
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
7 (2) 174-182 (2019) c©MSAEN

Isometry Groups of Chamfered Cube and Chamfered
Octahedron Spaces
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Abstract
Polyhedra have interesting symmetries. Therefore they have attracted the attention of scientists and
artists from past to present. Thus polyhedra are discussed in a lot of scientific and artistic works. There are
only five regular convex polyhedra known as the platonic solids. There are many relationships between
metrics and polyhedra. Some of them are given in previous studies. In this study, we introduce two new
metrics, and show that the spheres of the 3-dimensional analytical space furnished by these metrics are
chamfered cube and chamfered octahedron. Also we give some properties about these metrics. We show
that the group of isometries of the 3-dimesional space covered by CC−metric and CO−metric are the
semi-direct product of Oh and T (3), where octahedral group Oh is the (Euclidean) symmetry group of the
octahedron and T (3) is the group of all translations of the 3-dimensional space.
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1. Introduction
What is a polyhedron? This question is interestingly hard to answer simply! As it is stated in [2], a convex

polyhedron in X which is a d−dimensional real affine space is a subset of X obtained a finite intersection of closed
haf-spaces. A polytope is a compact convex polyhedron with non-empty interior. A flag of d−dimensional polytope
P is a d−tuple (F0, F1, ..., Fd−1) consisting of i−faces Fi of P such that Fi ⊂ Fi+1 for i = 0, 1, ..., d− 2. A polytope P
is called regular its stabilizer G (P ) = IsP (X) acts transitivelyonthe flags of P , where IsP (X) is isotropy group in
the set of isometries of P . Therefore, A regular polyhedron is a polyhedron whose symmetry group acts transitively
on its flags. (for more details see to [1, 2] and [5, 18]) There are many thinkers that worked on polyhedra among the
ancient Greeks. Early civilizations worked out mathematics as problems and their solutions. Polyhedrons have
been studied by mathematicians, scientists during many years, because of their symmetries.

Minkowski geometry is non-Euclidean geometry in a finite number of dimensions. Here the linear structure is
the same as the Euclidean one but distance is not uniform in all directions. Instead of the usual sphere in Euclidean
space, the unit ball is a general symmetric convex set. The points, lines and planes the same, and the angles are
measured in the same way, but the distance function is different. (See [16] and [19]). Some mathematicians have
been studied and improved metric space geometry. According to mentioned researches it is found that unit spheres
of these metrics are associated with convex solids. For example, unit sphere of maximum metric is a cube which
is a Platonic Solid. Taxicab metric’s unit sphere is an octahedron, another Platonic Solid. And unit sphere of
CC-metric is a deltoidal icositetrahedron, a Catalan solid. So there are some metrics which unit spheres are convex
polyhedrons. That is, convex polyhedrons are associated with some metrics (See [3, 4, 6, 7, 9–15]). This influence
us to the question "Are there some metrics of which unit spheres are the Catalan Solids?". For this goal, firstly,
the related polyhedra are placed as fully symmetric such that symmetry center of it is origin in the 3-dimensional
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space. And then the coordinates of vertices are found. Later one can be obtained metric which always supply plane
equation related with solid’s surface.

In this study, two new metrics are introduced, and showed that the spheres of the 3-dimensional analytical space
furnished by these metrics are chamfered cube and chamfered octahedron. Also some properties about these metrics
are given. Morever, we show that the group of isometries of the 3-dimesional space covered by CC−metric and
CO−metric are the semi-direct product of Oh and T (3), where octahedral group Oh are the (Euclidean) symmetry
group of the octahedron and T (3) is the group of all translations of the 3-dimensional space.

2. Chamfered Cube Metric and Some Properties

It has been stated in [18], there are many variations on the theme of the regular polyhedra. Firstly, one can meet
the eleven solids which can be made by cutting off (truncating) the corners, and in some cases the edges, of the
regular polyhedra so that all the faces of the faceted polyhedra obtained in this way are regular polygons. These
polyhedra were first discovered by Archimedes (287-–212 B.C.E.) and so they are often called Archimedean solids
(See [8] for brief history ). Notice that vertices of the Archimedean polyhedra are all alike, but their faces, which are
regular polygons, are of two or more different kinds. For this reason they are often called semiregular. Archimedes
also showed that in addition to the eleven obtained by truncation, there are two more semiregular polyhedra: the
snub cube and the snub dodecahedron.

The other operation about consctructing polyhedron from any polyhedra is chamfering. In geometry, chamfering
or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion,
moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new
hexagonal face in place of each original edge.

One of the solids which is obtained by chamfering from another solid is the chamfered cube. It has 12 hexagonal
faces and 6 square faces, 32 vertices and 48 edges. The chamfered cube can be obtained by truncating operation
from cube. Figure 1 shows the chamfered cube and the procress of chamfering operation applied to cube.

Figure 1: The cube, chamfering operation, chamfered cube

Before we give a description of the chamfered cube distance function, we must agree on some impressions.
Therefore U , V , W denote the maximum, the middle and the minimum of quantities {|x1 − x2|, |y1 − y2|, |z1 − z2|},
respectively for P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ R3. The metric that unit sphere is chamfered cube is described
as following:

Definition 2.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3. The distance function dCC : R3×R3 →
[0,∞) chamfered cube distance between P1 and P2 is defined by

dCC(P1, P2) = max

{
U,

5− 2
√
3

2
(U + V )

}
.

According to chamfered cube distance, there are two different paths from P1 to P2. These paths are
i) a line segment which is parallel to a coordinate axis.
ii) union of two line segments each of which is parallel to a coordinate axis.
Thus chamfered cube distance between P1 and P2 is for (i) Euclidean lengths of line segment, and for (ii)

5− 2
√
3

2
times the sum of Euclidean lengths of mentioned two line segments.

Figure 2 illustrates some of chamfered cube way from P1 to P2
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Figure 2: Some CC way from P1 to P2

It is well known that the sphere in the 3-dimensional analytical space with maximum metric is the cube. This metric
for P1 = (x1, y1, z1), P2 = (x2, y2, z2)∈ R3 is defined by dM (P1, P2) = U .

Lemma 2.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two points in R3. U12, V12, W12 denote the maximum,
the middle and the minimum of quantities of {|x1 − x2| , |y1 − y2| , |z1 − z2|} , respectively. Then

dCC(P1, P2) ≥ U12 and dCC(P1, P2) ≥
5− 2

√
3

2
(U12 + V12) .

Proof. Proof is trivial by the definition of maximum function.

Theorem 2.1. The distance function dCC is a metric. Also according to dCC , the unit sphere is a chamfered cube in R3.

Proof. Let dCC : R3 × R3 → [0,∞) be the chamfered cube distance function and P1=(x1, y1, z1) , P2=(x2, y2, z2) and
P3=(x3, y3, z3) are distinct three points in R3. U12, V12, W12 denote the maximum, the middle and the minimum of
quantities of {|x1 − x2| , |y1 − y2| , |z1 − z2|} , respectively. To show that dCC is a metric in R3, the following axioms
hold true for all P1, P2 and P3 ∈ R3.
M1) dCC(P1, P2) ≥ 0 and dCC(P1, P2) = 0 iff P1 = P2

M2) dCC(P1, P2) = dCC(P2, P1)
M3) dCC(P1, P3) ≤ dCC(P1, P2) + dCC(P2, P3).

Since absolute values is always nonnegative value dCC(P1, P2) ≥ 0 . If dCC(P1, P2) = 0 then dCC(P1, P2) =

max
{
U, 5−2

√
3

2 (U + V )
}

= 0, where U, V,W are the maximum, the middle and the minimum of quantities

{|x1 − x2|, |y1 − y2|, |z1 − z2|}, respectively. Therefore, U=0, and 5−2
√
3

2 (U + V )=0. Hence, it is clearly obtained by
x1 = x2, y1 = y2, z1 = z2. That is, P1 = P2. Thus it is obtained that dCC(P1, P2) = 0 iff P1 = P2.

Since |x1 − x2| = |x2 − x1| , |y1 − y2|=|y2 − y1| and |z1 − z2| = |z2 − z1|, obviously dCC(P1, P2) = dCC(P2, P1).
That is, dCC is symmetric.

U13, V13, W13 and U23, V23, W23 denote the maximum, the middle and the minimum of quantities of
{|x1 − x3| , |y1 − y3| , |z1 − z3|} and {|x2 − x3| , |y2 − y3| , |z2 − z3|}, respectively.

dCC(P1, P3) = max
{
U13,

5−2
√
3

2 (U13 + V13)
}

≤ max
{
U12 + U23,

5−2
√
3

2 (U13 + U23 + V13 + V23)
}

=I.

Therefore one can easily find that I ≤ dCC(P1, P2) + dCC(P2, P3) from Lemma 2.1. So dCC(P1, P3) ≤ dCC(P1, P2) +
dCC(P2, P3). Consequently, chamfered cube distance is a metric in 3-dimensional analytical space. Finally, the set of
all points X = (x, y, z) ∈ R3 that chamfered cube distance is 1 from O = (0, 0, 0) is

SCC =

{
(x, y, z) : max

{
U,

5− 2
√
3

2
(U + V )

}
= 1

}
,

where U, V,W are the maximum, the middle and the minimum of quantities {|x|, |y|, |z|}, respectively. Thus the
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graph of SCC is as in the figure 3:

Figure 3 The unit sphere in terms of dCC : Chamfered Cube

Corollary 2.1. The equation of the chamfered cube with center (x0, y0, z0) and radius r is

max

{
U0,

5− 2
√
3

2
(U0 + V0)

}
= r,

which is a polyhedron which has 18 faces and 32 vertices, where U0, V0,W0 are the maximum, the middle and the minimum
of quantities {|x− x0|, |y − y0|, |z − z0|}, respectively. Coordinates of the vertices are translation to (x0, y0, z0) all permu-
tations of the three axis components and all possible +/- sign changes of each axis component of

(
4
√
3−3
13 r, 4

√
3−3
13 r, r

)
and(

5+2
√
3

13 r, 5+2
√
3

13 r, 5+2
√
3

13 r
)

.

Lemma 2.2. Let l be the line through the points P1=(x1, y1, z1) and P2=(x2, y2, z2) in the analytical 3-dimensional space
and dE denote the Euclidean metric. If l has direction vector (p, q, r), then

dCC(P1, P2) = µ(P1P2)dE(P1, P2)

where

µ(P1P2) =
max

{
Ud,

5−2
√
3

2 (Ud + Vd)
}

√
p2 + q2 + r2

,

Ud, Vd,Wd are the maximum, the middle and the minimum of quantities {|p|, |q|, |r|}, respectively.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr, λ ∈ R. Thus,

dCC(P1, P2) = |λ|

(
max

{
Ud,

5− 2
√
3

2
(Ud + Vd)

})
,

where Ud, Vd,Wd are the maximum, the middle and the minimum of quantities {|p|, |q|, |r|}, respectively, and
dE(A,B) = |λ|

√
p2 + q2 + r2 which implies the required result.

The above lemma says that dCC -distance along any line is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the following corollaries:

Corollary 2.2. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dCC(P1, X) = dCC(P2, X) .

Corollary 2.3. If P1, P2 and X are any three distinct collinear points in the real 3-dimensional space, then

dCC(X,P1) / dCC(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dCC−distances along a line are the same.
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3. Chamfered Octahedron Metric and Some Properties

The chamfered octahedron can be obtained by using chamfering operation from octahedron. The chamfered
octahedron has 8 equilateral triangular faces and 12 bi-mirror-symmetric hexagonal faces, 30 vertices and 48 edges.
Figure 4 shows the chamfered octahedron.

Figure 4: The chamfered octahedron

The notations U, V,W shall be used as defined in the previous section. The metric that unit sphere is the
chamfered octahedron is described as following:

Definition 3.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in R3. The distance function dCO : R3×R3 →
[0,∞) chamfered octahedron distance between P1 and P2 is defined by

dCO(P1, P2) = max

{
U + V,

9 +
√
6

15
(U + V +W )

}
.

According to chamfered octahedron distance, there are three different paths from P1 to P2. These paths are
i) union of two line segments each of which is parallel to a coordinate axis,
ii) union of three line segments each of which is parallel to a coordinate axis.
Thus chamfered octahedron distance between P1 and P2 is for (i) the sum of Euclidean lengths of two line

segments, for (ii) 9+
√
6

15 times the sum of Euclidean lengths of mentioned above three line segments. In case of
|y1 − y2| ≥ |x1 − x2| ≥ |z1 − z2|, Figure 5 shows that some of the chamfered octahedron paths between P1 and P2.

Figure 5: CO way from P1 to P2

It is well known that the sphere in the 3-dimensional analytical space with taxicab metric is the octahedron. This
metrics for P1 = (x1, y1, z1), P2 = (x2, y2, z2)∈ R3 are defined as follows:

dT (P1, P2) = U + V +W,

where U, V,W are denoted the maximum, the middle and the minimum of quantities {|x1 − x2|, |y1 − y2|, |z1 − z2|},
respectively.

Lemma 3.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two points in R3. U12, V12, W12 denote the maximum,
the middle and the minimum of quantities of {|x1 − x2| , |y1 − y2| , |z1 − z2|} , respectively. Then

dCO(P1, P2) ≥ U12 + V12,
dCO(P1, P2) ≥ 9+

√
6

15 (U12 + V12 +W12) .
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Proof. Proof is trivial by the definition of maximum function.

Theorem 3.1. The distance function dCO is a metric. Also according to dCO, unit sphere is a chamfered octahedron in R3.

Proof. One can easily show that the chamfered octahedron distance function satisfies the metric axioms by similar
way in Theorem 2.1.

Consequently, the set of all points X = (x, y, z) ∈ R3 that chamfered octahedron distance is 1 from O = (0, 0, 0)
is

SCO =

{
(x, y, z) : max

{
U + V,

9 +
√
6

15
(U + V +W )

}
= 1

}
,

where U, V,W are the maximum, the middle and the minimum of quantities {|x|, |y|, |z|}, respectively. Thus the
graph of SCO is as in the figure 6:

Figure 6 The unit sphere in terms of dCO: Chamfered Octahedron

Corollary 3.1. The equation of the chamfered octahedron with center (x0, y0, z0) and radius r is

max

{
U0 + V0,

9 +
√
6

15
(U0 + V0 +W0)

}
= r,

which is a polyhedron which has 20 faces and 30 vertices, where U0, V0,W0 are the maximum, the middle and the minimum of
quantities {|x− x0|, |y − y0|, |z − z0|}, respectively. Coordinates of the vertices are translation to (x0, y0, z0) all permutations
of the three axis components and all possible +/- sign changes of each axis component of (0, 0, r) and

(
4−
√
6

5 r, 4−
√
6

5 r, 3+
√
6

5 r
)

.

Lemma 3.2. Let l be the line through the points P1=(x1, y1, z1) and P2=(x2, y2, z2) in the analytical 3-dimensional space
and dE denote the Euclidean metric. If l has direction vector (p, q, r), then

dCO(P1, P2) = µ(P1P2)dE(P1, P2)

where

µ(P1P2) =
max

{
Ud + Vd,

9+
√
6

15 (Ud + Vd +Wd)
}

√
p2 + q2 + r2

,

Ud, Vd,Wd are the maximum, the middle and the minimum of quantities {|p|, |q|, |r|}, respectively.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr, λ ∈ R. Thus,

dCO(P1, P2) = |λ|

(
max

{
Ud + Vd,

9 +
√
6

15
(Ud + Vd +Wd)

})

where Ud, Vd,Wd are the maximum, the middle and the minimum of quantities {|p|, |q|, |r|}, respectively, and
dE(A,B) = |λ|

√
p2 + q2 + r2 which implies the desired result.

The above lemma says that dCO-distance along any line is some positive constant multiple of Euclidean distance
along same line. Thus, one can immediately state the following corollaries:
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Corollary 3.2. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dCO(P1, X) = dCO(P2, X) .

Corollary 3.3. If P1, P2 and X are any three distinct collinear points in the real 3-dimensional space, then

dCO(X,P1) / dCO(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dCO−distances along a line are the same.

4. Isometry Group of Chamfered Octahedron and Chamfered Cube Spaces

Three essential methods geometric investigations; synthetic, metric and group approach. The group approach
takes isometry groups of a geometry and convex sets plays an substantial role in indication of the group of isometries
of geometries. Those properties are invariant under the group of motions and geometry studies those properties.
There are a lot of studies about group of isometries of a space (See [7, 10, 11])

It is mentioned in introduction section that in a Minkowski geometry the linear structure is the same as the
Euclidean one but distance is not uniform in all directions. Instead of the usual sphere in Euclidean space, the unit
ball is a certain symmetric closed convex set. In [17] the author give the following thereom:

Theorem 4.1. If the unit ball C of (V, ‖‖) does not intersect a two-plane in an ellipse, then the group I (3)of isometries of
(V, ‖‖) is isomorphic to the semi-direct product of the translation group T (3) of R3 with a finite subgroup of the group of linear
transformations with determinant ±1.

After this theorem remains a single question. This question is that what is the relevant subgroup?
Now we show that the group of isometries of the 3-dimesional space covered by CC−metric and CO−metric

are the semi-direct product of Oh and T (3), where octahedral group Oh are the (Euclidean) symmetry group of
the octahedron and T (3) is the group of all translations of the 3-dimensional space. In the rest of article we take
4 = CC or4 = CO. That is,4 ∈ {CC,CO}.

Definition 4.1. Let P, Q be two points in R3
4. The minimum distance set of P,Q is defined by

{X | d4(P,X) + d4(Q,X) = d4(P,Q)}

and denoted by [PQ] .

In general, [PQ] stand for a hexagonal dipyramid which is not necessary uniform in R3
CC and R3

CO as shown in
Figure 7.

Figure 7

Proposition 4.1. Let φ : R3
4 → R3

4 be an isometry and let [PQ] be the minimum distance set of P, Q. Then φ([PQ]) =
[φ(P )φ(Q)].

Proof. Let Y ∈ φ([PQ]). Then,

Y ∈ φ([PQ]) ⇔ ∃X ∈ [PQ] 3 Y = φ(X)
⇔ d4(P,X) + d4(Q,X) = d4(P,Q)
⇔ d4(φ(P ), φ(X)) + d4(φ(Q), φ(X)) = d4(φ(P ), φ(Q))
⇔ Y = φ(X) ∈ [φ(P )φ(Q)] .

Corollary 4.1. Let φ : R3
4 → R3

4 be an isometry and [PQ] be the minimum distance set. Then φ maps vertices to vertices
and preserves the lengths of the edges of [PQ].
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Proposition 4.2. Let φ : R3
4 → R3

4T be an isometry such that φ(O) = O. Then φ ∈ Oh.

Proof. Since4 ∈ {CC,CO}, there are two possibility for4. Let4 = CC, C1 = 4
√
3−3
13 , C2 = 2

√
3+5
3 , C3 = 1, and let

P1 = (C1, C1, C3), P2 = (−C1, C1, C3), P3 = (C1, C3, C1), P4 = (−C1, C3, C1), P5 = (C2, C2, C2), P6 = (−C2, C2, C2)

and R =
(
0, 10+4

√
3

13 , 10+4
√
3

13

)
be seven points in R3

CC . Consider [OR] which is the hexagonal dipyramid (Figure
8(a)).

Figure 8(a) Figure 8(b)

Also points P1, P2, P3, P4, P5, P6 lie on minimum distance set [OR] and unit sphere with center at origin. Moreover
these six points are the corner points of a chamfered cube’s hexagonal face. φ maps points Pi to the vertices of a
chamfered cube by Corollary 4.1. Since φ preserve the lengths of the edges and chamfered cube have 12 hexagonal
faces, there are 12 possibility to points which they can map, and also there are four possibility to points which they
can map on the hexagonal face of chamfered cube. Therefore total number of possibility are forty eight. If these
possibilities are handled one by one, it is seen that the elements of the desired subgroup are obtained.

Let 4=CO, C1 = 4−
√
6

5 , C2 = 1+
√
6

5 , C3 = 1, and let P1 = (0, 0, 1), P2 = (0, 0, 1), P3 = (C1, C1, C2), P4 =
(−C1, C1, C2), P5 = (C1, C2, C1), P6 = (−P1, C2, C1)R3

CO. Consider [OR] such that R = (0, 1, 1). that is the
hexagonal dipyramid with diagonal OR. (Figure 8(b)) Also points Pi lie on minimum distance set [OR] and unit
sphere with center at origin. Moreover these six points are the corner points of a chamfered octahedron’s octagonal
face. φ maps points Pi to the vertices of a chamfered octahedron by Corollary 4.1. Since φ preserve the lengths of
the edges, and chamfeerd octahedron have 12 octagonal faces, there are 12 possibility to points which they can
map, and also there are four possibility to points which they can map on the octagonal face of chamfered octagon.
Therefore total number of possibility are forty eight. Similar way, If these possibilities are handled one by one, it is
seen that the elements of the desired subgroup are obtained.

Theorem 4.2. Let φ : R3
4 → R3

4 be an isometry. Then there exists a unique TA ∈ T (3) and ψ ∈ Oh where φ = TA ◦ ψ

Proof. Let φ(O) = A such that A = (a1, a2, a3). Define ψ = T−A ◦ φ. We know that ψ(O) = O and ψ is an isometry.
Thereby, ψ ∈ Oh and φ = TA ◦ ψ by Proposition 4.2. The proof of uniqueness is trivial.
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