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ABSTRACT 

The prediction of an adequate amount of claim reserves is of the greatest importance to face the responsibilities 

assumed by an insurance company. Although many different deterministic and stochastic methods based on 
statistical analyses are used for claims analysis, presence of many internal and external factors that increase the 

uncertainty in insurance environment may lead to considerable loss in reliability of statistical methods. 

Therefore, in a state of uncertainty that exist in the nature of many actuarial and financial problems, when 
convenient and reliable data is not held, the use of fuzzy set theory becomes very attractive to get more actual 

results.  

 
In this paper, a method for calculating insurance claim reserves using hybrid fuzzy least-squares regression 

analysis is proposed. The results from classical method and this soft computing approach are compared by using 

original data in automobile liability insurance.  

 
Key Words: Insurance, Claims reserving, Fuzzy numbers, Fuzzy arithmetic, Fuzzy regression. 

1. INTRODUCTION 

At the end of the accounting period of an insurance 

company, some claims have been observed in coverage 

of policies but, insurance company does not have any 

information about these claims’ presence and cost. 

Some claims can be reported several years later from 

the occurrence and this can cause important solvency 

problems [15]. So, insurance companies must pay great 

attention to calculation of the claim provisions. Measure 

of error in provisions will increase the risk of 

bankruptcy. Although many different statistical 

methods have been developed until now to estimate 

outstanding claims, there is no general agreement as to 

which is the best approach [10].  

Among the methods of claims reserving, there exist 

several different classifications. The highest level of 

classification is the division method into two main 

categories, stochastic and non-stochastic methods. 

Sometimes it seems useless to apply a stochastic model 

because there is only inadequate and ambiguous 

information observed and as a result, the point estimates 

can not be reliable. So, one will be able to construct 

intervals for the quantities to be evaluated [9].  

Several methods have been outlined in the literature, of 

which the Chain Ladder (CL) is probably the most 

widely used. This is mainly due to its practical basis. 

However, CL method has some problems, that is a 

purely multiplicative method and the estimate for each 

origin period is formed only by the most recent value 

with a development factor [4, 17]. Benjamin and Eagles 

[3] proposed a slight generalization of the CL method, 

known as London Chain Ladder (LCL), which is based 

on the use of ordinary least-squares regression over the 

accumulated claims. 

Even if various methods based on statistical analyses 

are used to set claim provisions, presence of real world 
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factors which increase the uncertainty in calculating 

stage may lead to considerable loss in reliability of 

statistical methods. Unlike traditional methods in claims 

analysis, soft computing can tolerate imprecision, 

uncertainty and partial truth without loss of 

performance and effectiveness for the end use. The 

guiding principle of soft computing is: exploit the 

tolerance for imprecision, uncertainty and partial truth 

to achieve tractability, robustness and low solution cost 

[19]. It has emerged as an effective tool for dealing with 

control, modeling and decision problems in complex 

systems. Thus, as seen in an article that is an overview 

of fuzzy logic applications in insurance by Shapiro [13]; 

fuzzy logic, which is the leading constituent of soft 

computing, has been applied in many insurance areas 

including risk classification, underwriting, projected 

liabilities, etc. 

Initially, Andrés and Terceño [2] used fuzzy set theory 

and fuzzy regression method for calculating incurred 

but not reported reserves. It was a combined approach 

for claims reserving by integrating fuzzy regression into 

LCL method. However, the main shortcoming of this 

fuzzy regression model developed in Tanaka [16] is that 

the concept of least-squares is not utilized [6]. 

Randomness and fuzziness are two important sources of 

uncertainty that exist in actuarial analysis. Randomness 

models the stochastic variability of all possible 

outcomes of a situation and describes the inherent 

variation associated with the environment. On the other 

hand, fuzziness relates to the unsharp boundaries of the 

parameters of the model and is more an instrument of a 

descriptive analysis reflecting the past and its 

implications [14].  

In our present paper, hybrid fuzzy least-squares 

regression analysis, which is proposed by Chang [7], is 

applied to predict future claim costs by using the 

concept of LCL method. Thus, the purpose of the paper 

is to take advantage of using the hybrid fuzzy regression 

model by considering both randomness and fuzziness 

type of uncertainty. 

The structure of the paper is as follows. In the next 

section, hybrid fuzzy least-squares regression analysis is 

described. In Section 3, after an outline of the insurance 

claim reserves is given, an approach of hybrid fuzzy 

least-squares regression to claims reserving is 

presented. In Section 4, the claims data for a group of 

ten automobile liability insurance companies is used to 

demonstrate the proposed method. Finally, based on the 

results of the numerical application, the most important 

conclusions of the paper are summarized. 

2. HYBRID FUZZY LEAST-SQUARES LINEAR 

REGRESSION 

Regression analysis is a statistical tool to model 

functional relationship between dependent and 

independent variables. In ordinary regression analysis, 

the deviations between observed and estimated values 

of dependent variable are generally assumed to have a 

normal distribution, constant variance, and a zero mean 

[6]. In this sense, the violation of its basic assumption 

could adversely affect the validity of the regression 

model. Fuzzy regression, a non parametric method, can 

be quite useful in estimating the relationships among 

variables where the available data are very limited and 

imprecise, and variables are interacting in an uncertain, 

qualitative, and fuzzy way [12]. 

Randomness and fuzziness represent two different types 

of uncertainty. Firstly, consider the points of the sample 

space as the set of all possible values, which a random 

variable may take. If the purpose is to predict the 

probability of event, which can occur, this event is 

represented in the sample space in a well defined region 

of that space. For more clear description of situation it 

must shown that well-defined region has the crisp 

boundary, because it use a concept of characteristic 

function. If the well defined region is given by 

characteristic function, then the sample space is divided 

into two subspaces: if the point belongs to region, the 

characteristic function value is one and the event is true, 

otherwise this point falls outside the region, the value of 

characteristic function is zero and event is false. That 

way, the probability value shows the frequency at which 

the point will occur inside the region.  

Case of fuzziness is essentially different from 

randomness. Here the region is represented by a fuzzy 

subset. Thus, fuzzy uncertainty is represented by partial 

membership of a point from the universe of discourse in 

an imprecisely defined region of space. This 

membership function gets its values in interval [0, 1], 

while characteristic function of well-defined region 

takes values in set {0, 1}, that is, only two values: 0 or 

1. Thus, membership function will not divide the 

universe of discourse into two subspaces. Membership 

function describes the degree to which the element of 

universe space corresponds to the property with which 

fuzzy set is defined [1].  

A major difference between fuzzy regression and 

ordinary regression is in dealing with errors as fuzzy 

variables in fuzzy regression modeling, and in dealing 

with errors as random residuals in ordinary regression 

modeling. To integrate both fuzziness and randomness 

into a regression model, a concept of hybrid regression 

analysis is proposed by Chang [7]. This method allows 

fitting a model to fuzzy data, crisp data, and their 

mixture by using weighted fuzzy arithmetic and least 

squares fitting criterion for the purpose of improving 

the estimations of regression model. 

A bivariate regression model for fuzzy data defined by 

symmetric triangular membership function can be 

expressed as: 

jSCSCjj XbbaaXbaY ),(),(
~~~

+=+=  …...(1) 

where Ca  and Cb  are the centers, Sa  and Sb  are the 

spreads. Then, each observed value of dependent 

variable can be expressed as the following symmetric 

triangular fuzzy number (STFN): 

njXbaXbaYYY jSSjCCjSjCj ,...,2,1,),(),(
~

=++==  …...(2) 



 GU J Sci, 23(2):163-170 (2010)/ Furkan BAŞER♠,Ayşen APAYDIN 165 

 

 

in which n is the sample size. 
LjY ,

~µ and 
RjY ,

~µ are the 

left bound and the right bound of the observed jY
~
 at 

membership µ  level. Similarly, each predicted value 

jY
~̂
 can be expressed as: 

njXbaXbaYYY jSSjCCjSjCj ,...,2,1,)ˆˆ,ˆˆ()ˆ,ˆ(
~̂

=++==  ....(3) 

where Câ , Cb̂  are the centers and Sâ , Sb̂  are the 

spreads of estimated regression coefficients, â~  and b
~̂
. 

LjY ,
~̂µ and 

RjY ,
~̂µ are the left bound and right bound of 

predicted jY
~̂
 at membership µ  level. These quantities 

are given by: 

jSjC
LjY

YY )1(
,

~ µ−−=µ    ….(4a) 

jSjC
RjY

YY )1(
,

~ µ−+=µ    ….(4b) 

 

jSCSC
LjY

Xbbaa ]ˆ)1(ˆ[]ˆ)1(ˆ[
,

~̂ µ−−+µ−−=µ  

        )ˆˆ()1()ˆˆ( jSSjCC XbaXba +−−+= µ  ….(5a) 

jSCSC
RjY

Xbbaa ]ˆ)1(ˆ[]ˆ)1(ˆ[
,

~̂ µ−++µ−+=µ

)ˆˆ()1()ˆˆ( jSSjCC XbaXba +−++= µ   ….(5b) 

Using the definition of weighted fuzzy arithmetic, the 

sum of the residual errors between the predicted jY
~̂
 and 

the observed jY
~
 is formulated as: 

2

1

2 )
~̂~

()( j

n

j

j YYerrorsresidual −=∑∑
=

∑ ∫∫
=

ΥΥΥΥ 












µµµ−µ+µµµ−µ=

n

j RjRjLjLj
dd

1

1

0

2

,
~̂

,
~2

,
~̂

1

0
,

~ )()( .(6) 

In order to derive formula for the unknown regression 

coefficients, the objective function for the principle of 

least squares is to minimize the sum of the squares of 

residual errors. Consequently, the unknown regression 

coefficients ),,,( SSCC baba  are obtained by 

following two sets of 2*2 simultaneous equations. 

∑ ∑ ∑
∑ ∑

=+

=+

jCjjCjC

jCjCC

YXXbXa

YXban

2ˆˆ

ˆˆ

can solve for 

Câ  and Cb̂ ,    ….(7a) 

∑ ∑ ∑
∑ ∑

=+

=+

jSjjSjS

jSjSS

YXXbXa

YXban

2ˆˆ

ˆˆ

can solve for 

Sâ  and Sb̂     ….(7b) 

If asymmetric triangular fuzzy numbers were used, the 

calculations could be extended to three sets of 2*2 

simultaneous equations for centers, right and left 

spreads (see, Chang [7]). 

3. INSURANCE CLAIM RESERVES 

Outstanding claim reserves in general insurance are a 

type of technical reserve or accounting provision in the 

financial statements of an insurer. They seek to quantify 

the outstanding liability for insurance claims which 

have been reported and not yet settled. They may or 

may not include IBNR (Incurred But Not Reported) 

reserves. IBNR is a technical reserve of an insurance 

company, and is established to provide for the future 

liability for claims which have occurred but which have 

not yet been reported to the insurance company (for 

more detailed, see Hossack et al. [10]). Although there 

are many variations on the way the premiums are paid, 

the company generally receives the premiums before 

the claims are actually paid. Therefore, the company 

must properly account for these claim liabilities by 

setting up provisions within its balance sheet to reflect 

as accurately as possible the eventual claims cost [4].  

In actuarial literature, many different deterministic and 

stochastic methods based on statistical analyses are used 

for estimating outstanding claims (Chain Ladder, 

London Chain Ladder, London Pivot, Cape-Cod, etc.). 

Special feature of both of these methods is to group data 

within a table called run off triangle. 

3.1 Run-off Triangle 

The claims experience of an insurer in respect of a 

particular class of business can be summarized in a run-

off triangle showed by Table 1. The idea of the run-off 

triangle as well as a first estimation procedure goes 

back to an article of Verbeek [18].  

Claims run-off data are generated when delay is 

incurred in settling insurance claims. Typically the 

format for such data is that of a triangle in which the 

rows (i) denote origin years and the columns (j) denote 

delay or development years. “Origin year (period)” is 

the calendar year (or financial year) in which the 

incident leading to a claim occurred. 

In Table 1, jiZ ,  is the amount of accumulated incurred 

losses during development period j (j = 0,1,…,n) in 

respect of claims whose year of origin is i (i = 0,1,…,n). 

Obviously, it is not known, for the ith year of 

occurrence (i = 1,2,…,n), the accumulated losses in the 

development years j = n-i+1, n-i+2, … , n and therefore, 

these losses must be predicted.
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 Table 1. Run-off triangle. 

 Development period (year) 

Occurrence / origin 

period (year) 
0 1 … j … n-1 n 

0 0,0Z  1,0Z  … jZ ,0  … 1,0 −nZ  nZ ,0  

1 0,1Z  1,1Z  … jZ ,1  … 1,1 −nZ   

  …
 

 …
 

…
 

  
  
  
 

…
 

   

i 0,iZ  1,iZ  … jiZ ,     

  …
 

…
 

…
 

     

n-1 0,1−nZ  1,1−nZ       

n 0,nZ        
 

3.2. Calculating Insurance Claim Reserves with 

Hybrid Fuzzy Regression 

London Chain Ladder (LCL) method which uses 

ordinary least-squares regression to estimate claim 

provisions is proposed by Benjamin and Eagles [3]. 

This method is extended by using hybrid fuzzy least 

squares regression analysis thus; it will allow using all 

the information provided by the run-off triangle more 

efficiently. On the other hand, estimating fuzzy 

coefficients in fuzzy regression by using the principle of 

least-squares will allow us to provide theoretical basis, 

e.g., the estimates are unbiased, the variances are the 

smallest, etc. 

So, the evolution of the accumulated claims of the 

accidents happened in the year i from the jth to the 

j+1th developing years can be adjusted using a fuzzy 

linear relation jijjji ZbaZ ,1,

~~~
+=+ . If ja~  and jb

~
 are 

regarded as STFN, these parameters are estimated by 

hybrid fuzzy regression for ),(~
jSjCj aaa =  and 

),(
~

jSjCj bbb =  in which jCa  and jCb   are the 

centers and jSa  and jSb  are the spreads. 

Consequently, 1,

~
+jiZ can be denoted as: 

),(

),(),(),(
~

,,

,)1,()1,(1,

jijSjSjijCjC

jijSjCjSjCSjiCjiji

ZbaZba

ZbbaaZZZ

++=

+== +++ .(8) 

The estimates of ja~  and jb
~
 are symbolized as 

)ˆ,ˆ(~̂
jSjCj aaa =  and )ˆ,ˆ(

~̂
jSjCj bbb = , respectively. 

If hybrid fuzzy regression model (8) is considered, it 

will be seen that each of the observation for dependent 

variable takes part in model as a fuzzy number. 

Additionally, the symmetric triangular membership 

functions for observations belonging to dependent 

variable can be determined by definition of confidence 

interval (see, Buckley [5]). To do 

that, %100)1( γ− confidence interval for a specific 

value of dependent variable, 0Z , is denoted as follow:  

 
 

 





 +− −−−−

0000
ˆ2/,20ˆ2/,20 ˆˆ,ˆˆ
ZZnZZn tZtZ σσ γγ ...(9) 

In Eq. (9): 

γ−1  : Confidence level 

n – 2 : Degrees of freedom. n, sample size 

2/,2 γ−nt  : Value for t – distribution 

00
ˆˆ
ZZ −σ  : Standard error. 

If simultaneous equations, given in Eqs. (7a) – (7b), are 

rearranged for STFNs, jâ~  and jb
~̂
, the normal 

equations for centers and spreads are determined as 

follows: 

( )
( ) ( ) ( )∑∑∑

∑∑
+

+

=+

=+

CjijijCjijCji

CjijCjijC

ZZbZaZ

ZbZan

)1,(,
2
,,

)1,(,

.ˆ.ˆ.

ˆ.ˆ.
 

can solve for jCâ  and jCb̂ ,   ...(10a) 

( )
( ) ( ) ( )∑∑∑

∑∑
+

+

=+

=+

SjijijSjijSji

SjijSjijS

ZZbZaZ

ZbZan

)1,(,
2
,,

)1,(,

.ˆ.ˆ.

ˆ.ˆ.
 

can solve for jSâ  and jSb̂ .   ...(10b) 

Then, the prediction of final cost of the accidents 

produced in year i, niZ ,

~̂
, is obtained by using fuzzy 

arithmetic as:  























 ++++= ++++−− iiiiiiiinnni ZbabababaZ ,112211,

~̂~̂~̂~̂~̂~̂...
~̂~̂~̂ .(11) 

It is obvious that niZ ,

~̂
 is not STFN but, the results of 

this nonlinear operations can be converged to a STFN 

(see, Dubois and Prade [8], Kaufmann and Gupta [11]).  
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For instance, multiplication of two STFNs, for 

qpk ~.~
~
= , ),(~

SC ppp =  and ),(~
SC qqq = , is 

obtained approximately as:  

),(),(
~

SCSCCCSC pqqpqpkkk +=≈  ….(12) 

So, niZ ,

~̂
 can be determined as 

)ˆ,ˆ(
~̂

),(),(),( SniCnini ZZZ ≈ . Therefore, estimated reserve 

for the ith year of occurrence as fuzzy 

number ( )iSiCi RRR ˆ,ˆ~̂
=  is: 

)),(
ˆ,,),(

ˆ(,,
~̂~̂

SniZiniZCniZiniZniZiR −−=−−= ...(13)

Finally, the whole claims reserve, )ˆ,ˆ(
~̂

SC RRR = , which 

is the STFN is obtained as: 

∑ ∑∑
= ==

==
n

i

n

i

iS

n

i

iCi RRRR

1 11

)ˆ,ˆ(
~̂~̂

  ….(14) 

4. APPLICATION 

In this section, run-off triangle, showed by Table 2, 

gives the claims of a group of ten Belgian insurance 

companies. The data which is similar to the one in 

Goovaerts et al. [9] is used to illustrate the proposed 

method for calculating insurance claims reserves.  

In this cumulative run-off triangle, in respect of claims 

originating in the first year (origin period, 0), payment 

totaling 2062 were made in the same year (development 

period 0), and payment totaling 1629 were made in the 

following year (development period 1). We need to 

estimate claim payments after 6th origin period (year) 

from the past data, in order to deduce the outstanding 

claims provision required in 31 December of 6th origin 

year. 

After determining hybrid fuzzy linear regression model 

for each development period (j = 0,1,…,6), the 

observations for dependent variable in each model are 

fuzzified by using the confidence limits for 05.0=γ . 

The amount of future claims is estimated with hybrid 

fuzzy regression models by using the amount of 

accumulated incurred losses which can be settled in 

previous years. For example, the evolution of the 

accumulated claims of the accidents happened in the 

year i from the 0 to the 1st developing years can be 

adjusted using a fuzzy linear 

relation 0,001,

~~~
ii ZbaZ += . For j = 0, fuzzy regression 

coefficients, 0
~a  and 0

~
b , are determined by using 

simultaneous equations given in Eqs. (10a) – (10b) as: 

( )
( ) ( ) ( )∑∑∑

∑∑
=+

=+

CiiCiCi

CiCiC

ZZbZaZ

ZbZan

)1,(0,0
2
0,00,

)1,(00,0

.ˆ.ˆ.

ˆ.ˆ.
   

can solve for Ca0ˆ  and Cb0
ˆ , 

( )
( ) ( ) ( )∑∑∑

∑∑
=+

=+

SiiSiSi

SiSiS

ZZbZaZ

ZbZan

)1,(0,0
2
0,00,

)1,(00,0

.ˆ.ˆ.

ˆ.ˆ.
    

can solve for Sa0ˆ  and Sb0
ˆ . 

Therefore, a hybrid fuzzy least-squares regression 

model for 0.0=µ  is given by: 

0,1, )030.0,694.1()449.192,857.273(
~̂

ii ZZ +=  

The spreads of fuzzy regression coefficients, at any 

membership level, can be calculated according to the 

symmetric triangular membership function [7]. For 

7.0=µ , the spreads are obtained as: 

57.735  192.449 0.7)-(1ˆ)1( 0 ==− Saµ  

009.0030.0)7.01(ˆ)1( 0 =−=− Sbµ   

Consequently, the hybrid fuzzy least-squares regression 

equation for 7.0=µ  is: 

0,1, )009.0,694.1()735.57,857.273(
~̂

ii ZZ +=  

Table 3 shows the main results and hybrid fuzzy 

regression models for each development period at 

0.0=µ  membership level. Table 4 shows fuzzy claim 

reserves at different membership level for 

0.1,9.0,...,2.0,1.0,0.0=µ   

As seen in Table 3, for 0.0=µ  membership level, the 

amount of estimated fuzzy claims reserve is obtained as 

(11914.890, 2173.729) where 11914.890 is the center 

and 2173.729 is the spreads. In case of the fact that the 

effects of parameters which give rise to uncertainty 

decrease relatively, the spreads for fuzzy reserve can be 

reduced by raising the membership level µ . For 
example, in Table 4, for 7.0=µ , the amount of 

estimated fuzzy claims reserve is obtained as 

(11914.890, 652.119) and for 0.1=µ , reserve is 

obtained as (11914.890, 0) because hybrid fuzzy 

regression models are consist of the crisp coefficients.  

When all data were included in model as a crisp 

number, hybrid regression would produce the same 

results as ordinary regression. So, the value of the 

center in fuzzy reserves must be the same as the result 

of ordinary least-squares regression. Therefore, as seen 

in Table 5, the amount of outstanding is determined as 

11914.890 according to LCL method. 
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    Table 2. Cumulative run-off triangle for a group of ten automobile liability insurance companies. 

 Development period (year) 

Occurrence / origin 

period (year) 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

0     2062 3691 4274 4695 5036 5312 5540 

1 2031 3737 4380 4828 5163 5470  

2     2164 4051 4718 5172 5541   

3     2320 4180 4851 5314    

4     2462 4371 5107     

5     2651 4809      

6     3084       

 

    Table 3. Reserves with hybrid fuzzy regression at 0.0=µ  membership level. 

 

0.0====µµµµ  

 

Regression Model 

 

Reserve 

Year of 

development 

(j) 

 

jâ
~  

 

jb
~̂
 

Origin Period 

(i) 

 

iR
~̂

 

0 (273.857, 192.449) (1.694, 0.0300) 0 -- 

1 (-38.702, 91.991) (1.174, 0.0008) 1 (234.782, 0.000) 

2 (181.637, 52.254) (1.058, 0.0008) 2 (654.234, 0.000) 

3 (21.548, -27.274) (1.067, 0.0420) 3 (1074.643, 254.570) 

4 (-953.260, 0) (1.244, 0) 4 (1657.481, 347.216) 

5 (0, 0) (1.043, 0) 5 (2690.750, 516.527) 

   6 (5602.997, 1055.416) 

   
R
~̂
 (11914.890, 2173.729) 

 

    Table 4. Fuzzy claims reserves at different membership level. 

cuts−−−−µµµµ   
R
~̂
 

0.0 (11914.890, 2173.729) 

0.1 (11914.890, 1956.356) 

0.2 (11914.890, 1738.983) 

0.3 (11914.890, 1521.610) 

0.4 (11914.890, 1304.238) 

0.5 (11914.890, 1086.865) 

0.6 (11914.890, 869.492) 

0.7 (11914.890, 652.119) 

0.8 (11914.890, 434.746) 

0.9 (11914.890, 217.373) 

1.0 (11914.890, 0) 
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Table 5. Claims reserves with LCL method. 

 

 

 

Regression Model 

 

Reserve 

Year of 

development 

(j) 

 

jâ  

 

jb̂  

Origin Period 

 (i) 

 

iR̂  

0 273.857 1.694 0 -- 

1 -38.702 1.174 1 234.782 

2 181.637 1.058 2 654.234 

3 21.548 1.067 3 1074.643  

4 -953.260 1.244 4 1657.481 

5 0  1.043 5 2690.750  

   6 5602.997 

   R̂  11914.890 
 

5. CONCLUSION 

Estimating the fair value of provisions for outstanding 

claims is one of the most important and complex 

operations that insurance and reinsurance companies are 

faced with. Improper reserving, either inadequate or 

excessive, can give a false picture of the company’s 

liabilities on the balance sheet and leads to fatal 

consequences. Many different statistical methods have 

been outlined in actuarial literature. It is important to 

remember, however, that the traditional methods for 

claims reserving with scarce data, the lack of a 

theoretical statistical basis prevents information about 

the reliability of the resulting provisions from being 

calculated. Therefore, fuzzy set theory becomes very 

attractive and suitable instrument in modeling problems 

which require subjective judgment significantly and 

when inadequate and ambiguous information observed.  

In our claims reserving method, hybrid fuzzy least-

squares regression analysis is applied to predict future 

claim costs by using the concept of LCL method. The 

main parts of our method are fuzzification and hybrid 

fuzzy regression modeling. In fuzzification, we use 

probabilistic confidence limits for designing the 

triangular fuzzy number. Thus, it will allow us to reflect 

variability measure contained in data set to the 

prediction of future claim costs. The purpose of using 

hybrid fuzzy least-squares regression model is to take 

advantage of integrating both randomness and fuzziness 

type of uncertainty into a regression model. On the 

other hand, estimating fuzzy coefficients in fuzzy 

regression by using the principle of least-squares will 

allow us to provide theoretical basis, e.g., the estimates 

are unbiased, the variances are the smallest, etc. 

The special feature of hybrid fuzzy least-squares linear 

regression analysis is that, if all data were handled as 

crisp numbers, hybrid fuzzy regression could produce 

the same results as ordinary regression so; the centers of 

estimated fuzzy values would be the same as the result 

of LCL method. By way of addition, in insurance 

environment, in case of the fact that the effects of 

parameters which give rise to uncertainty decrease 

relatively, spreads for fuzzy reserve can be reduced by 

raising the membership level µ . 
 

 

Existing ordinary regression programs can be used for 

the hybrid fuzzy regression analysis. The method 

demonstrates the practicability of performing fuzzy 

regression in applications involving fuzzy numbers. 

Consequently, our extension of LCL method forms a 

complete methodology for claims reserving. And, 

calculating the amount of outstanding by utilizing the 

fuzzy intervals provides insurance company with an 

advantage of determining liability. 
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