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ABSTRACT 

Aircraft dynamics are in general nonlinear, time varying, and uncertain. A control system (classical control 
systems) designed for a flight condition, may not provide the desired stability and performance characteristics in 
case of deviation from the equilibrium point. There are numerous studies regarding flight control in the 
literature. One of them is fuzzy flight control system Fuzzy Logic Controllers (FLCs) from their inception have 
demonstrated a vast range of applicability to processes where the plant transfer function is not defined but the 
control action can be described in terms of linguistic variables. FLCs are also being used with improved 
performance instead of “classical" controllers where the plant transfer function is known. Most of the 
applications about the design of fuzzy flight control are in simulation level. In this study, the design of classical 
and fuzzy PD controller for the pitch angle control system is analyzed and the results are compared for a very 
large, four-engine passenger jet aircraft. 
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1. INTRODUCTION

The aim of a flight control system (FCS) of an aircraft is 
to maintain a safe and economic operation. Thus, the 
desired flight missions can be accomplished even under 
unexpected events.  In the early days of flight, safety was 
the main concern of a flight control system. Since the 
number of flights and number of people using planes for 
travel has increased, safety is even more important.  

Aircraft dynamics are in general nonlinear, time varying, 
and uncertain. Generally, the dynamics are linearized at 
some flight conditions and flight control systems are 
designed by using this linearized mathematical model of 
the aircraft. However, some aerodynamic effects are very 
difficult to model resulting to uncertainties in the aircraft 

dynamics and the dynamic behavior of an aircraft may 
change in a short period of time as a result of internal 
and/or external disturbances. Thus, a control system 
designed for a specific flight condition may not be 
suitable if the conditions change from this flight 
condition. In this case, the performance of the aircraft 
may be unsatisfactory. Moreover, unexpected situations 
such as changing weather conditions and system failures 
are difficult to model and thus difficult to translate into 
appropriate classical control designs [1-2-3].  

As the complexity of aircrafts increase, classical methods 
become unsatisfactory to yield acceptable performance 
[2] and come to its limits when controllers for Multi-
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Input Multi-Output (MIMO)  systems with high internal 
coupling are to be designed. For a higher-number 
passenger aircraft or a new supersonic commercial 
transport, powerful and robust techniques are required 
[4]. 

There are numerous studies regarding flight control in the 
literature such as adaptive control [5-6], µ synthesis 
control [7-8-9], H∞ control [10-11-12], multi model 
control [13-14], neural control [15], adaptive neural 
control [16-17], gain scheduling control [18], control 
system with a genetic algorithm optimization process 
[19-20] and fuzzy control [21-22].  

These methods have many different features. A common 
feature is that each of them is developed to achieve 
advantages over classical techniques. The classical 
approach in which each mode and flight condition is 
treated as a separate problem has led to mode 
proliferation and the need for complex algorithms. To 
avoid functional integration at the end of the FCS design, 
which is too late, an all-encompassing and consistent 
design strategy is necessary. Throughout the design 
process a "systems approach" strategy should be applied, 
supported by good requirements, design tools and design 
models. Application of advanced techniques promises a 
significant reduction of design time because it would 
remove the time-consuming classical "one-loop-at-a-
time" approach and reduce the number of design points 
for which a controller has to be designed [4]. 

Among these methods, fuzzy systems have different 
kinds of applications (regulating the  velocity of a freight 
train, optimization trip time and energy consumption of a 
high-speed railway, helicopter flight control system, 
control of heating, ventilating and air conditioning 
systems, hi-tech filming devices (photo and recording 
cameras), washing machines, microwave devices, 
industrial control systems, high performance medical 
instruments, railway vehicle control systems, autonomous 
vehicle control, such as trajectory tracking, or obstacle 
avoidance etc.) in many areas [23-24-25-26-27]. 

Fuzzy control depends on the fuzzy algorithm between 
the information of process and control input. Fuzzy 
controllers from their inception have demonstrated a vast 
range of applicability to processes where the plant 
transfer function is not defined but the control action can 
be described in terms of linguistic variables. Fuzzy 
controllers are also being used to improve the 
performance of a system where the plant transfer function 
is known [28-29]. 

In the literature, there are different applications of fuzzy 
systems in aviation. Most of the applications about the 
design of fuzzy flight control are in simulation level. 

NASA developed a training simulator where a fuzzy 
control is used for STA (Shuttle Training Aircraft) that is 
modified from a Gulf Stream II business jet. When the 
STA was first developed in 1975 conventional linear 
control systems were used. Although these systems 
performed well, there were areas that could be improved. 
The use of fuzzy control was investigated with the 
conclusion that implementing it in the STA would 
improve the control system performance. It also allows 
for a design based on the physical characteristics of the 

plant, or STA, as opposed to the previous design based on 
an approximate mathematical model of the plant. This, 
plus the inherent structure of fuzzy control, allows for an 
easier implementation of a complex nonlinear control 
system. The nonlinear characteristic of fuzzy control 
systems is the biggest advantage over the old linear 
control system. In the end, the fuzzy control system’s 
overall performance is better; it is more than the original 
linear control system. The fuzzy control has improved the 
simulation fidelity of the STA and consequently astronaut 
training [21]. 

An approach based on a fuzzy logic controller was 
implemented to control and regulate the atmospheric 
plasma spray processing parameters (arc current 
intensity, total plasma gas flow, hydrogen content) to the 
in-flight particle characteristics (average surface 
temperature and velocity) [22].  

Researchers at the U.S. Bureau of Mines, University of 
Alabama, and the U.S. Army, have developed a fuzzy 
system for controlling the flight of UH-1 helicopters 
through various maneuvers. A genetic algorithm is used 
to discover rules for effective control of the helicopter. 
The performance of the controller is tested both in 
simulation and in actual flight. The developed fuzzy 
controller architecture is general enough to be applicable 
to a variety of rotorcraft. Moving the controller to a new 
helicopter simply requires discovering rules for the fuzzy 
controller [24].  

Schram and Verbruggen, members of the Group for 
Aeronautical Research and Technology in Europe 
(GARTEUR) designed a fuzzy controller for the landing 
control of a two-engine civil aircraft and got successful 
simulation results [3]. A fuzzy controller is designed for 
landing of an unmanned aircraft [30]. A fuzzy-logic 
"performance control" system, providing envelope 
protection and direct command of airspeed, vertical 
velocity, and turn rate, was evaluated in a reconfigurable 
general aviation simulator (configured as a Piper Malibu) 
at the FAA Civil Aerospace Medical Institute. 
Performance of 24 individuals (6 each of high-time 
pilots, low-time pilots, student pilots, and non-pilots) was 
assessed during a flight task requiring participants to 
track a 3-D course, from take-off to landing, represented 
by a graphical pathway primary flight display. Baseline 
performance for each subject was also collected with a 
conventional control system. All participants operated 
each system with minimal explanation of its functioning 
and no training. Results indicated that the fuzzy-logic 
performance control reduced variable error and 
overshoots, required less time for novices to learn (as 
evidenced by time to achieve stable performance), 
required less effort to use (reduced control input activity), 
and was preferred by all groups [31].  

Pitch angle which is one of the most important 
parameters of a flight control system that was used in 
[32] was evaluated by using a fuzzy PD controller. A 
quite good system performance was obtained previously 
from a fuzzy PD controller. In this paper, our intention is 
to compare the former results with classical PD 
controller.  

The structure of the paper is as follows. Following first 
introductory section, Section 2 and 3 presents some basic 
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knowledge about fuzzy PD and classical PD control, 
respectively. Section 4 describes an aircraft pitch angle 
control system. In Section 4 analyses and comparisons of 
some simulation results obtained by Matlab are given. 
Finally, Section 5 presents conclusions and highlights the 
scope for future work. 

2. FUZZY PD CONTROL 

FLCs can be used to realize the closed-loop control 
actions directly, i.e. replace conventional closed-loop 
controllers, or they can complement and extend 

conventional control algorithms via supervision, tuning 
or scheduling of local controllers [4]. A general fuzzy 
controller consists of four modules: a fuzzy rule and data 
base, a fuzzy inference engine, and fuzzification 
/defuzzification modules. The interconnections among 
these modules and the controlled process are shown in 
Figure 1. Most of the systems use fuzzy controller is PD 
type controller. In this type of controller, error and 
change of error knowledge is used in fuzzification and 
rule base modules.  

 

 

 

 

 

 

 

 

 

 

 

Fuzzy PD controller calculates the appropriate control at 
the input of the system according to the error and change 
of error at the input. While developing such a system the 
most important process is encoding the knowledge base 
of fuzzy controller. The knowledge base of the fuzzy PD 
controller consists of data and rule bases. Membership 
function distributions of system input and output 
variables are defined in data base. 

Membership functions may be selected as a triangular, 
trapezoid or other appropriate forms. The number of 
membership functions changes depending on the 
problem. The number of these linguistic variables 
specifies the quality of control, which can be achieved 

using fuzzy controller. As the number of linguistic 
variables increases, the quality of control increases at the 
cost of increased computer memory and computational 
time [28-33-34-35].  

3. CLASSICAL PD CONTROL 

Classical PD type controller used in this study because 
the D effect ensures a rapid response, increases damping 
and decreases rise time and settling time. As shown in 
Figure 2 the controller output is equal to 
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Classical Control methods are also rigorously analyzable, 
and therefore they can be readily certified, and since they 
contain relatively few components, the effects of failure 
of some of those components can be assessed relatively 
easily. There is a great deal of experience concerning 
their use and implementation available within most 
vendors and airframe manufacturers. 

Their principal disadvantage is the time taken to perform 
the design process. It is common in industry for an 

existing autopilot design to be modified to suit a new 
aircraft, as opposed to a completely new design being 
performed, and this reduces the design time. A significant 
amount of knowledge concerning aircraft and their 
characteristics is also required to support the design 
procedure since the optimization of the controller 
depends on the knowledge and intuition of the designer 
and not a computer algorithm [4]. 
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4. AIRCRAFT PITCH ANGLE CONTROL SYSTEM 

Aircraft pitch angle control system shown in Figure 3. It 
can be seen from the Figure 3 that, elevator angle ( cEδ ) 
at the output of the controller is calculated such that the 
output of system pitch angle (θ) follows the reference 
pitch angle value (θd). The input of actuator cEδ  
provides the change of elevator angle of the input of 
aircraft dynamic via actuator transfer function. Controller 
calculates the appropriate elevator angle at the input of  

 

 

the actuator. In this study, fuzzy PD controller for the 
pitch angle control system is designed and the simulation 
results for a very large, four-engine passenger jet aircraft 
are compared with the results of a classical PD controller 
in a MATLAB coded program. 

5. SIMULATION RESULTS 

The proposed fuzzy PD controller and classical PD 
controller applied to four-engine passenger jet aircraft 
data. The flight parameters of different flight conditions 
of selected aircraft are given in Table 1 [36].  

Table 1.  Flight condition parameters . 

Parameter Flight Condition 1 Flight Condition 2 Flight Condition 3 

Altitude (m) 6100 6100 12200 

Mach no 0.5 0.8 0.8 

( )1
0

−msU  158 250 250 

( )2−Nmq  8667 24420 9911 

( )degree0α  6.8 0 4.6 

( )degree0γ  0 0 0 

 

In Table 1, 0U  is the forward equilibrium velocity, q  is 

the dynamic pressure, 0α  is the equilibrium angle of 

attack, 0γ  is the equilibrium flight path angle. Also in 
Figure 3, actuator and sensor dynamics are chosen as 

s1.01
1

+
. Aircraft dynamics for the above three flight 

condition are given in Equations 2, 3 and 4 respectively.  
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In this study, type of the designed fuzzy controller is 
Sugeno. So there are 25 weight values. According to 
intuition method, list of linguistic rules is shown in Table 
2. In Table 2 error and change of error membership 
functions are denoted with NVS (negative very small), 
NS (negative small), ZE (zero), PB (positive big) and 
PVB (positive very big). Units of values are given in 
degree but these values are converted to radian in coded 
program.
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Figure 3. Aircraft pitch angle control system. 
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 Table 2. Rule weight values. 

 

 

 

 

 

 

 

 

 

In fuzzy PD controller, five triangular membership 
function forms for error and five triangular membership 
function forms for change of error are determined which 
are shown in Figure 4 and Figure 5. Borders of both 
function varies between ±3 rad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In coded MATLAB 7.0 based program, fuzzy PD 
controller simulation results ( ),(),,( θtfetf ) shown 
in the Figures 6-7 respectively are obtained in case of 
reaching 3 rad pitch angle from 0 rad in different flight 
conditions shown in Table 2 (first flight condition:6110 
m, second flight condition:6100 m, third flight 
condition:12200 m). Time axes scaled where responses 
reach steady state values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cEδ    e    

  NVS NS ZE PB PVB
 

 NVS -20 -17 -18 -12 0 

e& NS -16 -15 -10 0 10 

 ZE -3 -8 0 17 15 

 PB -10 0 13 16 19 

 PVB
 

0 14 20 19 20 

3 1.5 0 -1.5 -3 

PVB PB NS ZE NVS 

   e

1 

( )eµ  

Figure 4. Error membership functions.  
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Figure 6. Time vs error.  
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Classical PD Controller In classical PD controller 
Kp=0.1 and Kd=0.1 are chosen and the simulation results 
( ),(),,( θtfetf ) shown in the Figures 8-9 

respectively are obtained in case of reaching 3 rad pitch 
angle from 0 rad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Time vs Pitch angle. 
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As shown in Figures 8-9, settling time is long and the 
response is not smooth. So it is pointed out that a 
classical PD controller designed for a specific flight 
condition doesn’t provide same performance 

characteristics under another flight condition. Different 
Kp and Kd values are tested for the third flight condition 
and as shown in Fig. 10-11, better output responses 
obtained when Kp=0.1 and Kd=0.8 are chosen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 

In this paper, classical PD controller and fuzzy PD 
controller are used respectively to control pitch angle 
which is a main control parameter of a flight control 
system. Designed controllers are applied to a very large, 
four-engine, passenger jet aircraft parameters to compare 
the results of classical PD and fuzzy PD controllers. 
Simulation results, as shown in figures, show that 
responses are quite similar in both cases. Furthermore 
when fuzzy PD controller applied, the settling time of 
responses is shorter than classical PD controller.  

In classical controller, different Kp and Kd parameter 
values are tried to reach a smooth elevator angle 
deviation versus time. Also for the same aircraft, different 
flight condition parameters are analyzed to evaluate 
performance characteristics of controllers.      

 

 

 

 

 

Using different methods such as intuitions, inference, 
rank ordering, angular fuzzy sets, neural networks, 
genetic algorithms, inductive reasoning, soft partitioning, 
meta rules and fuzzy statistics in developing membership 
functions and rule weights, performance of the fuzzy 
controller can be improved. 
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