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Abstract

The central idea of this article is to present a systematic approach to construct some recurrence relations for
the solutions of the second-order linear difference equation of hypergeometric-type defined on the quadratic-
type lattices. We introduce some recurrence relations for such solutions by also considering their applications
to polynomials on the quadratic-type lattices.
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1. Introduction

Hypergeometric functions have been studied by many researchers [18, 19, 20], with special interest pre-
viously in such functions defined on different type lattices such as uniform lattice like linear-type and non-
uniform lattices, like quadratic, q-linear and q-quadratic types. In 1983, these functions were studied by
Nikiforov and Uvarov who started from the second-order linear difference equation of hypergeometric-type
satisfied by such functions, thereby paving the way for this theory to be developed by several other authors
(see e.g. [3, 8, 12, 17, 18, 19, 20]). Discrete polynomials are in the special class of these kind of hypergeometric
functions and used in many problems [9, 10, 11, 17, 18, 19, 20].

In particular, q-polynomials on the q-quadratic lattices have been of particular interest in recent studies
(see e.g. [9, 10, 11, 17, 18, 19, 20]) since they are the most general discrete orthogonal families, from which
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all the other hypergeometric orthogonal polynomials can be obtained. Such polynomials are the solutions of
the second-order difference equation of hypergeometric-type defined on the q-quadratic lattices.

In this work, we introduce an approach to construct recurrence relations for the hypergeometric functions
on the q-quadratic lattices x(s) = c1q

s + c2q
−s + c3 which, also cover the hypergeometric-type functions on

the quadratic lattices x(s) = c1s
2 + c2s+ c3 as a limit case when q −→ 1 (see e.g. [1]). Here, we also apply

q-Racah and dual Hahn polynomials on the q-quadratic and quadratic lattices.
Since, in several quantum-mechanical models, the wave functions can be expressed in terms of some

hypergeometric-type functions, such recurrence relations give more information about the physical systems
modelled by such functions. In fact, the recurrence relations are more useful for the evaluation of these
functions than the direct method (see e.g., [7, 14, 15] and the references therein).

This paper is motivated by the work done by R. Álvarez-Nodarse et al. [4, 5, 6]. In fact, in [5], the
authors considered the continuous case and obtained some recurrence relations for the Jacobi, Laguerre
and Hermite polynomials in addition to the difference analogues of hypergeometric functions on the linear
lattices x(s) = s to apply the theory for the Hahn, Meixner, Charlier and Kravchuk polynomials. In [6],
the authors studied the difference analogues of hypergeometric functions on the linear-type lattices, and
later applied the theory to the q-polynomials on q-linear lattices x(s) = c1q

s + c2 while considering the big
q-Jacobi, Alternative q-Charlier polynomials as applications. For the quadratic case, there are only a few
known recurrence relations (see the results by Suslov in [19, 20]). As such, the main aim of the present paper
is to extend the results of [6] to the general quadratic-type lattice and develope constructive approach for
the recurrence relations of such functions. Here we go further and consider the recurrence relations for the
functions on the quadratic-type lattices and apply the theory to the q-Racah and dual Hahn polynomials,
thus expanding the results of the papers [4, 5, 6].

Notice that since the lattice considered in this paper is not linear-type, the general results of [6] may not
be applied. In particular, some of the representative examples considered in [6] cannot be obtained for the
quadratic-type lattices.

The structure of the paper is as follows: In section 2, the preliminary results are introduced. In section 3
and 4, the general theorems for recurrence relations are given. Finally, the last section concludes the paper
with some representative examples.

2. Preliminaries

We include some useful information (see e.g. [1, 18]) on the q-hypergeometric functions needed for the
rest of the paper.

The hypergeometric functions on the non-uniform lattices satisfy the following second-order difference
equation of hypergeometric-type on the non-uniform lattices

σ(s)
∆

∆x(s− 1
2)

[∇y(s)

∇x(s)

]
+ τ(s)

∆y(s)

∆x(s)
+ λy(s) = 0, (1)

where
σ(s) = σ̃(x(s))− 1

2
τ̃(x(s))∆x(s− 1

2
), τ(s) = τ̃(x(s)). (2)

Here, ∆y(s) = y(s+1)−y(s) and ∇y(s) = y(s)−y(s−1) are the forward and backward difference operators,
respectively, where

∆y(s) = ∇y(s+ 1), (3)

and the coefficients σ̃(x(s)) and τ̃(x(s)) are polynomials in x(s) of degree at most 2 and 1, respectively, and
λ is a constant.

In this paper, we study the quadratic-type lattices: the so-called quadratic lattice

x(s) = c1s
2 + c2s+ c3, (4)
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and the q-quadratic lattice,

x(s) = c1(q)qs + c2(q)q−s + c3(q) = c1(q)
[
qs + q−s−µ

]
+ c3(q), q−µ =

c2(q)

c1(q)
(5)

with c1 6= 0, c1(q) 6= 0.

Remark 2.1. Quadratic-type lattices have the following properties:

x(s+ k) + x(s)

2
= αkxk(s) + βk, (6)

x(s+ k)− x(s) = γk∆xk(s−
1

2
) = γk∇xk(s+

1

2
) (7)

where
xk(s) = x(s+

k

2
) (8)

and

αk =
q
k
2 + q−

k
2

2
, βk = −c3

2

(
q
k
4 − q−

k
4

)2
, γk = [k]q. (9)

Here, [k]q is the symmetric q-number defined by

[k]q =
q
k
2 − q−

k
2

q
1
2 − q−

1
2

. (10)

Theorem 2.2. [18, 19] The difference equation (1) has a particular solution

yν(z) =
Cν
ρ(z)

b−1∑
s=a

ρν(s)∇xν+1(s)[
xν(s)− xν(z)

]ν+1 , (11)

provided that the condition

σ(s)ρν(s)∇xν+1(s)[
xν−1(s)− xν−1(z + 1)

]ν+1

∣∣∣∣∣
b

s=a

= 0 (12)

is satisfied. Here, Cν is a constant.

Notice that ρ(s) and ρν(s) satisfy the following Pearson equations

ρ(s+ 1)

ρ(s)
=
σ(s) + τ(s)∆x(s− 1

2)

σ(s+ 1)
=

φ(s)

σ(s+ 1)
,

ρν(s+ 1)

ρν(s)
=
σ(s) + τν(s)∆xν(s− 1

2)

σ(s+ 1)
=

φν(s)

σ(s+ 1)
, (13)

where

τν(s) =
σ(s+ ν)− σ(s) + τ(s+ ν)∆x(s+ ν − 1

2)

∆xν−1(s)
, (14)

and, therefore
φν(s) = σ(s) + τν(s)∆xν(s− 1

2)
= σ(s+ 1) + τν−1(s+ 1)∆xν−1(s+ 1

2)
= ...
= σ(s+ ν) + τ(s+ ν)∆x(s+ ν − 1

2).

(15)
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Notice that
φν(s) = φ(s+ ν) = σ(s+ ν) + τ(s+ ν)∆x(s+ ν − 1

2
), (16)

where, ν ∈ C is the solution of

λν + [ν]q

{
αν−1τ̃

′ + [ν − 1]q
σ̃′′

2

}
= 0,

with [x]q and αk defined by (10) and (9), respectively.
In the following, we will use the function σ̃ν(s) defined as

σ̃ν(s) = σ(s) +
1

2
τν(s)∆xν(s− 1

2
). (17)

By (15) and (17),

φν(s) + σ(s) = 2σ̃ν(s), (18)

φν(s)− σ(s) = τν(s)∆xν(s− 1

2
). (19)

The generalized power of the lattices xm(s), given in (8), are defined as [1]

[
xm(s)− xm(z)

](k)
=

k−1∏
i=0

(xm(s)− xm(z − i)), k ∈ N

[
xm(s)− xm(z)

](0)
= 1.

The generalized power for the lattices (4) and (5) are obtained as follows:
For the quadratic lattice of the form (4)[

xν(s)− xν(z)
](α)

= cα1
Γ(s− z + α)Γ(s+ z + ν + µ+ 1)

Γ(s− z)Γ(s+ z + ν − α+ µ+ 1)
, µ =

c2

c1
. (20)

For the q-quadratic lattice of the form (5)

[
xν(s)− xν(z)

](α)
=

Γq(s− z + α)Γq(s+ z + ν + C + 1)

Γq(s− z)Γq(s+ z + ν − α+ C + 1)
q−α(s+ ν

2
)

×
[
c1(q)(1− q)2

]α
= cα1 (q)q−α(s+ ν

2
) (qs−z; q)∞(ηqs+z+ν−α+1; q)∞
(qs−z+α; q)∞(ηqs+z+ν+1; q)∞

, (21)

where C = log(c2(q)/c1(q))
log q , η = c2(q)

c1(q) and classical q-Gamma function, Γq, is related to the infinite q-product
[13] by formula

Γq(s) = (1− q)1−s (q; q)∞
(qs; q)∞

, 0 < q < 1.

Here, the infinite q-product [13] is defined by (a; q)∞ =

∞∏
k=0

(1− aqk).

Proposition 2.3. [1, 6, 19] Let ν be a complex number with m, k as positive integers with m ≥ k. For the
quadratic-type lattice of the form (4) and (5), we have
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[
xν(s)− xν(z)

](m)

[
xν(s)− xν(z)

](k)
=
[
xν(s)− xν(z − k)

](m−k)
, (22)

[
xν(s)− xν(z)

](m+1)

[
xν−1(s)− xν−1(z)

](m)
=
[
xν−m(s+m)− xν−m(z)

]
, (23)

[
xν(s)− xν(z)

](m+1)

[
xν−1(s+ 1)− xν−1(z)

](m)
=
[
xν−m(s)− xν−m(z)

]
. (24)

The proof is straightforward using (20) and (21), hence it is omitted. The generalization of the above
expressions can be written with the following lemma.

Lemma 2.4. Let µi and νi, i = 1, 2, 3 be complex numbers such that the differences νi − νj and µi − µj
i, j = 1, 2, 3 are integers and

µ0 − µi ≥ ν0 − νi (25)

where ν0 is the νi, i = 1, 2, 3 with the largest real part, and µ0 is the µi, i = 1, 2, 3 with the largest real part.
Then, the ratio of the generalized power can be calculated with the following formulas:

1. If νi = ν0 [
xν0(s)− xν0(z)

](µ0+1)

[
xνi(s)− xνi(z)

](µi+1)
=
[
xν0(s)− xν0(z − µi − 1)

](µ0−µi)
.

2. If ν0 − νi > 0 and µ0 − µi = n, ν0 − νi = n[
xν0(s)− xν0(z)

](µ0+1)

[
xνi(s)− xνi(z)

](µi+1)
=

n−1∏
i=0

[
xν0−µ0(s+ µ0 − i)− xν0−µ0(z)

]
.

3. If ν0 − νi > 0 and µ0 − µi = n, ν0 − νi = n− k, (ν0 − νi < n)

[
xν0(s)− xν0(z)

](µ0+1)

[
xνi(s)− xνi(z)

](µi+1)
=

n−k−1∏
l=0

[
xν0−µ0(s+ µ0 − l)− xν0−µ0(z)

]

×
k−1∏
j=0

[
xνi(s)− xνi(z − µ0 + n− 1− j)

]
.

Proof. At this stage, we only sketch the proof for the 3rd case, and the others can be done in an analogous
way. One can write the ratio of the generalized power in the 3rd case by
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[
xν0(s)− xν0(z)

](µ0+1)

[
xνi(s)− xνi(z)

](µi+1)
=

[
xν0(s)− xν0(z)

](µ0+1)

[
xν0−1(s)− xν0−1(z)

](µ0)

×

[
xν0−1(s)− xν0−1(z)

](µ0)

[
xν0−2(s)− xν0−2(z)

](µ0−1)
...

[
xν0−n+k(s)− xν0−n+k(z)

](µ0−n+k+1)

[
xν0−n+k−1(s)− xν0−n+k−1(z)

](µ0−n+k)

×...

[
xν0−n+k(s)− xν0−n+k(z)

](µ0−n+2)

[
xν0−n+k(s)− xν0−n+k(z)

](µ0−n+1)
,

where µ0−µi = n, ν0−νi = n−k. Then, from the hypothesis and the formulas (22) and (23) of Proposition
2.3, the results in the lemma follow.

3. Recurrence relation on the quadratic-type lattices

Here, we obtain the general recurrence relation for the functions on the quadratic-type lattices defined
by (4) and (5). To do so, we generalize the idea used for the linear-type lattices in the recent papers [4, 5, 6].
Next, we prove the following lemma as a generalization of the linear-type lattices considered in Lemma 3.2.
of [6, page 4] for the quadratic-type lattices.

Lemma 3.1. Let x(z) be quadratic-type lattices of the form (4) and (5). Then, the following linear relation
holds

3∑
i=1

Ai(z)Ψνi,µi(z) = 0, (26)

where the coefficients Ai(z) are non-zero polynomial functions in x(z) and

Ψν,µ(z) =
b−1∑
s=a

ρν(s)∇xν+1(s)[
xν(s)− xν(z)

](µ+1)
(27)

provided that the differences νi−νj and µi−µj i, j = 1, 2, 3 are integers such that µ0−µi ≥ ν0−νi, i = 1, 2, 3,
and the following condition holds

σ(s)ρν∗(s)x
k(s)[

xν0−1(s)− xν0−1(z)
](µ0)

∣∣∣∣∣
b

s=a

= 0, k = 0, 1, 2, .... (28)

Where, ν∗ is the νi, i = 1, 2, 3 with the smallest real part, ν0 is the νi, i = 1, 2, 3 with the largest real part
and µ0 is the µi, i = 1, 2, 3 with the largest real part.
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Proof. By adding the function Ψνi,µi defined by (27) into the sum, we have

3∑
i=1

Ai(z)Ψνi,µi(z) =

3∑
i=1

Ai(z)

b−1∑
s=a

ρνi(s)∇xνi+1(s)[
xνi(s)− xνi(z)

](µi+1)

=
b−1∑
s=a

3∑
i=1

Ai(z)
ρνi(s)∇xνi+1(s)[

xνi(s)− xνi(z)
](µi+1)

=
b−1∑
s=a

ρν∗(s)[
xν0(s)− xν0(z)

](µ0+1)

×

 3∑
i=1

Ai(z)
ρνi(s)

ρν∗(s)
∇xνi+1(s)

[
xν0(s)− xν0(z)

](µ0+1)

[
xνi(s)− xνi(z)

](µi+1)


where

ρνi(s) = φ(s+ ν∗)φ(s+ ν∗ + 1)...φ(s+ νi − 1)ρν∗(s) (29)

by the Pearson equation (13). Thus, we have

3∑
i=1

Ai(z)Ψνi,µi(z) =
b−1∑
s=a

ρν∗(s)[
xν0(s)− xν0(z)

](µ0+1)
Π(s)

where

Π(s) =

3∑
i=1

Ai(z)∇xνi+1(s)

[
xν0(s)− xν0(z)

](µ0+1)

[
xνi(s)− xνi(z)

](µi+1)
(30)

×φ(s+ ν∗)φ(s+ ν∗ + 1)...φ(s+ νi − 1)

where the ratio of the generalized power can be computed using Lemma 2.4.
We need to show that there exists a polynomial Q(s) in the linear space Λ = Span{zn}n∈Z with z =

qs, s ∈ Z such that

ρν∗(s)[
xν0(s)− xν0(z)

](µ0+1)
Π(s) = ∆

 σ(s)ρν∗(s)[
xν0−1(s)− xν0−1(z)

](µ0)
Q(s)

 . (31)

If Q(s) exists, then the sum in s over s = a to b − 1, together with the boundary condition (28) lead to
the relation (26). By substituting the q-quadratic lattice x(s) = c1(q)qs + c2(q)q−s + c3(q) in each factors of
Π(s) in (30), one can rewrite it as a polynomial in z = qs and 1/z = q−s, which is a special class of Laurent
polynomials [16],

Λ2n = {R ∈ −nΛn| the coefficent of zn is nonzero}
whose basis is {1, z−1, z, z−2, z2, z−3, z3, ...}, where z = qs, s ∈ Z and its L-degree is 2n.

In order to prove the existence of the polynomial Q(s), we rewrite the right hand-side of (31)

σ(s+ 1)ρν∗(s+ 1)[
xν0−1(s+ 1)− xν0−1(z)

](µ0)
Q(s+ 1)− σ(s)ρν∗(s)[

xν0−1(s)− xν0−1(z)
](µ0)

Q(s) =

ρν∗(s)[
xν0(s)− xν0(z)

](µ0+1)

σ(s+ 1)
ρν∗(s+ 1)

ρν∗(s)

[
xν0(s)− xν0(z)

](µ0+1)

[
xν0−1(s+ 1)− xν0−1(z)

](µ0)

×Q(s+ 1)− σ(s)

[
xν0(s)− xν0(z)

](µ0+1)

[
xν0−1(s)− xν0−1(z)

](µ0)
Q(s)

 .
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By using the Pearson equation (13) and formulas (24) and (23) of Proposition 2.3, respectively, one gets

ρν∗(s)[
xν0(s)− xν0(z)

](µ0+1)
Π(s) =

ρν∗(s)[
xν0(s)− xν0(z)

](µ0+1)

{
φν∗(s)

[
xν0−µ0(s)

−xν0−µ0(z)
]
Q(s+ 1)− σ(s)

[
xν0−µ0(s+ µ0)− xν0−µ0(z)

]
Q(s)

}
.

Therefore,

Π(s) = φν∗(s)

[
xν0−µ0(s)− xν0−µ0(z)

]
Q(s+ 1)

− σ(s)

[
xν0−µ0(s+ µ0)− xν0−µ0(z)

]
Q(s), (32)

where φν∗(s) = σ(s) + τν∗(s)∇xν∗+1(s).
Recall that Π(s) is a Laurent polynomial belongs to −nΛn, where z = qs. Notice that, σ(s) is a polynomial

of the degree at most two in x(s) and also a Laurent polynomial belongs to −2Λ2, where z = qs, of L-degree
at most four. Moreover, τν∗(s) is a polynomial of degree one in xν∗(s) and also a Laurent polynomial belongs
to −1Λ1, where z = qs, of L-degree two. In addition, xk(s) is a Laurent polynomial belongs to −1Λ1, where
z = qs, of L-degree two.

Therefore, by substituting the q-quadratic lattice (5) and taking into account property (8), one can see
that Q(s) is also a Laurent polynomial, whose L-degree is at least six less than the L-degree of Π(s).

Note that two Laurent polynomials are equal if their coefficients are the same just like the case with the
ordinary polynomials. Then, one can use the equality of the coefficents of the Laurent polynomials in order
to find Ai(z). This completes the proof.

In the limit case as q → 1, one can also get the results of Lemma 3.1 for the quadratic lattice x(s) =
c1s

2 + c2s+ c3.

3.1. Examples
In this part, we construct several recurrence relations in order to show how Lemma 3.1 works.

Example 3.2. The functions Ψν,ν , Ψν,ν−1 and Ψν,ν−2 are connected by the following relation

A1(z)Ψν,ν(z) +A2(z)Ψν,ν−1(z) +A3(z)Ψν,ν−2(z) = 0

where the coefficients A1(z), A2(z) and A3(z) are the functions in z

A1(z) = τν(0)βν − γν σ̃ν(0)− τν(0)x(z)

+
[
τ ′νβν + αντν(0)− γν σ̃′ν(0)− τ ′νx(z)

]
xν(z − ν)

+
[
τ ′ναν − γν

σ̃′′ν
2

][
2xν(z − ν)xν(z − ν + 1)− x2

ν(z − ν + 1)
]
,

A2(z) = τ ′νβν + αντν(0)− γν σ̃′ν(0)− τ ′νx(z)

+
[
τ ′ναν − γν

σ̃′′ν
2

]
2xν(z − ν + 1),

A3(z) = τ ′ναν − γν
σ̃′′ν
2
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where αν , βν and γν are defined by (9) and

σ̃ν(s) =
σ̃′′ν
2
x2
ν(s) + σ̃′ν(0)xν(s) + σ̃ν(0), (33)

τν(s) = τ ′νxν(s) + τν(0) (34)

are the Taylor polynomial expansion of the functions σ̃ν(s) and τν(s) defined by (17) and (14), respectively.

Proof. By Lemma 3.1, we have ν1 = ν, ν2 = ν, ν3 = ν and µ1 = ν, µ2 = ν − 1, µ3 = ν − 2. By formula (30)

Π(s) = ∆xν(s− 1
2)

{
A3(z)x2

ν(s) +
[
A2(z)− 2A3(z)xν(z − ν + 1)

]
xν(s)

+
[
A1(z)−A2(z)xν(z − ν) +A3(z)x2

ν(z − ν + 1)
]} (35)

and by (32)
Π(s) = φν(s)

[
x(s)− x(z)

]
Q(s+ 1)− σ(s)

[
x(s+ ν)− x(z)

]
Q(s). (36)

Notice that if we add q-quadratic lattice (5) into (35) and use property (8), then Π(s) in (35) becomes a
Laurent polynomial belongs to −3Λ3, where z = qs. Note that the L-degree of Π(s) is six. Since the L-degree
of Q(s) is at least six less than Π(s), then the degree of Q(s) becomes zero, i.e. Q(s) = k, where k is a
constant. Then, (36) can be rewritten as the following:

Π(s) = k

{
φν(s)x(s)− σ(s)x(s+ ν)−

[
φν(s)− σ(s)

]
x(z)

}

= k

{
1

2
φν(s)x(s)− 1

2
σ(s)x(s+ ν) +

1

2
φν(s)x(s)− 1

2
σ(s)x(s+ ν)

+
1

2
φν(s)x(s+ ν)− 1

2
φν(s)x(s+ ν) +

1

2
σ(s)x(s)− 1

2
σ(s)x(s)

−
[
φν(s)− σ(s)

]
x(z)

}
.

Choosing k = 1, the above expression becomes

Π(s) = φν(s)
x(s+ ν) + x(s)

2
− σ(s)

x(s+ ν) + x(s)

2

− φν(s)
x(s+ ν)− x(s)

2
− σ(s)

x(s+ ν)− x(s)

2
−
[
φν(s)− σ(s)

]
x(z).

Then, we have

Π(s) =
[
φν(s)− σ(s)

]x(s+ ν) + x(s)

2

−
[
φν(s) + σ(s)

]x(s+ ν)− x(s)

2
−
[
φν(s)− σ(s)

]
x(z).

By using expressions (18), (19), (6) and (7), we get

Π(s) = ∆xν(s− 1

2
)

{
τν(s)

[
ανxν(s) + βν

]
− γν σ̃ν(s)− τν(s)x(z)

}
.
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Using σ̃ν(s) and τν(s) from (33) and (34), it follows

Π(s) = ∆xν(s− 1
2)

{[
τ ′ναν − γν

σ̃ν′′
2

]
x2
ν(s) +

[
τ ′νβν + αντν(0)− γν σ̃ν′(0)

−τ ′νx(z)
]
xν(s) +

[
τν(0)βν − γν σ̃ν(0)− τν(0)x(z)

]}
.

(37)

Now, by equating the polynomials Π(s) in (35) and (37), we obtain the following system of equations

A3(z) = τ ′ναν − γν
σ̃ν′′

2
A2(z)− 2A3(z)xν(z − ν + 1) = τ ′νβν + αντν(0)− γν σ̃ν′(0)− τ ′νx(z)

A1(z)−A2(z)xν(z − ν) +A3(z)x2
ν(z − ν + 1) = τν(0)βν − γν σ̃ν(0)

− τν(0)x(z).

By solving this system, one can obtain the coefficients A1(z), A2(z) and A3(z).

Example 3.3. The following relation holds

A1(z)Ψν,ν−1(z) +A2(z)Ψν,ν−2(z) +A3(z)Ψν+1,ν(z) = 0

where A1(z), A2(z) and A3(z) are the functions in z

A1(z) = − σ(z − ν + 1)

∇xν+1(z − ν + 1)

A2(z) =
1

γν−1

1

∆x(z)

[
τν(z)− σ(z − ν + 1)

∇xν+1(z − ν + 1)

]
A3(z) = −γν .

Here, γν is defined by (9).

Proof. By Lemma 3.1, we have ν1 = ν, ν2 = ν, ν3 = ν + 1 and µ1 = ν − 1, µ2 = ν − 2, µ3 = ν. By formula
(30),

Π(s) = A1(z)∇xν+1(s)
[
x1(s+ ν)− x1(z)

]
+A2(z)∇xν+1(s)

[
x1(s+ ν)− x1(z)

][
xν(s)− xν(z − ν + 1)

]
+A3(z)∇xν+2(s)φ(s+ ν)

(38)

and by (32),
Π(s) = φν(s)

[
x1(s)− x1(z)

]
Q(s+ 1)− σ(s)

[
x1(s+ ν)− x1(z)

]
Q(s). (39)

Notice that if we use q-quadratic lattice (5) and property (8), then Π(s) in (38) becomes a Laurent polynomial
belongs to −3Λ3, where z = qs. The L-degree of Π(s) is six. Since the L-degree of Q(s) is at least six less
than Π(s), then degree of Q(s) becomes zero, i.e. Q(s) = k, where k is a constant. Let us choose k = 1.

We remark here that since Π(s) in (38) and (39) are Laurent polynomials belong to −3Λ3, where z = qs,
one can find the coefficients Ai(z) by equating them. Here, we consider giving particular values to make some
terms of Π(s) in (38) or (39) zero. Therefore, it becomes simpler to determine coefficients Ai(z). Firstly, let
s = z − ν in Π(s) be defined by (38) and (39). Notice that the first two terms in (38) and the second term
of (39) vanish, leading to

Π(z − ν) = A3(z)φ(z)∇xν+2(z − ν) = φν(z − ν)
[
x1(z − ν)− x1(z)

]
,
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where φν(z − ν) = φ(z) by (16) and x1(z − ν)− x1(z) = −γν∇xν+2(z − ν) by (7) with (8). Then, one gets

A3(z) = −γν .

In order to find A1(z) let s = z − ν + 1 in Π(s) defined by (38) and (39). Notice that the second term of
(38) vanishes and gives

Π(z − ν + 1) = A1(z)∇xν+1(z − ν + 1)
[
x1(z + 1)− x1(z)

]
+ A3(z)φ(z + 1)∇xν+2(z − ν + 1)

= φν(z − ν + 1)
[
x1(z − ν + 1)− x1(z)

]
− σ(z − ν + 1)

[
x1(z + 1)− x1(z)

]
where φν(z−ν+ 1) = φ(z+ 1) by (16) and x1(z+ 1)−x1(z) = ∆x1(z) = ∆x(z+ 1

2) by the forward operator
with (8). Moreover, x1(z − ν + 1)− x1(z) = −γν∇xν+2(z − ν + 1) by (7). Replacing A3(z) = −γν , one has

A1(z) = − σ(z − ν + 1)

∇xν+1(z − ν + 1)
.

Finally, to find A2(z) we set s = z in Π(s) defined by (38) and (39). Notice that first term of (39)
disappears and leads to

Π(z) = A1(z)∇xν+1(z)
[
x1(z + ν)− x1(z)

]
+ A2(z)∇xν+1(z)

[
x1(z + ν)− x1(z)

][
xν(z)− xν(z − ν + 1)

]
+ A3(z)∇xν+2(z)φ(z + ν) = −σ(z)

[
x1(z + ν)− x1(z)

]
,

where ∇xν+2(z) = ∇xν(z + 1) = ∆xν(z) by (3) with (8) and x1(z + ν)− x1(z) = γν∆xν(z), xν(z)− xν(z −
ν + 1) = γν−1∆x(z) by (7), (3) with (8). Then, with the help of (16) together with (19) and (3), one can
have

A2(z) =
1

γν−1

1

∆x(z)

[
τν(z)− σ(z − ν + 1)

∇xν+1(z − ν + 1)

]
,

which completes the proof. The other proofs can be made by using the same method. Thus, we do not
include them here.

Example 3.4. The functions Ψν,ν , Ψν,ν−1 and Ψν+1,ν+1 have the following relation

A1(z)Ψν,ν(z) +A2(z)Ψν,ν−1(z) +A3(z)Ψν+1,ν+1(z) = 0

where coefficients A1(z), A2(z) and A3(z) are the functions in z

A1(z) =
φ(z)

∆x(z)

[
− γν + γν+1

∇xν+2(z − ν)

∇xν+1(z − ν)

]
− σ(z − ν)

∇xν+1(z − ν)

A2(z) =
1

γν

τν(z)−A1(z)

∆x(z − 1
2)

A3(z) = −γν+1

where γν is defined by (9).

Example 3.5. The functions Ψν,ν+1, Ψν−1,ν and Ψν−1,ν−1 hold the relation that follows

A1(z)Ψν,ν+1(z) +A2(z)Ψν−1,ν(z) +A3(z)Ψν−1,ν−1(z) = 0

where coefficients A1(z), A2(z) and A3(z) are the functions in z
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A1(z) = −γν+1

A2(z) = −γν
φ(z − 1)

∆x(z − 1
2)
− σ(z − ν)

∇xν(z − ν)

+ γν+1
φ(z − 1)∇xν+1(z − ν)

∆x(z − 1
2)∇xν(z − ν)

A3(z) =
1

γν

τν−1(z)−A2(z)

∇x(z)
.

Here, γν is defined by (9).

Example 3.6. The following relation holds

A1(z)Ψν−1,ν−1(z) +A2(z)Ψν,ν(z) +A3(z)Ψν,ν+1(z) = 0

where A1(z), A2(z) and A3(z) are the functions in z

A1(z) =
1

γν

{
− σ(z)

∇x(z)
+
φ(z + ν − 1)∇xν(z − ν)

∇xν(z)∇x(z)

+γν
φ(z + ν − 1)∇xν(z − ν + 1)

∇xν(z)∇xν+1(z − ν)
+
φ(z + ν − 1)σ(z − ν)∆x(z − 1

2)

φ(z − 1)∇xν(z)∇xν+1(z − ν)

−γν+1
φ(z + ν − 1)

∇xν(z)

}

A2(z) = γν+1 − γν
∇xν(z − ν + 1)

∇xν+1(z − ν)
−

σ(z − ν)∆x(z − 1
2)

φ(z − 1)∇xν+1(z − ν)

A3(z) = −γν+1∇xν(z − ν)

where γν is defined by (9).

Example 3.7. Ψν,ν , Ψν,ν−1 and Ψν−1,ν−1 are connected by

A1(z)Ψν,ν(z) +A2(z)Ψν,ν−1(z) +A3(z)Ψν−1,ν−1(z) = 0

where coefficients A1(z), A2(z) and A3(z) are the functions in z

A1(z) = −γνQ(z − ν + 1)

A2(z) =
C(z)

D(z)

A3(z) = −σ(z) +
φ(z + ν − 1)Q(z − ν + 1)

∇xν(z)
−
φ(z + ν − 1)∇x(z + 1

2)

∇xν(z)

× C(z)

D(z)
,
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where

C(z) =
1

γν+1
φ(z + ν)∆x(z)∇xν(z)Q(z + 2)

− σ(z + 1)∇xν(z)∇xν(z + 1)Q(z + 1)

+
γν
γν+1

φ(z + ν)∇xν(z)∇xν+1(z + 1)Q(z − ν + 1)

+ σ(z)∇xν(z + 1)∇xν(z + 1)Q(z)

− φ(z + ν − 1)∇xν(z + 1)∇xν(z + 1)Q(z − ν + 1),

D(z) = φ(z + ν)∇xν(z)∇xν+1(z + 1)∇x(z + 1)

− φ(z + ν − 1)∇xν(z + 1)∇xν(z + 1)∇x(z +
1

2
)

and γν is defined by (9). Here, Q(z) is a first-degree polynomial in x(z). In particular, considering Q(z) =
∇xν(z) leads to the following formulas:

A1(z) = −γν∇xν(z − ν + 1)

A2(z) =
C(z)

D(z)

A3(z) = −σ(z) +
φ(z + ν − 1)∇xν(z − ν + 1)

∇xν(z)
−
φ(z + ν − 1)∇x(z + 1

2)

∇xν(z)

× C(z)

D(z)
,

where

C(z) =
1

γν+1
φ(z + ν)∆x(z)∇xν(z)∇xν(z + 2)

− σ(z + 1)∇xν(z)∇xν(z + 1)∇xν(z + 1)

+
γν
γν+1

φ(z + ν)∇xν(z)∇xν+1(z + 1)∇xν(z − ν + 1)

+ σ(z)∇xν(z + 1)∇xν(z + 1)∇xν(z)

− φ(z + ν − 1)∇xν(z + 1)∇xν(z + 1)∇xν(z − ν + 1),

D(z) = φ(z + ν)∇xν(z)∇xν+1(z + 1)∇x(z + 1)

− φ(z + ν − 1)∇xν(z + 1)∇xν(z + 1)∇x(z +
1

2
).

Next section includes the recurrence relations for the solutions of the second-order linear difference equa-
tion of hypergeometric type (1) using Lemma 3.1.

4. Recurrence relations of the solutions of the second-order linear difference equation of hy-
pergeometric type

We first remark that the solution yν of the difference equation (1) can be rewritten using the function
Ψν,µ as

yν(z) =
Cν
ρ(z)

Ψν,ν(z). (40)
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Here, we include the recurrence relations related with solutions yν and their difference derivatives as defined
in [19, 20] by

y(k)
ν := ∆(k)yν(s) =

C
(k)
ν

ρk(s)
Ψν,ν−k(s) (41)

where

∆(k) =

(
∆

∆xk−1

)
...

(
∆

∆x1

)(
∆

∆x0

)
,

ρk(s) = σ(s+ 1)ρk−1(s+ 1) = ρ(s+ k)
k∏
i=1

σ(s+ i), (42)

C(k)
ν =

[
αν−kτ̃

′
k−1 + γν−k

σ̃′′k−1

2

]
C(k−1)
ν = κν+k−1C

(k−1)
ν =

k−1∏
i=0

κν+iCν ,

κν = αν−1τ̃
′ + γν−1

σ̃′′

2
, C(0)

ν = Cν .

The following theorem has been proved for the linear-type lattices in [4, 5, 6]. It is also valid for the
quadratic-type lattices but together with the condition of Lemma 3.1.

Theorem 4.1. The following linear relation holds

3∑
i=1

Bi(s)y
(ki)
νi (s) = 0, (43)

by the conditions of Lemma 3.1, where

Bi(s) = Ai(s)(C
(ki)
νi )−1φ(s+ k∗)...φ(s+ ki − 1).

Here, Ai(s) are the coefficient functions of the recurrence relations defined in Lemma 3.1.

Proof. By Lemma 3.1, there exist the functions Ai(z), i = 1, 2, 3 such that the following linear relation holds

3∑
i=1

Ai(s)Ψνi,νi−ki(s) = 0.

Therefore, by the definition of the difference derivative (41), we have

3∑
i=1

Ai(s)(C
(ki)
νi )−1ρki(s)y

(ki)
νi (s) = 0,

which can be rewritten as the following

3∑
i=1

Bi(s)y
(ki)
νi (s) = 0, Bi(s) = Ai(s)(C

(ki)
νi )−1φ(s+ k∗)...φ(s+ ki − 1),

by dividing the equality with ρk∗(s), where k∗ = min{k1, k2, k3} and then, using expression (29), which
completes the proof.
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From (41), the examples 3.2, 3.3, 3.4 and 3.7 lead to the following relations

B1(s)yν(s) +B2(s)y
(1)
ν (s) +B3(s)y

(2)
ν (s) = 0,

B1(s)y
(1)
ν (s) +B2(s)y

(2)
ν (s) +B3(s)y

(1)
ν+1(s) = 0,

B1(s)yν(s) +B2(s)y
(1)
ν (s) +B3(s)yν+1(s) = 0,

B1(s)yν(s) +B2(s)y
(1)
ν (s) +B3(s)yν−1(s) = 0.

Notice that the last two relations are the so-called raising and lowering relations, respectively, which are
equivalent to the following ∆-ladder-type recurrence relations, respectively,

B1(s)yν(s) +B2(s)
∆yν(s)

∆x(s)
+B3(s)yν+1(s) = 0, (44)

B̃1(s)yν(s) + B̃2(s)
∆yν(s)

∆x(s)
+ B̃3(s)yν−1(s) = 0. (45)

Note that in order to get a ∆-ladder-type recurrence relation, it is sufficient to put k1 = 0, k2 = 1, k3 = 0
and ν1 = ν, ν2 = ν, ν3 = ν +m into (43), where m = ∓1.

Corollary 4.2. The following three-term recurrence relation holds

B1(s)yν(s) +B2(s)yν+1(s) +B3(s)yν−1(s) = 0,

provided that the conditions in Lemma 3.1 exist. Here, coefficients Bi(s), i = 1, 2, 3 are the polynomial
functions.

Proof. By substituting k1 = 0, k2 = 0, k3 = 0 and ν1 = ν, ν2 = ν + 1, ν3 = ν − 1 in (43), one can obtain the
above relation.

5. Applications to polynomials on the quadratic-type lattices

In this section, we include the applications of the method to the q-Racah and dual Hahn polynomials
which are defined by (11) with ν = n. These polynomials are general and defined on the q-quadratic lattices
of the form x(s) = q−s + δγqs+1 and the quadratic lattices of the form x(s) = s(s+ 1), respectively.

One can find a detailed study on these polynomials in [1, 17, 18]. Since the q-Racah and dual Hahn
polynomials are defined by (11) where ν = n, then condition (12) is satisfied. Therefore, Lemma 3.1 and
Theorem 4.1 hold for such polynomials.

In the following, we include the two types of recurrence relations consisting of the polynomials and their
difference-derivatives.

5.1. The application of the method to the q-Racah polynomials
Let ν1 = n, ν2 = n, ν3 = n+ 1 and k1 = 0, k2 = 1, k3 = 0 in Theorem 4.1, then we get

B1(s)Pn(s) +B2(s)∆(1)Pn(s) +B3(s)Pn+1(s) = 0.

B1(s) =
1

Cn

{
φ(s)

∆x(s)

[
− γn + γn+1

∇xn+2(s− n)

∇xn+1(s− n)

]
− σ(s− n)

∇xn+1(s− n)

}
B2(s) =

φ(s)

C
(1)
n

1

γn

τn(s)− CnB1(s)

∆x(s− 1
2)

B3(s) = − γn+1

Cn+1
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where γn is defined by (9) and C(1)
n = (αn−1τ̃

′+γn−1
σ̃′′

2 )Cn. Notice that this case is considered in example 8
with n = ν. Placing the corresponding values of the q-Racah polynomials from Table 1 in coefficients Bi(s),
i = 1, 2, 3, we have

B1(s) =
1

Cn

{−q1/2(q1/2 − q−1/2)qs(q−s − αq)(q−s − γq)(1− βδqs+1)

(1− δγq2s+2)

× (1− δγqs+1)
[
− [n]q + [n+ 1]q

q−1/2(1− δγq2s−n+2)

(1− δγq2s−n+1)

]
+

q2−n/2qs(q1/2 − q−1/2)(1− δqs−n)(1− q−s+n)(α− δγqs−n)

(1− δγq2s−n+1)

× (γ − βγq−s+n)
}
,

B2(s) =
2(q1/2 − q−1/2)(q−s − αq)(q−s − γq)(1− βδqs+1)(1− γδqs+1)

K

× −(1− αβq2n+2)xn(s) + q−n/2(1− αqn+1)(1− βδqn+1)(1− γqn+1)

q−s(1− δγq2s+2)

−
(q1/2 − q−1/2)

{
(1− δγqn+1)(1− αβq2n+2)]

}
+ CnB1(s)

(q1/2 − q−1/2)q−s(1− δγq2s+2)
,

B3(s) = − [n+ 1]q
Cn+1

.

where K = Cn[n]q

[
(q(n−1)/2 − q−(n−1)/2)(1− βγq2) + [n− 1]qq

−n(q1/2 − q−1/2)(1 + αβq2n+2)
]
.

5.2. The application of the method to the dual Hahn polynomials
Let ν1 = n− 1, ν2 = n, ν3 = n+ 1 and k1 = 0, k2 = 1, k3 = 0 in Theorem 4.1, then we get

B1(s)Pn−1(s) +B2(s)∆(1)Pn(s) +B3(s)Pn+1(s) = 0.

In order to obtain this relation, we use the following three-term recurrence relation (TTRR )

x(s)Pn(s) = α̃nPn+1(s) + β̃nPn(s) + γ̃nPn−1(s), n = 0, 1, 2, ..., (46)

with the initial conditions P0(s) = 1, P−1(s) = 0, and also the differentiation formula [1, Eq. (5.67)] (or [11,
Eq. (25)])

φ(s)
∆Pn(s)q
∆x(s)

= α̂nPn+1(s)q + β̂n(s)Pn(s)q, (47)

where φ(s) = σ(s) + τ(s)∆x(s− 1
2), and

α̂n = − λn
[n]q τ̃ ′n

Bn
Bn+1

, β̂n(s) =
λn
[n]q

τn(s)

τ̃ ′n
− λn∆x(s− 1

2
).

Notice that the above differentiation formula is valid for the q-polynomials on the q-quadratic lattices. In
order to obtain a formula for the polynomials on the quadratic lattices, one can consider the limit case when
q → 1.

Now, to compute ∆(1)Pn(s) = ∆Pn(s)
∆x(s) , we first multiply the above equality by φ(s) and then use formula

(47), then we reach

B1(s)φ(s)Pn−1(s) +B2(s)
[
α̂nPn+1(s) + β̂n(s)Pn(s)

]
+B3(s)φ(s)Pn+1(s) = 0,
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which can be rewritten as the following form

[B2(s)α̂n +B3(s)φ(s)]Pn+1(s) +B2(s)β̂n(s)Pn(s) +B1(s)φ(s)Pn−1(s) = 0.

By the TTRR, we have the following system of equations

B2(s)α̂n +B3(s)φ(s) = α̃n, B2(s)β̂n(s) = β̃n − x(s), B1(s)φ(s) = γ̃n,

which leads to

B1(s) =
γ̃n
φ(s)

, B2(s) =
β̃n − x(s)

β̂n(s)
, B3(s) =

1

φ(s)

[
α̃n −

α̂n

β̂n(s)
(β̃n − x(s))

]
.

Considering the limit case as q → 1, the above coefficients become

B1(s) =
γn
φ(s)

, B2(s) =
βn − x(s)

β̂n(s)
, B3(s) =

1

φ(s)

[
αn −

α̂n

β̂n(s)
(βn − x(s))

]
.

Then, inserting the corresponding values of the dual Hahn polynomials from Table 2, [18, Table 3.7., Page
109] in coefficients Bi(s), i = 1, 2, 3 leads to

B1(s) =
(a+ c+ n)(b− a− n)(b− c− n)

(s+ a+ 1)(s+ c+ 1)(b− s− 1)
,

B2(s) = − [ab− ac+ bc+ (b− a− c− 1)(2n+ 1)− 2n2 − s(s+ 1)]

κn+1
,

× (2s+ n+ 1)

B3(s) =
n+ 1

(s+ a+ 1)(s+ c+ 1)(b− s− 1)
[1 +B2(s)] ,

where κn = (s+ a+ n)(s+ c+ n)(b− s− n)− (s− a)(s+ b)(s− c) + (n− 1)(2s+ 1)(2s+ n).

6. Concluding remarks

In the present work, some recurrence relations are developed for the hypergeometric functions on the
quadratic-type lattices with applications in the q-Racah and dual Hahn polynomials. To obtain the recurrence
relations for the other classes of polynomials, one can use appropriate limit transitions.
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Table 1: Main data of the monic q-Racah polynomials

Pn(s) Rn(x(s), α, β, γ, δ|q) , x(s) = q−s + δγqs+1 , ∆x(s) = q−s(1− δγq2s+2)(q−1 − 1)

σ(s) δ2γ2q2(q1/2 − q−1/2)2q−2s(qs − 1)(qs − δ−1)(qs − βγ−1)(qs − αδ−1γ−1)

φ(s) (q1/2 − q−1/2)2q−2s(1− αqs+1)(1− βδqs+1)(1− γqs+1)(1− δγqs+1)

τ(s)

(q−1/2−q1/2)q−s

(1−γδq2s+1)

[
(1− αqs+1)(1− βδqs+1)(1− γqs+1)(1− δγqs+1)− (δγq)2(qs − 1)

×(qs − δ−1)(qs − βγ−1)(qs − αδ−1γ−1)
]

τ ′ (q1/2 − q−1/2)(1− βγq2)

τn(s)

−(q1/2 − q−1/2)
{

(1− αβq2n+2)x(s + n
2

) + q−n/2
[
(1− αqn+1)(1− βδqn+1)(1− γqn+1)

−(1 + δγqn+1)(1− αβq2n+2)
]}

λn −q−n+ 1
2 (1− qn)(1− αβqn+1)

σ̃′′ν
2

1
2
q−n(q1/2 − q−1/2)2(1 + αβq2n+2)

σ̃′ν(0) − 1
2
q
−n

2 (q1/2 − q−1/2)2

[
βδq + αq + δγq + γq + αβδqn+2 + αβqn+2 + βδγqn+2 + αγqn+2

]

σ̃ν(0) δγqq−n(q1/2 − q−1/2)2

[
βαqn+1 + βδqn+1 + αqn+1 + βqn+1 + αδ−1qn+1 + γq − 1− αβq2n+2

]

β̃n

1 + δγq −
(1− αqn+1)(1− αβqn+1)(1− βδqn+1)(1− γqn+1)

(1− αβq2n+1)(1− αβq2n+2)

−
q(1− qn)(1− βqn)(γ − αβqn)(δ − αqn)

(1− αβq2n)(1− αβq2n+1)

γ̃n
(1− αqn)(1− αβqn)(1− βδqn)(1− γqn)

(1− αβq2n−1)(1− αβq2n)

q(1− qn)(1− βqn)(γ − αβqn)(δ − αqn)

(1− αβq2n)(1− αβq2n+1)

α̂n q
−n+ 1

2 (q−1/2 − q1/2)(1− αβq2n+1)

βn(s)
−q−n/2+1/2(q1/2 − q−1/2)

(1− αβqn+1)

(1− αβq2n+2)

{
q
−1

(1− αβq2n+2
)x(s +

n

2
) + q

−n/2
q
−n−1

[
(1− αqn+1

)

×(1− βδqn+1)(1− γqn+1)− (1 + δγqn+1)(1− αβq2n+2)
]}

β̂n(s) βn(s)− q−s−n+ 1
2 (q1/2 − q−1/2)(1− qn)(1− αβqn+1)(1− δγq2s+1)

Table 2: Main data of the dual Hahn polynomials

Pn(s) W
(c)
n (x(s)) , x(s) = s(s+ 1) , ∆x(s) = 2s+ 2

σ(s) (s− a)(s+ b)(s− c)
φ(s) (s+ a+ 1)(s+ c+ 1)(b− s− 1)

τ(s) ab− ac+ bc− a+ b− c− 1− x(s)

λn n

αn = α̂n n+ 1

βn ab− ac+ bc+ (b− a− c− 1)(2n+ 1)− 2n2

γn (a+ c+ n)(b− a− n)(b− c− n)

β̂n(s) (s+a+n+1)(s+c+n+1)(b−s−n−1)−(s−a)(s+b)(s−c)+n(2s+1)(2s+n+1)
2s+n+1
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