signal, an IDI trend, and a 
white noise process, instantaneous firing variability. 
This decomposition is expected to provide insight into 
motor unit firing analysis and help diagnose 
neurological diseases.  Although there have been other 
approaches to analyze IDI sequences such as random 
walk and Poisson process models [15] and the 1/f model 
[16], the Kalman filter has never been considered for 
such an application. Kalman filter solves the problem of 
estimating the instantaneous states of a linear dynamic 

system perturbed by Gaussian white noise, using 
measurements that are linear functions of the system 
state but corrupted by additive white noise. As described 
in details in the following section, discharge intervals of 
a single motor unit constitutes a stochastic process 
which is best solved with the Kalman filter. Thus, in 
comparison to other approaches utilized for this specific 
application, the Kalman filter will provide a simple but 
more efficient solution to the problem in hand. 

The paper is organized as follows; the following section 
outlines the approach and the use of Kalman filtering in 
IDI sequence analysis where section 3 describes the 
experimental set up and how IDI sequences were 
obtained. Results are given in the following section and 
the paper concludes with some closing remarks. 

2. THE APPROACH 

When discharge intervals of a single motor unit are 
examined it will be revealed that these intervals vary 
over time and they are unpredictable (i.e., random), 
which could be classified as a stochastic process. 
Several stochastic process models such as the random 
walk model and the Poisson process model have been 
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proposed to characterize discharge patterns of single 
motor units [15]. Statistical models have also been 
employed for motor unit firing analysis, for instance, in 
[16] the 1/f process model was developed to study 
temporal discharge patterns of single motor units where 
fractional parameter of the model was shown to be an 
indicator for distinguishing between discharge behaviors 
of single motor units of normal subjects and patients 
with upper motor neuron lesions. The study also 
considered the IDI sequence as a summation of a long-
term signal, the trend, and a white noise sequence, the 
firing variability. The trend was assumed to fluctuate 
slowly around a mean that belongs to the IDI sequence 
where the instantaneous firing variability (IFV) reflected 
the correlation between adjacent IDIs. In [17] this fact 
was mathematically represented and IDI sequence was 
defined as 

n n nI T V= +                           (1) 

where nI
 
is the nth IDI data set, nT  is the nth data set of 

the IDI trend, and nV   is the nth data set of the IFV 

belonging to the nth IDI data set respectively. The use of 
Eq. (1) makes it possible to simulate the IDI trend by 
passing a white noise sequence through a moving 

average (MA) process and nV  as a stationary first-order 

autoregressive (AR) process. This fact was exploited in 
[17], where singular value decomposition method was 
employed to quantify joint interval histogram plots of 
simulated IDI sequences. Although this study provided a 
simulated environment for investigating possible 
influencing factors on IDI sequences, however, it fell 
short for providing any information about the real IDI 
data sequence decomposition. 

In this study, IDI sequences recorded in a controlled 
laboratory have been examined and the long term trend 
and the instantaneous firing variability components are 
estimated from the observed IDI sequence. It has to be 
noted that through experiments only IDI sequences 
could be observed, however, all the useful information is 
buried in the trend and IFV components and they have to 
be extracted for further processing and analysis. Thus, it 
is important to obtain these components for 
investigation. In this study, Kalman filtering1 has been 
used to estimate the trend and IFV components from the 
observed IDI sequences. Kalman filter is a recursive 
estimator for what is called the linear quadratic Gaussian 
problem, which is the problem of estimating the 
instantaneous state of a linear dynamic system perturbed 
by Gaussian white noise, by using measurements related 
to the state but corrupted by Gaussian white noise. Thus, 
as long as a correct model that belongs to the system of 
interest is constructed, Kalman filtering will be the 
answer to the linear estimation problem in hand. The 
assumption that an IDI sequence can be considered to 
comprise two parts, namely the trend and IFV, which 

                                                           
1 Kalman filter is in fact an estimator rather than a conventional 
filter, however it is employed to estimate parameters from a 
noisy data sequence, hence the name filter. 

provides the means for the system to be modeled 
appropriately using the Kalman filter.  

In [18] a simple linear model was proposed to describe 
the time course of stochastic time-series. This so-called 
“dynamic linear model” (DLM) is defined in terms of 
state space representation through  

)()()( 1 kekky += µ                                         (2) 

)()()1()( 2 kekkk ++−= βµµ               (3) 

)()1()( 3 kekk +−= ββ                                                (4) 

where, Eq. (2) is the output where it describes the 
measurement at time k, the added term e1(k) is the 
Gaussian measurement noise that corrupts the observed 
value of the state µ(k). The state µ(k) is assumed to 
evolve in time as described by Eq. (3) and its value at 
time k depends on its value observed at (k-1) plus the 
value of the second state at time k. The noise term e2(k) 
is the process noise component corresponding to that 
state, used to model unexpected changes in the state. Eq. 
(4) describes the evolution of the second state β(k) 
which depends on its previous value, e3(k) is the process 
noise component corresponding to the second state that 
is used to model the unpredicted changes in this state. 
Relating the IDI model to Eqs. (2) - (4), µ(k) represents 
the trend that fluctuates around a mean and is corrupted 
by noise where β(k) is the systematic variation that is 
added to the trend, i.e., the IFV. Thus, through this 
representation both the IDI trend and IFV can be 
estimated from an observed (recorded) real IDI sequence 
with an appropriate tool, Kalman filter. But first, it 
would be useful to put these equations in vector-matrix 
form in order to obtain the state-space model for an IDI 
sequence. Re-arranging Eqs. (2) - (4) would yield 
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where Eq. (5) is the state equation that defines the 
evolution of system states and Eq. (6) is the output 
equation that relates system states to the observations. In 
above equations, process noise (e2 and e3) and 
measurement noise (e1) sequences are assumed to be 
Gaussian and independent of each other. If we introduce 
general Kalman filter representation2 at this point, it will 
be easier to see the suitability of the Kalman filter 
approach to this specific problem. Lets consider a 
general discrete-time stochastic system represented by 
the state and measurement models given by  

1k k k k k k

k k k k

x x B u w

y H x v

+ = Φ + +

= +
 

             (7) 

             (8) 

                                                           
2 Please see the Appendix for the derivation of Kalman filter 
equations. 
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where, xk is an n×1 system vector, yk is an m×1 
observation vector, Φk is an n×n system matrix, uk is a 
p×1 vector of the input forcing function, Bk is an n×p 
matrix, Hk is an m×n matrix, wk an n×1 vector of zero 
mean white noise sequence and vk is an m×1 
measurement error vector assumed to be a zero mean 

white sequence uncorrelated with the kw  sequence. The 

matrices Φk, Bk, Hk, Qk, Rk are assumed known at time k. 
The covariance matrices wk and vk are defined by  

( )k k k klE w w Q δ′ =  

( )k k k klE v v R δ=  

( ) 0k kE w v =  

where δkl is the Kronecker delta function. Please note the 
similarity between the Eqs. 5-7 and 8, thus, applying the 
state-space representation given by the Eqs. 5 and 6 to 
the Kalman filtering would result in a decomposed IDI 
sequence and estimated values of IDI trend and IFV 
components. This is a rather simple but very effective 
approach and to the authors’ best knowledge it has not 
been employed for this purpose before.  

 

 

3. EXPERIMANTAL SETUP  

This section outlines the experimental setup and the 
recording of IDI sequences used in this study. 
Recordings were taken from 5 normal (healthy) subjects. 
Motor unit discharge patterns were recorded from the 
biceps brachii muscle. Concentric needle electrode was 
utilized to record motor unit potentials where EMG 
recording was performed by commercially available 
EMG equipment. Motor unit potentials were recorded at 
two different contraction levels, namely, 10% and 20% 
of the maximum voluntary contraction. A strain gauge 
was employed to monitor the force contraction. The 
same procedure has been utilized to take motor unit 
discharge recordings from 5 normal patients. Single 
motor units in these recordings were identified in the 
usual way, that is, by observing the occurrence of a 
motor unit potential which has a uniform pattern. Figure. 
2a displays a typical motor unit firing trace that was 
recorded for a constant level of contraction. The IDI 
sequence related to this firing trace was extracted by 
measuring the time intervals between the consecutive 
discharges of the same motor unit and is shown in 
Figure (2b). Measurement of time intervals between 
successive discharges of the same motor unit was 
performed by using MATLAB. Recording segments that 
were contaminated with discharges of other motor units 
were rejected. 

 

 

 

Figure 2. (a) Discharges of motor unit action potentials created by single motor unit,  
(b) IDI sequence related to this firing trace. 
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4. RESULTS 

Data processing of the IDI sequence, extracted from the 
recorded firing trace, was performed off-line. The IDI 
sequence has been put through the Kalman filter that 
has been designed to model the system described by 
Eqs. (5) and (6). Initial values of the IDI and IFV have 
been arbitrarily taken as x(0) = [1 1]T. Selection of the 
initial values is not critical as the properly constructed 
model will yield these initial values to converge to the 
measurements. Standard deviation of the process noise 
has been chosen as 1 while the measurement noise 
standard deviation has been set at 35. Here the 
measurement noise standard deviation is determined 
from the experimentally recorded data and it is fixed. 
On the other hand the process noise variance is a 
modeling parameter and it can be thought as a 
parameter that determines the level of variation of the 
states, in this case IDI trend and the IFV. However, 
although the band that the states fluctuate change by 
changing the process noise standard deviation, their 
mean and standard deviation remain almost the same. 
Thus, since the main goal in this study is decomposing 
the IDI sequence into its components, namely IDI trend 
and the IFV the selection of process noise standard 
deviation is not critical.  

All 5 recordings of IDI sequences have been 
decomposed and analyzed with the above given 
parameters and utilizing the proposed method in the 
same way. However, in this paper, results of only one 
recording have been presented as the analysis of each 
recording has produced similar outcomes. The 
investigated IDI sequence in which the contraction level 
has been altered while recording is shown in Figure 3 at 
the top. In the figure the arrow indicates the point where 
the force contraction was changed. The vertical axis in 
Figure 3 is the time lapse between consecutive motor 
unit firings, inverse of which is the motor unit firing 
frequency. As it can be seen, the increase in the 
contraction level, from 10% to 20%, as expected, has 
caused the time between firings to decrease, in other 
words an increase in the motor unit firing frequency. 
The reason for taking motor unit potential recordings at 
two different levels of contraction is to investigate 
whether the proposed approach can successfully 
decompose the IDI sequence and estimate the IDI trend 
and IFV and detect the change in the muscular force. 
Note that, since the IFV is characteristically white 
noise, no change in the IFV component is expected with 
the changing contraction level.
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Figure 3. Decomposition of the IDI sequence. 

 

On the other hand the IDI trend is directly related to the 
force contraction and any change in the contraction 
level should result in a change of firing frequency 
which is expected to be reflected as a change in the 
mean of the IDI trend. The middle and bottom graphics 

in Figure 3 display the estimated IDI trend and IFV 
obtained at the output of the Kalman filter. As it can be 
clearly seen from the middle graphic the estimated 
trend, as expected, follows the change in the contraction 
level. Moreover, still conforming to expectations, the 
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estimated IFV is oblivious to the force contraction 
change and exhibits a relatively stable level. These 
results have revealed that with the given system model 
and the assumptions, the Kalman filter could 
successfully be used to decompose a real IDI sequence 
into the IDI trend and IFV components and estimate 
these components from the observed firing patterns.  

Also, statistical analysis of the estimated components 
might produce useful information regarding possible 
diseases. The mean, taken for every 20 segments, of the 
estimated IDI trend and IFV signals are shown in 
Figures 4-5. 
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Figure 4. Estimated IFV and its mean. 
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Figure 5. Estimated IDI trend and its mean. 
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Detailed analysis of IDI trend and IFV statistics may 
lead to useful information regarding physiological 
characteristics of motor unit firing. Moreover, the 
effects of pathological conditions may be analyzed 
quantitatively in this manner which may provide 
additional information regarding human motor unit 
performance both in healthy persons and people with 
diseases. For example, pathological processes such as 
myopathy or neurogenic conditions that effect the force 
generation can be evaluated. However, application of 
the clinical data is needed to evaluate the performance 
of this technique for detecting motor unit firing 
abnormality. For such a study a data base of IDI 
sequences collected from patients with different 
diseases and normal subjects is being established. All 
the IDI sequences from this data base will be 
decomposed with the proposed approach and classical 
statistical evaluation methods as well as singular value 
decomposition will be applied to the decomposed 
components for observing possible outcomes.  

5. CONCLUSIONS 

In this paper, a novel method to decompose a real IDI 
signal has been proposed for motor unit analysis. The 
evolution of the IDI signal has been modeled in state 
space and the Kalman filter has been employed to 
decompose the recorded IDI signal into the IDI trend 
and IFV parts. Previous studies have either attempted 
simulate these parts to work on [17] or studied the 
motor unit firing as a whole without decomposing [16]. 
Decomposition of motor unit firing using the proposed 
technique may provide additional information about 
human motor unit performance both in normal persons 
as well as patients.   

APPENDIX: 

A general state space model takes the following form: 

x x G wk k k k k+ +1 = Φ    

y H x vk k k k= +     

where, xk is an nx1 state vector, yk is an mx1 
observation vector, Φk is a nxn state transition  matrix, 
Hk is the mxn  observation matrix. wk is an nx1 vector of 
zero mean white noise sequence and vk is an mx1 
measurement error vector assumed to be a zero mean 
white sequence uncorrelated with the wk sequence., The 

matrices Φk, Gk, Hk, Qk, Rk are assumed known at time 
k. The covariance matrices for the wk and vk vectors are 
defined by 

E v v Rk j k kj′ = δ , 

.E w w Qk j k kj′ = δ , 

E v wk j′ = 0  

In the above equations δkj is the Kronecker delta 
function.   

As introduced in [10], the filtering problem in question 
is to estimate the state vector xk, given the observation 
vector Yk = {y0, y1,..., yk}, which can be denoted as:  

[ ] [ ]kkkkkk
YxEyyyxEx == ,...,,ˆ 10

 

with the covariance matrix: 

[ ]P E x x x x Y
k k k k k k k k k= − − ′( ɵ )( ɵ )  

Let the observation matrix take the form:                     
Yk-1 = {y0, y1,..., yk-1}, then estimating the state vector xk 
will be as  

[ ] [ ]ɵ , ,...,x E x y y y E x Y
k k k k k k− − −= =1 0 1 1 1

 

with the covariance matrix 

[ ]P E x x x x Y
k k k k k k k k k− − − −= − − ′1 1 1 1( ɵ )( ɵ )  

In this case, the Kalman Filter, depending on the initial 

values, P P0 1 0− = , ɵx x0 1 0− =  is characterized by 

the following expressions: 

ɵ ɵx x
k k k k k− − − −=1 1 1 1Φ

[ ]ɵ ɵ ɵx x K y H x
k k k k k k k k k

= + −− −1 1

K P H H P H Rk k k k k k k k k= ′ ′ +− −

−

1 1

1

P I K H P
k k k k k k
= − −1

P P G Q G
k k k k k k k k k− − − − − − − −= ′ + ′1 1 1 1 1 1 1 1Φ Φ     

As described in [19], Kk is also known as the “Kalman 
Gain”. 
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