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ABSTRACT 

In the presence of outliers, least squares estimation is inefficient and can be biased. In the 1980’s several 
alternatives to M-estimation were proposed as attempts to overcome the lack of resistance. Least Trimmed 
Squares (LTS) is a viable alternative and is presently the preferred choice of Rousseeuw and Ryan (1997, 2008). 
Another proposed solution was S-estimation. This method finds a line that minimizes a robust estimate of the 
scale of the residuals. This method is highly resistant to leverage points, and is robust to outliers in the response. 
However, this method was also found to be inefficient.  
 
The aim of this study is to compare S-estimator with other robust estimators and the least squares estimators and 
also an example is given to illustrate the efficiency of S-estimator. The data used in this example are the air 
pollution measures. And finally a simulation study has been presented in this study. 
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1. INTRODUCTION 

It is well known that least squares estimator in the linear 
regression model is not robust: only one observation 
can give rise to arbitrarily poor estimates of the 
coefficients.  

Hampel [7] proposed an estimator based on minimizing 
the median absolute deviation of the residuals and gave 
its breakdown point as 1/2, the highest possible value 
for affine equvariant estimates. S estimator is the 
generalization of least median squares. 

Rousseeuw and Yohai[13] introduced S-estimator in 
framework of multiple regression. They proposed to 
call them S-estimators because they are based on 
estimators of scale. These estimators were shown to 
have the same asymptotic properties as M estimators. 
Also these estimators have good robustness proporties, 
as their breakdown point has 50%. 

Davies [3] investigated some properties of S-estimators 
of multivariate location and covariance. He studied 
consistency, asymptotic normality and breakdown point 
using different definition from the one given by 
Rousseeuw and Yohai[13]. 

2. STATISTICAL BACKROUND AND METHODS 

The general linear regression model is given 

i
t
ii xy εβ +=  for i=1,...,n. 

Where xi and β  are p-dimensional column vectors, iε  

is the error term with E( iε )=0 and          Var( iε )= 2σ . 
Our aim is to estimate the unknown regression 
parameterβ . The most popular estimation technique is 
the classical least squares method and can be defined as 
following, where e is the residual term,  
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=

−
n
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However, this estimator is not robust, because the 
occurance of even one outlier can spoil the estimates 
very badly.  

In connection with this effect, the breakdown point of 
the least squares estimator is 1/n and approaches zero 
when n tends to infinity([4]). The breakdown point was 
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introduced by Hampel [6]. In words, the breakdown 
point is the smallest fraction of contaminated data.  

To find more robust estimators, first step came from 
Edgeworth [5]. His least absolute values or L1 criterion 
is, 

minimize ∑
=

−
n

i

t
ii bxy

1
                                  (2.2) 

But this estimator still cannot cope with outlying xi and 
breakdown point=1/n →0.  

Huber [8,9] proposed the regression M-estimators as an 
alternative robust regression estimator to the least 
squares. This method based on the idea of replacing 

2
ie  in equation (2.1) by )e( iρ . An M-estimate 

minimizes the following function  

minimize ∑
=

ρ
n

1i
i )e(                                            (2.3) 

where )e( iρ is a symmetric function with a unique 

minimum at zero. A widely used )e( iρ function is the 
Huber function and M-estimators obtained from this 
function are sometimes called Huber M-estimates or 
monotone M-estimates. Huber M-estimator is robust 
against outliers in y-direction, but it is not robust 
against outliers in x-direction. Because of vulnerability 
to leverage points, generalized M-estimators (GM-
estimator, for short) were considered ([10]). The basic 
idea is to bound influence of outlying xi using some 
weight function. GM estimator for regression do not 
have good global robustness properties measured by the 
breakdown point which can not be greater than 1/(p+1). 
This problem has been solved by the one-step GM-
estimator that have high breakdown and bounded 
influence function. 

All this raises the question whether it is possible to 
obtained robust regression with high breakdown point. 
The first affirmative answer was given by Siegel [14] 
and he proposed the repeated median (RM). This 
estimator has 50% breakdown point but is not affine 
equivariant, it depends on the choice of the coordinate 
axes of the xi. The next high breakdown point estimator 
was the least median of squares (LMS) estimator ([11]), 
has 50% breakdown point and is a affine equivariant. 
But it does not have good asymptotic properties. The 
other estimator with high breakdown point is the least 
trimmed squares (LTS) estimator. It is obtained from 

minimize ∑
=

h

1i

2
)i(e  

where 2
)n(

2
)2(

2
)1( e,...,e,e  are the ordered squared 

residuals, from smallest to largest, and the value of h 
must be determined. Rousseeuw proposed LTS in a 
symposium in 1983.  

A good source is Rousseeuw[11].  

Rousseeuw and Yohai[13] introduced S-estimators 
which is the generalization of least median squares. S-
estimators are last HBP estimators. They proposed to 
call them S-estimators because they are based on 
estimators of scale. These estimators were shown to 
have the same asymptotic properties as M estimators of 
regression. 

2.1 S Estimator 

A generalization of least median squares was given by 
Rousseeuw and Yohai[13] who introduced a new class 
of estimator, S-estimator. They proved consistency and 
asymptotic normality for a restricted class of S-
estimator. 

Let ρ  be a symmetric, continuously differentiable 
function such that ρ (0)=0 and is strictly increasing on 

[0,c]. Let k= ∫ Φρ )x(d)x( , where Φ  is the 

standard normal distribution.  

Rousseeuw and Yohai[13] introduced so-called S-
estimator, which is derived from a scale statistics in an 
implicit way, corresponding to s(θ) 

minimize s(θ), 

where s(θ) is a certain type of robust M-estimate of the 
scale of the residuals )(e),...,(e ni θθ .  

S-estimator ([13]) constitutes another class of high 
breakdown affine equivariant estimators with 
convergence rate n-1/2. They are defined by 
minimization of the dispertion of the residuals: 

))ˆ(e),...,ˆ(e(s n1ˆ
θθ

θ
minimize                     (2.4) 

with final scale estimate 

))ˆ(e),...,ˆ(e(sˆ n1 θθ=σ  

The dispersion ))(e),...,(e(s n1 θθ  is defined as 
the solution of   

∑
=

=ρ
n

1i
s
e
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K is often put equal to [ ]ρΦE , where Φ is the 
standard normal. The function ρ  must satisfy the 
following conditions:  

(1) ρ  is symmetric and continuously differantiable, 
and ρ (0)=0. 

(2) There exists c>0 such that ρ  is strictly increasing 
on [0,c] and constant on [c, ∞).  

If there are more than one solution from (2.5), then 
)e,...e(s n1  equal to the supremum of the set of 

solutions ([12,13]).  
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In equation (2.5), ρ  is taken Tukey’s biweight 
function and hyperbolic tangent estimator. Tukey’s 
biweight function is given by 
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ρ  will depend on a positive tuning parameter c as 

)c/t(c)t( 2
c ρ=ρ . The turning parameter plays a 

very important role for the asymptotic and breakdown 
properties of s-estimator for regression. For all values of 
c, ρ (∞) will be the same so that to obtain ½ breakdown 
point. To get an S-estimator with the asymptotic 
breakdown points, one can choose c=2.937, 3.42 and 
4.00 respectively. Setting c=1.5476 gives 1/2 
breakdown point but the asymptotic relative efficiency 
(ARE) of the estimator for b is 28.7%. On the other 
hand the ARE is 91.7% for c=4.096, but breakdown 
point is 15%. This demonsrated that one has trade-off 
between high breakdown point and high asymptotic 
relative efficiency ([1]) 

3. APPLICATIONS 

The aim of this study is to compare S-estimator with 
other robust estimators and the least squares estimators 
and also an example is given to illustrate the efficiency 
of  S-estimator. The data used in this example are the 
air pollution measures between 1995:01-1995:04.([2]).  

The variables are, 

y: sulphur dioxide (SO2) 

x1: pressure 

x2: minimum daily temperature, 

x3:humidity 

x4: sun 

x5: rain 

x6: speed of wind 

x7: direction of win  

G: dummy variable 

Months are plugged into the model as a dummy variable 
and multivariate general model is shown as follows, 
where e is the residual term.

,eGbxbxbxbxbxbxbxbbSO 87766554433221102 +++++++++=
 

 

In this model, the weak collinearity is detected among 
the explanatory variables and the outlier is not present 
after the examination. The parameter estimations of the 
model are determined based on LS, Huber, LTS and S-
estimator by using S-Plus.  

4. RESULTS AND DISCUSSION 

The results of the parameter estimations are given Table 
1. The estimates of the parameters are very close to the 
actual, values except constant term. The difference in 
the constant term may be because of collinearity issue.  

Table 1. The results of  the parameter estimations 

 LS Huber LTS S 

Constant 0.9862 1.7849 2.5801 0.7626 

b1 0.0047 0.0039 0.0032 0.0050 

b2 -0.0336 -0.0352 -0.0387 -0.0355 

b3 -0.0014 -0.0015 -0.0018 -0.0016 

b4 -0.0003 -0.0004 -0.0003 -0.0005 

b5 -0.0378 -0.0389 -0.0418 -0.0410 

b6 0.0093 0.0132 0.0217 0.0190 

b7 -0.0398 -0.0420 -0.0519 -0.0414 

b8 0.3021 0.2855 0.2054 0.2718 

 

There is no outlier in the data set. However, we try to 
find out the effects of outliers in the estimated 
parameters and compare estimation of the parameters 
by replacing an outlier with a datum in response 
variable. And the same procedure is repeated for the 

case of two outliers cases in response variable. The 
results of the parameter estimations of the model for 
one outlier and two outliers cases are presented in 
Tables 2-3. 
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Table 2. The results of  the parameter estimations for one outlier. 

 LS Huber LTS S 

Constant 9.5637 4.3804 7.2808 2.4112 

b1 -0.0036 0.0014 -0.0016 0.0034 

b2 -0.0336 -0.035 -0.0348 -0.0355 

b3 -0.0018 -0.0019 0.00026 -0.00206 

b4 0.0005 -0.0002 -0.00037 -0.00043 

b5 -0.0296 -0.0367 -0.0436 -0.0395 

b6 -0.0037 0.0087 0.0158 0.01614 

b7 -0.0577 -0.0483 -0.0388 -0.0457 

b8 0.3342 0.2983 0.2346 0.2834 

 

Table 3. The results of  the parameter estimations for two outlier. 

 LS Huber LTS S 

Constant 11.2018 4.7731 1.6591 2.3818 

b1 -0.0058 0.00081 0.0039 0.0033 

b2 -0.0281 -0.0328 -0.0329 -0.0342 

b3 0.00198 0.0000106 0.00019 -0.0012 

b4 0.00115 0.0000418 -0.00051 -0.00030 

b5 -0.0257 -0.03525 -0.03021 -0.03896 

b6 0.0043 0.01256 0.01713 0.01821 

b7 -0.0401 -0.0401 -0.03582 -0.0417 

b8 0.3094 0.2809 0.2466 0.2746 

 

The estimates of the parameter differ in Table 2 when 
they are compared with the values in Table 1. The LS 
estimation is affected by the outlier, as excepted. While 
Huber and S-estimator stay unchanged, LTS estimator 
is affected a little. However S-estimator in terms of 
values of parameter estimates is approximately the same 
as those in Table 1.  

The results of the parameter estimations of the model 
for two outliers case are presented in Table 3. It can be 
seen that the Huber and LTS estimators are less affected 
than the LS estimator, When there are two outliers, S-
estimator stays unchanged and has similar results as in 
Tables 1-2. 

As a result, it can be infered that the number and 
magnitude of outlier do not affect S-estimator. 

4.1 Simulation Study 

In this paper, in order to compare robust estimators with 
LS, a simulation study has been presented. In order to 

obtain the MSE of the estimators, a program was coded 
by using S-Plus functions. We generated 15 
independent replicates of five independent uniform 
random variables on U[-1,+1] and 15 independent 
normally distributed errors ei with expectation 0 and 

variance 2σ =0.01, 1, 10 and 100 respectively.  Then 
we generated observations for yi according to the 
following model:  

Beta1: ( 0,0,6,3,5  )  

It is designed to consider model without intercept.  In 
order to see the effects of the outliers on the estimators, 
the estimators are examinated in cases of no outlier, one 
outlier and two outliers for e.  Also, the MSE values of 

the estimators according to 2σ are given in Tables 4-5. 

   

 

 

 

Table 4. MSE of estimators in case of no outlier 
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  2σ =100 2σ =10 2σ =1 2σ =0.01 

LS 0.062710 0.0671099 0.06271099 0.06271099 

Huber 0.067337 0.0673375 0.06733756 0.06733756 

LTS 0.129084 0.1288023  0.12943370 0.1282498 

S 0.134558 - - - 

 

Table 5. MSE of estimators in case of one outliers 

 2σ =100 2σ =10 2σ =1 2σ =0.01 

LS 0.09231048 0.3716438 3.156176 309.0605 

Huber 0.07472932 0.07467774 0.07472412 0.0761199 

LTS 0.11276860 0.1072625  0.1080733 0.1102873 

S 0.1315891 - - - 

 

The hyphen in Tables 4-6 means that we have no result as the rank is equal to 0. 

 

Table 6. MSE of estimators in case of two outliers 

 2σ =100 2σ =10 2σ =1 2σ =0.01 

LS 0.1183422 0.6705631 6.183873 612.2494 

Huber 0.09996891 0.1037333 0.1049549 0.1252048 

ITS 0.1500158 0.09320952  0.0945125 0.09408558 

S 0.2261035 - - - 

 

According to the Tables, the MSE of estimators are 
similar for the entire variance situations in the case of 
no outliers. Naturally, the most effected estimator from 
outliers is LS. When the variance is 100, S estimator is 
not affected from outliers. Equally Huber and LTS 
estimators are not affected from outliers for all values of 
variance. Moreover, it is seen that LTS has the smallest 
MSE even if there are two outliers.  

Generally, as expected, robust estimators have better 
performance than LS in case of outliers. 
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