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ABSTRACT 

In this paper, we suggest two fuzzy estimators in nonparametric regression: fuzzy kernel regression (FNPR) 
estimator and fuzzy radial basis function (FRBF) networks. Both FNPR estimator and FRBF networks are 
applied to original data taken from an experiment. We obtain MSE values of the FNPR estimator and FRBF 
networks and then compare them. We show that the FNPR estimator is more efficient than the FRBF networks. 
 
Key Words: Fuzzy number, Fuzzy kernel regression estimator, Nonparametric regression, Neural networks, 
Fuzzy radial basis function networks. 

 
1. INTRODUCTION 

Regression analysis is one of the widely used statistical 
methods in research. In the least squares method, which 
is the most widely used one for estimating a regression 
model’s parameters, the assumptions of “normality” 
and “homoscedasticity” on error terms must be 
satisfied. When these assumptions are not satisfied, it is 
appropriate to use nonparametric regression (NPR) 
techniques [8]. Various methods have been used in 
NPR, such as kernel regression estimators, k-nearest 
neighbourhood estimators, spline smoothing, median 
smoothing, regressograms, etc. Kernel regression 
estimators are the most widely used estimators in NPR 
[11]. 

Neural networks can be valuable when the functional 
relationship between dependent and independent 
variables is not known. Radial basis function (RBF) 
networks form one of the essential types of neural 
networks and are used for control, signal processing 
pattern recognition and time series analysis [10]. 

The concept “fuzziness” was first proposed by the 
American philosopher Black in 1937. The fundamentals 
of Fuzzy Set Theory (FST) were constituted by Zadeh 
in 1965. FST is applied to the fields of operation 
research, management sciences, artificial 
intelligence/expert systems, statistics and many other 

fields [14, 20]. 

Nonparametric regression relies on the experimenter to 
supply only qualitative information about the regression 
function. This qualitative information sometimes cannot 
be determined by precise number; in this case fuzzy 
numbers are employed. Cheng and Lee (2001) used 
RBF networks in fuzzy regression analysis without a 
predefined functional relationship between the input 
and the output. In that approach, only weights between 
the hidden unit and the output unit are considered as 
fuzzy numbers [3]. 

The main purpose of this study is to present the FNPR 
estimators and FRBF networks and to compare them. 
NPR are models which show the functional relationship 
between the dependent and the independent variables is 
not known but flexible. 

In practice, the values of dependent and/or independent 
variables can not always be expressed by crisp 
numbers. In such cases, fuzzy numbers must be used. 
Therefore, in this study, at first we propose an FNPR 
estimator where both dependent and independent 
variables are fuzzy numbers. In the FNPR estimator, we 
used the Nadaraya-Watson kernel regression estimator 
which is the most commonly used type of NPR 
estimator. In the Nadaraya-Watson kernel regression 
estimator, dependent and independent variables are 
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considered as fuzzy numbers and an FNPR estimator is 
constituted. Secondly, RBF Networks which is one of 
the types of neural networks are used as alternative 
methods to the Nadaraya-Watson estimator. In light of 
this idea, we proposed FRBF networks as an alternative 
method to the FNPR estimator. FRBF networks are 
RBF networks where all input, output and weights are 
fuzzy numbers. 

This study is organized as follows: fuzzy arithmetic is 
considered in Section 2 and the FNPR estimator is 
given in Section 3. In Section 4, FRBF networks are 
suggested in detail. An application and results are given 
in Section 5. The conclusion part of this study is 
summarized in Section 6. 

2. FUZZY ARITHMETIC 

“Fuzziness” is the ambiguity that can be found in the 
definition of a concept or the meaning of a word. For 
example, the uncertainity in expressions like “old 
person”, “high temperature” or “small number” can be 
called fuzziness [18]. Let X be a universe whose 
generic elements are denoted by x and A be a classical 
subset of X. The membership function  is the 
degree of membership of x in A. If the grade of the 
membership is allowed to be in the set {0,1}, then A is 
called “classical (crisp) set”. Nevertheless, if the grade 
of the membership is allowed to be in the interval [0, 1], 
A is called “fuzzy set” and generally denoted by . 
For  and , the membership function of 
the fuzzy set is denoted by 

)x(Aµ

A
~

Xx∈ XA ⊆
]1,0[X:)x(A →µ . Fuzzy 

set theory is a general form of the crisp set [14]. 

Some basic concepts of the fuzzy set A  are, for 
example, weak -level set ( -cut), strong -level 
set, convexity and normality. For a normal and convex 
fuzzy set, : the weak α -level set is a closed 
interval, then it is called “fuzzy number”. Triangular 
and trapezoidal fuzzy numbers are among the most 
important ones of the several types of fuzzy numbers. 
Generally, triangular fuzzy numbers are denoted by 
X=(a,c,b), where “c” is a center, “a” is a lower and “b” 
is an upper limit of fuzzy number. A triangular fuzzy 
number is called a symmetrical triangular fuzzy 
number, if c-a=b-c [14, 18]. 

~

α α α

]1,0[∈α∀

α -level set of the fuzzy 
number A can be written as 

{ }α≥µ∈=α )x(Ax]A[ A . Since the α -level sets of 

fuzzy numbers become closed intervals,  is 

denoted by 

α]A[

[ ]UL ]A[,]A[]A ααα =[ . Arithmetic operations 
on -level set of fuzzy numbers are equal to the 
arithmetic operations on closed intervals [14]. 

α

İf A=[a,b] and B=[d,e] are two intervals, then some 
arithmetic operations on intervals are given as follows 
[1, 13, 16]. 

i)                                  ]eb,da[]e,d[]b,a[BA ++=+=+

ii) ]db,ea[]e,d[]b,a[BA −−=−=−                                                                               

iii)  )]be,bd,ae,admax(),be,bd,ae,ad[min(B.A =

iv) )]e/b,d/b,e/a,d/amax(),e/b,d/b,e/a,d/a[min(B/A =  

v)  
⎩
⎨
⎧

<
≥

==
0k],a.k,b.k[
0k],b.k,a.k[

]b,a.[kA.k

vi) )]b(f),a(f[])b,a([f)A(f == , when f is a 
continuous and monotonic non decreasing function. 

)]a(f),b(f[])b,a([f)A(f == , when f is a continuous 
and monotonic non increasing function. 

vii) }db,camax{])d,c[],b,a([D)B,A(D −−==  

where; D is a distance between two intervals. 

viii) )b,amax()0],b,a([D]b,a[]A[ ===   

where; ]A[  is an absolute value of the interval  ]A[

ix) }A,...,A,Amax{]A[ n21=  

where; ]A[  is a norm of the interval .  is 
an interval vector and can be defined as 

 

]A[ ]A[

[ ]Tn21 ]A[]A[]A[]A[ L=

3. FUZZY KERNEL REGRESSION ESTIMATOR 
In this section, kernel regression estimators and fuzzy 
kernel regression estimators are introduced. 

3.1. Kernel Regression Estimator 

Regression analysis is a statistical technique for 
researching and modeling the relationship between the 
dependent and the independent variables. There is a 
functional relationship between these variables. If this 
relationship is unknown but flexible then it is called a 
“nonparametric regression model”. The NPR model can 
be defined as,  

n,...,2,1i,)x(my iii =ε+=                                        (1) 

In Eqn(1), “m” is an unknown regression function, “ iε ” 
is an independent and identically distributed (i.i.d.) 

random variable with 0)(E i =ε  and  [6, 
11]. Nonparametric regression estimator is defined as, 

2
i )(Var σ=ε

∑
=

=
n

1i
ihi Y)x(W)x(m̂                                                  (2) 

where;  denotes weights and h is a bandwith 
parameter. İf the weights  are based on kernel 
functions then NPR is called “kernel regression”. 
Kernel function K is a continuous, bounded and 
symmetrical real function. The most used kernel 
functions are uniform, normal, Epanechnikov and 
quartic kernel functions. 

)x(Whi
)x(Whi

Several estimators have been used in kernel regression, 
such as the Nadaraya-Watson(NW) estimator, the 
Priestley-Chao estimator and the Gasser-Müller 
estimator [2 ,5, 11]. The Nadaraya-Watson estimator is 
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defined as follows, 

∑

∑

=

=

−

−

= n

1i
ih

i

n

1i
ih

h

)Xx(K

Y)Xx(K

)x(m̂  

          

∑

∑

=

=

−

−

= n

1i

i

i

n

1i

i

)
h
Xx(K

Y)
h
Xx(K

                                          (3) 

In Eqn(3), K(.) is a kernel function and  “h” is a 
bandwith parameter. The application of NPR always 
requires the choice of a bandwith parameter h. The 
bandwith parameter h depends on the sample size n. 
Usually, it is selected to balance the trade-off between 
variance and squared bias by minimizing some global 
measures of error [11, 17, 19]. 

3.2. Fuzzy Kernel Regression Estimator 

In the fuzzy kernel regression estimator, the Nadaraya-
Watson estimator is considered and fuzzified. The 
fuzzifying operation is performed by considering the 
dependent and the independent variables as symmetric 
triangular fuzzy numbers in the Nadaraya-Watson 
estimator. Independent and dependent variables are 
denoted by  and , 
respectively. -level sets of ,  and h are 

expressed as, ,  

and . We put their intervals instead of 
,  and h in Eqn(3) and apply arithmetic 

operations on these intervals. As a result, FNPR 
estimator is obtained as follows; 

( iii t,xX = ) ( )iii l,yY =

α iX iY

]X,X[]X[ U
i

L
ii =α ]Y,Y[]Y[ U
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L
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iX iY
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(4) 

where; K(.) is a kernel function,  and  are the 
lower and the upper limits of bandwith parameter h, 

respectively.  and  are the lower and upper 

limits of  and also  and  are the lower and 

the upper limits of , respectively. 

Lh Uh

L
iX U

iX

iX L
iY U

iY

iY

4. FUZZY RADIAL BASIS FUNCTION 
NETWORKS 

In this section, RBF networks, FRBF networks and the 
training of FRBF networks are presented. 

4.1. Radial Basis Function Networks 

Radial basis function networks were developed by 
Broomhead&Lawe in 1988 and proposed as an 
alternative method to multi layer perceptrons [10]. The 
net input to the hidden layer is the distance from the 
input vector to the weight vector and computed as 
follows; 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

σ

−
−= 2

pj

2
ijpi

pj
2

wX
exph                                         (5) 

where;  is an input vector, ’s are weights 

between any input unit and hidden unit j.  is a 

normalization factor for the hidden unit j. The distance 
is usually computed in Euclidean metric. ’s are 
called “RBF centers” and determined using “c-means 
clustering algorithm or fuzzy c-means clustering 

algorithm” [7]. Normalization factor ’s are 

determined by 

piX ijw

2
pjσ

ijw

2
pjσ

∑
=

−=σ
m

1p

2
ijpi

2
pj wX

m
1                                            (6) 

where;  is a training pattern in the cluster, ’s 
are the centers of the cluster associated with the hidden 
unit j and m is the number of training patterns in that 
cluster. 

piX ijw

Output unit is calculated by 

∑
=

=
Hn

1j
pjjp hvŶ                                          (7) 

where; j ’s are the weights from the hidden unit j to 
the output unit [7]. In Eqn.s(5), (6) and (7); i 
(i=1,2,...,n

v

I) denotes the number of input units, p 
(p=1,2,...,n) shows the observation number and j 
(j=1,2,...,nH) indicates the number of hidden units. 

RBF networks are trained as hybrid networks. The 
weights  and  and also the normalization factor ijw jv
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2
pjσ are updated by backpropagation algorithm. If the 

error criterion is minimum, then the process will be 
stopped; otherwise it must be repeated [4, 7]. 

4.2. Fuzzy Radial Basis Function Networks 

Fuzzy radial basis function networks are RBF networks 
with fuzzy inputs and/or fuzzy outputs and/or fuzzy 
weights. We introduce the FRBF networks whose 
inputs , outputs  and also weights  and 
are fuzzy. In the proposed FRBF Networks, the FCM 
algorithm is modified due to the fact that both  and 

 are fuzzy numbers. The training algorithms of 
FRBF networks are constituted by fuzzifying Choi et 
al.(2003)’s RBF backpropagation algorithm and 
Ishibuchi et.al.(1995)’s backpropagation algorithm. 

pX pY ijw jv  

iX

ijw

α -level sets of fuzzy inputs  and fuzzy outputs 

 are expressed as  and 

, respectively. The weights between 
the input units and the hidden units are considered as 
symmetrical triangular fuzzy numbers and denoted by 

. Where,  is the lower limit, 

  is the center and  is the upper limit of  

-level sets of  are written as; 

piX

pY ]X,X[]X[ U
pi

L
pipi =α

]Y,Y[]Y[ U
p

L
pp =α

)w,w,w(w U
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ij

L
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L
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C
ijw U

ijw ijw .

α ijw

[ ]U
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L
ijij ]W[,]W[]W[ ααα =                                             (8) 

where; 

)
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L
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+
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U
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α
−+

α
=α                                       

The weights between the hidden units and the output 
unit are considered as symmetrical triangular fuzzy 

numbers and denoted by . -level 

sets of  is written as; 

)v,v,v(v U
j

C
j

L
jj = α

jV

]]v[,]v[[]v[ U
j

L
jj ααα =                                                 (9) 

where; 
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Hidden unit j is calculated by, 
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In Eqn(10), p=1,2,...,n; i=1,2,...,nI; j=1,2,...,nH, where, 

α
]h[ pj  is obtained as a crisp number because of 

arithmetic operations on the interval number. 

The normalization factor of the hidden unit j is 
determined by; 
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where; 
α

σ ][ 2
pj  is a crisp number. 

Fuzzy output unit for observation p is calculated by; 
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Let  be a fuzzy target corresponding to the fuzzy 

input . The cost function for α -level sets of the 

fuzzy output  and the corresponding fuzzy target 

 is defined as follows [12]. 
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The cost function E is obtained by; 

∑∑
= =

α=
n

1p

s

1i
,p i

EE                                                      (14) 

4.3. The Training of the Fuzzy Radial Basis Function 
Networks 

In the training of FRBF networks, we rearrange BP 
algorithms proposed by Choi et.al.(2003) and Ishibuchi 
et.al.(1995) for fuzzy numbers. The purpose of FRBF 
networks is to minimize the cost function E. Then we 
use this rearranged BP algorithm for the training of  

 and  

jv ,

ijw 2
pjσ

The fuzzy weights ’s are updated by;  jv
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calculated by; 
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1(h]Ŷ[]Y[
v

E
pj

U
p

U
ppj

L
p

L
pL

j

,p

⎟
⎠

⎞
⎜
⎝

⎛ α
−−α−⎟

⎠

⎞
⎜
⎝

⎛ α
−α−=

∂

∂
αααα

α )
2

1(h]Ŷ[]Y[)
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The fuzzy weights ’s are updated by ijw
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ii) If  
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The normalization factors ’s are updated by 2
pjσ

)t()t()1t( pjpjpj σ∆+σ=+σ                                      (23) 

In the Eqn(23),  is calculated by; )t(pjσ∆
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In Eqn.s (17), (18), (21), (22) and (24),  is a learning 
constant,  is a momentum constant and t shows the 

number of repetitions. 

η
λ

An algorithm for the training of FRBF networks is 
given as follows; 

Step 1: Fuzzy weights ’s are determined by a 

modified FCM algorithm. Fuzzy weights j ’s are 
initialized to random fuzzy number. 

ijw

v

Step 2: Step 3 must be repeated for α-level sets such as 
s21 ,...,, ααα . 

Step 3: The following i), ii), iii) and iv) must be 
repeated for p=1,2,...,n. 

i)  and pjh , pŶ α,pE  are calculated by Eqn.s(10)-(13). 

ii) Fuzzy weights ’s are updated by Eqn.s(15)-(18). jv

iii) Fuzzy weights ’s are updated by Eqn.s(19)-(22). ijw

iv) Normalization factors ’s are updated by 

Eqn.s(23)-(24). 

2
pjσ

Step 4: If the iteration number reaches to a predefined 
value and then stop. Otherwise go to Step2. 

5. APPLICATION 

We have applied the FNPR estimator and the FRBF 
Networks to the data of the “Turkish Pastrami” 
production experiment. In this experiment, chemical, 
microbiological and organoleptic analyses are made. 
Pastrami production is made in three trials. In the 
production stage, measurements are taken on the 1st, 7th, 
15th, 30th and 60th days. As a result of the chemical 
analysis, amounts of humidity, salt, value of pH and 
value of water activity(aw) are determined. As a result 
of microbiological analysis, total number of mezophil 
aerob microorganism(PCA), number of staphylococcus-
micrococcus microorganism(MSA), number of 
lactobacillus microorganism(RA) and number of yeast 
and mold microorganisms(PDA) are determined. As a 
result of organoleptic analysis, colour, taste, appearance 
and texture are evaluated by a test panel of six persons 
[9]. 

In this study, the functional relationship between 
chemical factors and microbiological factors and also 
the functional relationship between chemical factors 
and organoleptic factors are estimated. The efficiencies 
of these factors on pastrami production are evaluated. 
Independent variables are taken as salt, pH and water 
activity(aw). Dependent variables are taken as PCA, 
MSA, RA, PDA, taste, texture and color. 

Errors are computed by using mean squared error(MSE) 
defined in terms of the difference between two fuzzy 
numbers suggested by Ishibuchi et.al.(1995) and Lin 
et.al.(2000) as follows; 
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The general functional structure between the dependent 
and independent variables is defined as . 
Then, fifteen different functions are constituted and 
fuzzy intervals are formed by computing the values of 
mean  standart deviation. Means and standart 
deviations of the measurements are taken at the end of 
three trials of the “Turkish Pastrami” experiment. Fuzzy 
estimates are from the FNPR estimator and the FRBF 
networks after forming fuzzy intervals for all fuzzy 
dependent and independent variables. MSE values 
belonging to 15 different models are evaluated by the 
FNPR estimator and the FRBF networks. 

)(XfY =

±

These 15 models are, 

PCA =f (Salt), MSA = f ( Salt) 

RA= f (Salt), PDA= f (Salt) 

Taste= f (Salt) 

PCA = f (pH), MSA = f (pH) 

RA= f (pH), PDA= f (pH) 

Texture= f (pH) 

PCA = f (aw), MSA = f (aw) 

RA= f (aw), PDA= f (aw) 

Color= f (aw) 

 

Bandwith parameters of FNPR estimator are determined 
by XPLORE package programme for each model and 
given in Table 1. 

 

Table 1. The values of bandwith parameter h for FNPR 
estimator 

Model Parameter h 

PCA = f (Salt) [0.01, 0.01] 

MSA = f ( Salt) [0.01, 0.01] 

RA = f ( Salt) [0.01, 0.01] 

PDA = f ( Salt) [0.01, 0.01] 

Taste = f ( Salt) [0.01, 0.01] 

PCA = f (pH) [0.15, 0.15] 

MSA = f (pH) [0.01, 0.01] 

RA = f (pH) [0.01, 0.01] 

PDA = f (Ph) [0.01, 0.01] 

Texture = f (Ph) [10, 10] 

PCA = f (aw) [0.01, 0.01] 

MSA = f (aw) [0.01, 0.01] 

RA = f (aw) [0.99, 0.99] 

PDA = f (aw) [0.07, 0.07] 

Color = f (aw) [0.01, 0.01] 

FRBF networks with a single input unit, three hidden 
units and a single output unit are constituted for 
considered data. These networks were trained by the 
proposed training algorithm given in Section 4. In the 
training algorithm, the learning constant is =0.01 and 
the momentum constant is 

η
λ =0.1.  

Beginning values of weights ’s between input-
hidden units are determined by a modified FCM 
algorithm. In this algorithm, ’s are calculated by 
independent variables taken as Salt, pH and a

ijw

ijw

w, 
respectively. Beginning values of normalization factor 

jσ ’s of hidden units are calculated by Eqn(6). 

Beginning values of weights j ’s between hidden-
output units are determined as arbitrary fuzzy numbers 
for all hidden units (j=1,2,3). The values of  

v

ijw , jσ  

and ’s are summarized in Table 2. jv

 

Table 2. The values of weights and normalization factor 
for FRBF Networks 

 

Model 

The weights wij 

between input-

hidden unit  

The weights vj 

between 

hidden-output 

unit 

The 

normalizat

ion factor 

 jσ

PCA = f (Salt) 

MSA = f (Salt) 

RA= f (Salt) 

PDA= f (Salt) 

Taste= f (Salt) 

 
L
ijw =[5.99, 4.00, 5.84] 

U
ijw =[7.87, 6.72, 6.20] 

 

L
jv =[1, 2, 1] 

U
jv =[3, 3, 2] 

 

jσ =[1.57, 

1.68, 1.12] 

PCA = f (pH) 

MSA = f (pH) 

RA= f (pH) 

PDA= f (pH) 

Texture= f (pH) 

 
L
ijw =[5.80, 5.66, 5.45] 

U
ijw =[5.84, 5.70, 5.63] 

 

L
jv =[1, 2, 1] 

U
jv =[3, 3, 2] 

 
 

jσ =[0.28, 

0.17,0.18] 

PCA = f (aw) 

MSA = f (aw) 

RA= f (aw) 

PDA= f (aw) 

Color= f (aw) 

 
L
ijw =[0.90, 0.81, 0.77] 

U
ijw =[0.90, 0.83, 0.81] 

 

L
jv =[1, 2, 1] 

U
jv =[3, 3, 2] 

 
 

jσ =[0.09, 

0.04,0.07] 

 

Estimated values of dependent variables for each model 
are calculated by FNPR estimator and FRBF networks. 
Then real values and estimated values are given in 
detail in [19]. MSE values of FNPR estimator and 
FRBF networks are shown in Table 3. 

By investigating Table 3, it can be seen that the MSE 
values of the FNPR estimator are less than the MSE 
values of FRBF networks for all models. Therefore, the 
FNPR estimator is a more efficient method than the 
FRBF networks for these data. 
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Table 3. MSE values regarding fuzzy estimates 
evaluated by FNPR estimator and FRBF networks 

Model MSEFNPR MSEFRBF

PCA = f (Salt) 0.0024 0.1973 

MSA = f ( Salt) 0.0791 1.2612 

RA = f ( Salt) 0.2382 12.5177 

PDA = f ( Salt) 0.0720 3.6713 

Taste = f ( Salt) 0.0071 0.1397 

PCA = f (pH) 0.1270 0.2707 

MSA = f (pH) 0.4701 1.2754 

RA = f (pH) 2.1372 12.5428 

PDA = f (PH) 1.1495 3.9400 

Texture = f (PH) 0.1885 0.4029 

PCA = f (aw) 0.0864 0.2711 

MSA = f (aw) 0.2756 1.2766 

RA = f (aw) 6.6424 12.4789 

PDA = f (aw) 2.6516 3.9400 

Color = f (aw) 0.1749 0.2265 

 

6. CONCLUSION 

In practice, the values of dependent and/or independent 
variables can not always be expressed by crisp 
numbers. In such cases, fuzzy numbers must be used. 
Therefore, in this study, we proposed the fuzzy kernel 
regression estimator and also the fuzzy radial basis 
function networks. First of all, we proposed a FNPR 
estimator where both dependent and independent 
variables are fuzzy numbers. In the FNPR estimator, we 
used the Nadaraya-Watson kernel regression estimator. 
In a Nadaraya-Watson kernel regression estimator, 
dependent and independent variables are considered as 
fuzzy numbers and the FNPR estimator is constituted. 
The bandwith parameters of each model are given in 
Table 1. Secondly, we proposed FRBF networks as an 
alternative method to the FNPR estimator. FRBF 
networks are RBF networks where all input, output and 
weights are fuzzy numbers. Beginning values of 
weights ’s between input-hidden units, beginning 

values of normalization factor ’s of hidden units and 

beginning values of weights ’s between hidden-
output units were summarized in Table 2 for FRBF 
networks. MSE values of the FNPR estimator and 
FRBF networks are given in Table 3. As can be seen 
from the results in Table 3, MSE values of the FNPR 
estimator are less than the MSE values of FRBF 
networks. Therefore, it can be concluded that the FNPR 

estimator is more efficient than the FRBF networks for 
these data. 

ijw

jσ

jv
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