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Relations Among Bell Polynomials, Central Factorial
Numbers, and Central Bell Polynomials
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Abstract
In the note, by virtue of the Faà di Bruno formula and two identities for the Bell polynomials of the
second kind, the authors derive three relations among the Bell polynomials, central factorial numbers of
the second kind, and central Bell polynomials.
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1. Preliminaries
The Bell numbers Bk for k ≥ 0 can be generated [4, 7, 12] by
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As a generalization of the Bell numbers Bk for k ≥ 0, the Bell polynomials Tk(x) for k ≥ 0 can be generated [8–
10, 15, 17] by
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The polynomials Tk(x) for k ≥ 0 are also called [11, 18] the Touchard polynomials or the exponential polynomials.
It is clear that Tk(1) = Bk.

The central factorial numbers of the second kind T (n, k) for n ≥ k ≥ 0 can be generated [1, 6] by
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where

sinh t =
et − e−t
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(1.2)

is the hyperbolic sine function.
The central Bell polynomials B(c)

k (x) for k ≥ 0 can be generated [5] by
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In this note, by virtue of the Faà di Bruno formula and two identities for the Bell polynomials of the second kind,
we will discuss relations among the Bell polynomials Tk(x), central factorial numbers of the second kind T (n, k),
and central Bell polynomials B(c)

k (x).

2. Lemmas
The Bell polynomials of the second kind, denoted by Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined [2, 3,

11, 13, 15–17] by
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For proving our main results, we need the following lemmas.

Lemma 2.1 ([2, 3, 14, 19–21]). The Faà di Bruno formula can be described in terms of Bn,k(x1, x2, . . . , xn−k+1) by
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For n ≥ k ≥ 0, the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy the identity
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is valid, where a, b ∈ C.

Lemma 2.2 ([14, 19, 21]). For n ≥ k ≥ 0, the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy the
closed formula
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3. Main results and their proofs

Now we are in a position to state and prove our main results.

Theorem 3.1. For k ≥ 0, we have
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Proof. Utilizing (1.2) and (1.1) in sequence, it follows that
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Comparing this with (1.3) yields (3.1).
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From (1.3), (2.1), (2.2), and (2.3) in sequence, it follows that
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where u = u(t) = sinh t
2 . Consequently, we derive the relation (3.2).

Combining the relation (3.1) with the equation (3.2) leads to the equality (3.3). The proof of Theorem 3.1 is
complete.
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