G.Ü. Fen Bilimleri Dergisi, 16(4):687-690, 2003 ISSN 1303-9709

G.U. Journal of Science 16(4):687-690, 2003

VIBRATIONAL SPECTROSCOPIC STUDY ON HOFMANN-Td-TYPE COMPLEXES: M(3,4-lutidine)2M'(CN)4 (M=Mn(II) or Cd(II), M'=Cd(II) or Hg(II))

Akif ÖZBAY*, Şenay YURDAKUL

Gazi Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Teknikokullar, 06500, Ankara, TÜRKİYE, aozbay@gazi.edu.tr

ABSTRACT

For new Hofmann-Td-type complexes $M(3,4-lutidine)_2M(CN)_4$, where M=Mn or Cd M'=Cd or Hg, have been prepared and their infrared and Raman spectra are reported. The spectral data have been interpreted in accord with the structure similar to those found in Hofmann-Td-type host.

Key Words: Hofmann-Td-type complexes; 3,4-lutidine; IR and Raman spectra

M(3,4-lutidine)2M'(CN)4 (M=Mn(II) or Cd(II), M'=Cd(II) or Hg(II)) HOFMANN-Td TİPİ BİLEŞİKLERİN TİTREŞİM SPEKTROSKOPİSİ''

ÖZET

Genel formülü M(3,4-lutidine)₂ M'(CN)₄, (M=Mn ve Cd M'=Cd ve Hg,) ile verilen Hofmann -Td-tipi bileşiklere 4 yeni örnek kazandırıldı. Elde edilen bileşiklerin kırmızı-altı ve Raman spektrumları kaydedilip titreşim frekans ve kipleri saptandı. Bu spektrumlar değerlendirilerek literatürdeki benzer Hofmann-Td-tipi çalışmalar ile karşılaştırıldı.

Anahtar Kelimeler : Hofmann-Td-tipi bileşikler; 3,4-lutidine; IR ve Raman spektroskopisi

1. INTRODUCTION

There is a group of complexes with the general formula $CdL_2M'(CN)_4$ among Hofmann-type and the analogous host lattices. In this formula, L_2 refers to be a bidendate or a pair of monodendate ligand molecules containing N-terminate donor atoms and M' refers to be Cd or Hg. In these compounds, the host lattice is formed from infinite $-Cd-L_2-Cd-L_2$ chains extending along a- and baxes alternately and the tetrahedral $M'(CN)_4$ ions arranged between the consecutive crossing - $Cd-L_2-Cd-L_2$ chains with the N-terminate bound to the Cd atoms (1-3). This framework provides two kinds of cavities of and for the guest molecules. The cavity is a rectangular box similar to those in the Hofmann-type host, while the cavity is a twisted biprism as demostrated in previous papers (1-3). This is so-called Hofmann-Td-type host structure differs from the host structure of Hofmanntype clathrate, designated with a formula $M(NH_3)_2(CN)_4 \cdot 2C_6H_6$ (M= Mn, Fe, Co, Ni, Cu, Zn or Cd; M' = Ni, Pd or Pt) as in the Hofmann-type. M and M' exhibit octahedral and square planer coordination, while in the Hofmann-Td-type the corresponding metals (M= Cd and M' = Cd or Hg) are octahedrally and tetrahedrally surrounded (4,5). Thus we have prepared four new dilutidinemetal(II) Tetracyanometallete (II) host complexes, M(3,4-lutidine)₂M'(CN)4, (M= Mn or Cd M' = Cd or Hg). In this study, we report the IR spectra of Mn-Cd-lutidine, Mn-Hg-lutidine, Cd-Cd-lutidine and Cd-Hg-lutidine. In addition to that, we also report the Raman spectra of Cd-Cd-lutidine and Mn-Hg-lutidine could not obtained since there are dark brown compounds.

Assignments.	Assignments. 3,4-lutidine [*] IR Raman		Cd-Cd-L		Cd-Hg-L		Mn-Cd-L	Mn-Hg-L IR	
Ū			IR Raman		IR Raman				
a' U1	3055vs		3074w		3074w		3072w	3073w	
v ₂	3021vs	3027m	3026vw		3026w			3026vw	
v_3	3010vs		3014w		3013w		$\overline{301}$ 4w		
ν ₄	1594vs	1594s	1609s	1610s	1608s	1610m	1609s	1608s	
υ ₅	1560s	1563w	1560w		1560w		1561w	1559w	
υ ₆	1492vs	1493w	1499s		1501m		1500s	1501s	
υ ₇	1405vs	1403w,sh	1418s		1417s		1416s	1416s	
υ ₈	1349w,sh	1347w							
υ9	1305m	1304w	1314m		1313w	1313w	1314m	1313m	
v_{10}	1237m	1240s	1242vw	1243m	1243w	1244m	1243vw	1244w	
υ ₁₁	1194vs	1191m	1200s	1199w	1201s	1202w	1200s	1199s	
v_{12}	1176m	1175m	1177m	1176w	1176m	1179w	1175w	1175w	
v_{13}	1066s	1068w	1084vs	1082m	1084vs	1083m	1082s	1082s	
v_{14}	839vs	842w	862vs		862s		857s	861s	
v_{15}	751m	758vs	754w	753vs	754sh	756vs	752sh	754w	
v_{16}	600m	604s	611m	608m	610m	609m	610m	610m	
v_{17}	524s	528sh	533s		532m		533m	533m	
υ ₁₈	409w	409vw	405vw		405vw		407vw	405w	
υ ₁₉	258m	260m	266m		267w		279vw	269sh	
a									
υ ₂₀	985m	984m	987vw		988vw		985sh	986sh	
υ ₂₁	918w	920w	921w		921w		920w	921w	
υ ₂₂	821vs	829w	828vs		828s		828s	826s	
υ ₂₃	726vs	733vw	723vs		724s		724vs	724vs	
υ ₂₄	506s	509m	533sh	519w	522sh	523w	521vw	523sh	
υ ₂₅	422s	426w	426m		426m		426m	427m	
υ ₂₆		308w				302w			
v ₂₇		181m		190w		189m			
v as(CH3)	2971vs	2976m	2992sh		2993sh		2991m	2992m	
$v_{as}(CH_3)$ $v_{as}(CH_3)$	2971vs 2947vs	2970m 2947m	2992sn 2967m	2967w	2993sii 2967m	2965w	2997m 2967m	2992m 2967m	
$v_{\rm as}(CH_3)$ $v_{\rm s}(CH_3)$	2947Vs 2923vs	2947m 2920m	2907m 2928m	2907w 2927s	2907m 2928m	2903w 2929m	2907m 2928m	2907m 2928m	
	1447vs	1449m	1443vs	67613	1445vs	2929111	1447vs	1446vs	
$\delta_{as}(CH_3)$	1384vs	1385s	1445VS 1386s	1308m	1387m	1389m	1387m	1387m	
$\delta_{\rm s}(\rm CH_3)$	1384vs 1048m	1383s 1048sh	1380s 1061w	130011	1062w	1309111	1387m 1062w	1387m 1063w	
(CH ₃) rock	1048m 1020s	1048sh 1015w	1061w 1024m		1062w 1024s	—	1062w 1024m	1063w 1023m	
(CH ₃) rock		1013W	1024m 1006w			<u> </u>			
(CH ₃) rock	1001m	020			1006w		1005w	1005w	
(CH ₃) rock	918w	920w	921w		921w		920w	921w	

Table 1. Fundamental vibrational wavenumbers (cm⁻¹) of 3,4-lutidine in the complexes

* Taken from Ref.(6); v = very, s = strong, m = medium, w = weak, sh = shoulder, L=3,4-lutidine

2. EXPERIMENTAL

The complexes were prepared by adding slightly more than two milimoles of 3,4-lutidine and one milimole of potassium tetracyanometallete $K_2M(CN)_4$ (M= Cd or Hg) solution in water to one milimole M(II) (M = Mn or Cd) chloride solution in water. The precipitate was filtered, washed

with water, ethanol and ether successively, and kept in a desiccator. Infrared spectra of the compounds were recorded between 4000-200 cm⁻¹ on perkin-Elmer 1330 spectrometer which calibrated using polystyrene. The samples were prepared as mulls in nujol and hexachlorobutadiene between CsI windows, and KBr discs. The Raman spectra of the Cd-Cd-lutidine and Cd-Hg-lutidine were obtained using the 514.5 nm line of a Spectra-Physics Model 2016-4S Ar⁺ ion laser and recorded on Jobin-Yvon U1000 (wavelength drive) spectrometer. The freshly prepared samples were analyzed for Mn and Cd by Philip 49200 atomic absorption spectrophotometer, and for C,H and N by Leco CHN-600 Model analyzer with the results are given in Table 3.

Assignments	K ₂ Cd(CN) ₄ *		K ₂ Hg(CN) ₄ *		Cd-Cd-L		Cd-Hg-L		Mn-Cd-	Mn-Hg-
									L	L
	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	IR
$A_1 v_1(CN)$		2149		2149		2178vs		2177vs		
F ₂ v ₅ (CN)	2145		2146		2164vs	2163sh	2166vs	2168sh	2162s	2163vs
Hot band									2130vw	2155vw
$A_1 v_2(MC)$										
$F_2 v_6 \\ (\nu(MC) + \delta(NCM))$	316		330		356vs		354vs		384s	362s

Table 2. The vibrational wavenumbers (cm-1) of M'(CN)4 group for Cd-Cd-L, Cd-Hg-L, Mn-Cd-L, Mn-Hg-L

Taken from Ref.(7); v = very, s = strong, w = weak, sh = shoulder, L=3,4-lutidine

Table 3. Analytical data of M-M'-3,4-lutidine complexes (M=Mn or Cd M'=Cd or Hg)

Compounds	Found%					Calculated%					
	Mn	Cd	C	H	N	Mn	Cd	С	H	N	
Mn-Cd-lutidine	11.85	22.15	43.00	3.97	16.70	11.31	23.14	44.51	3.73	17.30	
Mn-Hg-lutidine	9.61		37.65	3.37	14.40	9.57		37.67	3.16	14.64	
Cd-Cd-lutidine		41.73	38.54	3.20	14.97		41.39	39.80	3.34	15.47	
Cd-Hg-lutidine		18.02	34.67	2.46	12.94		17.80	34.24	2.87	13.31	

3. RESULTS and DISCUSSION

The spectral features of Mn-Cd-L, Mn-Hg-L, Cd-Cd-L and Cd-Hg-L complexes are found to be very similar, suggesting that they have isomorphous crystal structures. Owing to the lack of structural data the assignments were made by treating the lutidine molecule (L) and the $M'(CN)_4$ moities as isolated units.

A detailed IR and Raman spectroscopic study of 3,4-lutidine have been reported (6) and confirmed by the normal coordinate calculations (7). To the best of our knowledge IR or Raman measurements have been reported for metal complexes of 3,4-lutidine in the 4000-200cm-1 region (8). The assignments and the wavenumbers of the vibrational bands of 3,4-lutidine observed in the spectra of the compounds studied are listed in Table 1, together with the wavenumbers of 3,4lutidine in liquid (6) on which the assignments are based. The designation of the species and the numbering of the vibrations are the same as that used by Green et al. (6). We made the assignment for coordinated 3,4-lutidine by making a one-to-one comparison with the assignments for liquid 3,4lutidine (Table 1). On complexing, lutidine vibrational frequencies generally increase and the inplane modes are the most strongly perturbed. These increases in frequency when compared to those of free molecule mainly was explained in term of coupling of the internal vibrational modes of 3,4lutidine with M-N vibrations. The spectra in Table 1 shows that each of the fundamental frequencies of Cd (3,4-lutidine)2M'(CN)₄ are reproduced with only minor shifts in the spectra of the complexes studied. The striking correspondence between these frequencies indicates that the 3,4lutidine molecules in our complexes coordinate to Mn (or Cd).

In the Td-type clathrates and Td-type host compleses studied previously (1-3,9), the metal atom

M' in M'(CN)₄ is tetrahedrally surrounded by the carbon ends of four CN ions. Therefore, it is reasonable to assume that the complexes studied here also have tetrahedral M'(CN)₄ moeities In assigning the bands attributable to the M(CN)₄ (M= Cd or Hg) ions in the spectra of our compounds, we refer to the work of Jones (7) who presented vibrational data for the salts $K_2M(CN)_4$ (M= Cd, Hg) in the solid state (7). The vibrational data for M'(CN)₄ groups in the compounds studied are given in Table 2, together with the vibrational wavenumbers of $K_2Cd(CN)_4$ and $K_2Hg(CN)_4$. The assigned wavenumbers of the M'(CN)₄ groups of the compounds appear to be much higher than for isolated M'(CN)₄ ion (7). Therefore, they can be used as references to account for the units. Such frequency shifts have been observed for Td-type (9,10) and Hofmann-type (11-14) compounds, and are attributed to the mechanical coupling of the internal modes of M'(CN)₄ with metal vibrations (Mn-NC or Cd-NC). it follows that the N-terminate of the M'(CN)₄ groups are also bound to an Mn (or Cd) atom in our complexes.

REFERENCES

- Kuroda, R., "Metal ammine cyanide aromatic clathrates XV. new type clathrates. new type clathrates compound crystal structure of Cd(NH3)2Hg(CN)4.2C6H6", *Inorg. Nucl. Chem. Lett.*, 9,13 (1973).
- 2 Iwamoto, T., "Recent developments in the chemistry of hofmann-type and analogous clathrates", *J. Mol. Struct.*, 75,51 (1981).
- 3. Nishikiori, S., and Iwamoto, T., "Crystal Structure of Etilendiamine Cadmium (II) Tetracyanocadmate (II)-Benzene (1/2) and Etilendiamine Cadmium (II) Tetracyanocadmade(II)", *J. Incl. Phenom.*, 3,283 (1985).
- 4. Iwamoto, T., Kiyoki, M. and Matsuura, M., "Cyclohexadienly radicals in irradiated catena -cyanomercurate (II) benzene (1/2) and the analogous clatharates" *Bull. Chem. Soc. Jpn.*, 51,390 (1978).
- Nishikiori, S., Iwamoto, T. and Yoshino, Y., "Three dimensional metal complex structure with ambident propylenediamine ligands saving as the hosts of the aromatic guest molecules hofmann-Pn and Pn-Td type clatrates" *Bull. Chem. Soc. Jpn.*, 53,2236 (1980).
- Green, J. H. S., Harrison, D.J., Kynaston, W., Paisley, H. M., "The vibrational spectra of the dimethylpyridines", *Spectrochim. Acta.*, 26 A, 2139 (1969).
- Jones, L. H., "Vibrational spectrum and structure of metal cynide complexes in the solit state V. K2Zn(CN)6, K2Hg(CN)4 and K2Cd(CN)4" Spectrochim. Acta, 17, 188(1961)
- Özbay, A. and Yurdakul, Ş., "Vibrational spectroscopic studies of 3,4-lutidine metal (II) tetracyanonickelate complexes" *Spectroscopy Letters*, 28(4), 611-619 (1995).
- Bahat, M. and Yurdakul, Ş., "Fourier transform infrared and raman studies on metal (II)-di(3,5dimethylpyridine) tetracyanometalate complexes" J. Mol. Struct., 408/409,395-398 (1997).
- Kasap, E and Kantarcı, Z., "Vibrational spectrocopic studies on the hofmann-Td-type clathrates", J. Incl. Phenom., 20,33(1995).
- Kasap, E., Özbay, A. and Özçelik, S., "Infrared spectroscopic study of the hofmann-diam-type clathrates: M(1,6-diaminohexaneNi(CN)4.C6H6 (M=Ni, Co or Cd)" Spectroscopy Letters, 30(3), 491(1997).
- Kasap, E., Özbay, A. and Özçelik, S., "Infrared and raman spectroscopic study of the hofmann-type clathrates M(1,7-DiaminoheptaneNi(CN)4.G(M=Ni or Co; G = chlorobenzene, m-xylene or naphthalene)" J. Mol. Struct., 408/409,13 (1997).
- Kasap, E. and . Özbay, A., "Infrared spectroscopic study of the hofmann-daon-type clathrates: M(1,8diaminooctane)Ni(CN)4.G (M=Co, Ni or Cd; G = aromatic guest molcules)" J. Incl. Phenom., 28: 335 (1997).
- Özbay, A. and Yurdakul, Ş., "Vibrational spectroscopic studies of 2,4-lutidine metal (II) tetracyanonickelate complexes" J. Mol. Struct., 349,13 (1995).

Accepted:03.01.2002

Received:21.07.2003