

On Fuzzy Regular-*I*-Closed Sets, Fuzzy Semi-*I*-Regular Sets, Fuzzy AB_{*I*}-Sets and Decompositions of Fuzzy Regular-*I*-Continuity, Fuzzy A_{*I*} - Continuity

Fadhıl ABBAS¹, Cemil YILDIZ^{1,♠}

¹Gazi University, Department of Mathematics, Ankara, Turkey

Received: 24/01/2011 Revised: 22/03/2011 Accepted: 08/04/2011

ABSTRACT

The concepts of fuzzy regular-*I*-closed set and fuzzy semi-*I*-regular set in fuzzy ideal topological spaces are investigated and some of their properties are obtained.

Key words: Topological, Spaces, Fuzzy, Regular, Sets

1. INTRODUCTION

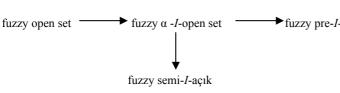
The fundamental concept of a fuzzy set was introduced in Zadeh [1]. Subsequently, Chang [12] defined the notion of fuzzy topology. An alternative definition of fuzzy topology was given by Lowen [15]. Yalvac [4] introduced the concepts of fuzzy set and function on fuzzy spaces. In general topology,by introducing the notion of ideal, [16], and several other authors carried out such analysis. There has been an extensive study on the importance of ideal in general topology in the paper of Janković & Hamlet [14]. Sarkar [7] introduced the notions of fuzzy ideal and fuzzy local function in fuzzy set theory. Mahmoud [3] investigated one application of fuzzy set theory. Hatir & Jafari [13] and Nasef & Hatir [8] defined fuzzy semi-*I*-open set and fuzzy pre-*I*-open set via fuzzy ideal.

2. PRELIMINARIES

Through this paper, X represents a nonempty fuzzy set and fuzzy subset A of X, denoted by $A \leq X$, then is characterized by a membership function in the sense of Zadeh [1]. The basic fuzzy sets are the empty set, the whole set the class of all fuzzy sets of X which will be denoted by 0_X , 1_X and I^X , respectively. A subfamily τ of I^{X} is called a fuzzy topology due to Chang [12]. Moreover, the pair (X,τ) will be meant by a fuzzy topological space, on which no separation axioms are assumed unless explicitly stated. The fuzzy closure, the fuzzy interior and the fuzzy complement of any set in A in (X,τ) are denoted by Cl(A), Int(A) and 1_X -A, respectively. A fuzzy set which is a fuzzy point WONG [17] with support $x \in X$ and the value $\lambda \in (0,1]$ will be denoted by x_{λ} . The value of a fuzzy set A for some $x \in X$ will be denoted by A(x). Also, for a fuzzy point x_{λ} and a fuzzy set A we shall write $x_{\lambda} \in A$ to mean that $\lambda \leq$ A(x). For any two fuzzy sets A and B in (X,τ) , A \leq B if and only if $A(x) \leq B(x)$ for all $x \in X$. A fuzzy set in (X, τ)

Corresponding author, e-mail: cyildiz@gazi.edu.tr

is said to be quasi-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x)+B(x)>1 [11]. A fuzzy set V in (X,τ) is called a qneighbourhood (q-nbd, for short) of a fuzzy point x_{λ} if and only if there exists a fuzzy open set U such that x_{λ} $qU \le V$ [11]. We will denote the set of all q-nbd of x_{λ} in (X,τ) by Nq (x_{λ}) . A nonempty collection of fuzzy sets I of a set X is called a fuzzy ideal ([7]) on X if and only if (1) $A \in I$ and $B \leq A$, then $B \in I$ (heredity), (2) if $A \in I$ and $B \in I$, then $A \vee B \in I$ (finite additivity). The triple (X, τ, I) means fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology τ . For (X,τ,I) the fuzzy local function of A \leq X with respect to τ and I is denoted by $A^*(\tau, I)$ (briefly A^*) [7]. The fuzzy local function A^* (τ, I) of A is the union of all fuzzy points x_{λ} such that if $N \in Nq(x_{\lambda})$ and $E \in I$ then there is at least one $y \in X$ for which N(y)+A(y)-1>E(y) [7]. Fuzzy closure operator of a fuzzy set A in (X,τ, I) is defined as $Cl^*(A) = A \vee A^*$ [7]. In (X,τ, I) , the collection $\tau^*(I)$ means an extension of fuzzy topological space than $\boldsymbol{\tau}$ via fuzzy ideal which is constructed by considering the class $\beta = \{U-\}$ E:U $\in \tau$, E $\in I$ } as a base [7].



Diyagram I

3. FUZZY REGULAR -I-CLOSED SETS

We give some new definitions for fuzzy sets and some theorems in any ideal fuzzy topological spaces.

Definition 2. A fuzzy subset A of a fuzzy ideal topological space (X, τ, I) is said to be

- a) fuzzy *-dense -in-itself if $A \le A^*$,
- b) fuzzy τ^* -closed if $A^* \leq A$,
- fuzzy *-perfect if A=A*. c)

Definition 3. A fuzzy subset A of a fuzzy ideal topological space (X, τ, I) is said to be fuzzy regular-Iclosed if A=(Int(A))*.

We denote by FRIC(X) the family of all fuzzy regular-*I*-closed subsets of (X, τ, I) .

Theorem 1. In a fuzzy ideal topological space (X,τ,I) , the following statements hold:

a) Every fuzzy regular-I-closed set is fuzzy *-perfect set.

b) Every fuzzy *-perfect set is fuzzy τ *-closed set, c) Every fuzzy τ^* -closed set is fuzzy t-*I*-set,

Proof. a) Let A be a fuzzy regular-I-closed set. Then, we have A=(Int(A))*.Since Int(A) \leq A, (Int(A))* \leq A*.Then we have $A=(Int(A))^* \le A^*.Since A=(Int(A))^*$ $A^{*}=((Int(A))^{*})^{*} \leq (Int(A))^{*}=A.$)*,

Lemma 1. Let (X,τ, I) be a fuzzy ideal topological space and A,B fuzzy subsets of X. Then the following properties hold:

- If $A \leq B$, then $A^* \leq B^*$, a)
- b) $\mathbf{A}^* = \mathrm{Cl}(\mathbf{A}^*) \le \mathrm{Cl}(\mathbf{A}) ,$
- $(A^*)^* \le A^*$, c)
- $(A \lor B)^* = A^* \lor B^*$ ([7]). d)

Definition 1. A fuzzy subset A of a fuzzy ideal topological space (X, τ, I) is said to be

- fuzzy-*I*-open [3] if $A \le Int(A^*)$, a)
- fuzzy α -*I*-open [2] if A \leq Int(Cl*(Int(A))), b)
- fuzzy semi-*I*-open [13] if $A \le Cl^*(Int(A))$, c)
- d) fuzzy pre-*I*-open [8] if $A \le Int(Cl^*(A))$,
- fuzzy α *-*I*-open [2] if Int(A)= Int(Cl*(Int(A))), e)
- fuzzy t-*I*-set [8] if $Int(A) = Int(Cl^*(A))$, f)

Nasef & Hatir et al. [8] gave the following diagram using some of the expressions of Definitioin 1:

fuzzy pre-I-open set

Therefore, we obtain A=A*. This shows that A is fuzzy *-perfect set.

b) Let A be a fuzzy *-perfect set. Then, we have A=A*. Therefore, we obtain $A^* \leq A$. This shows that A is fuzzy τ^* -closed set.

c) Let A be a fuzzy τ^* -closed set. Then, we have A* \leq $A \Longrightarrow A \lor A^* \leq A \lor A$ \Rightarrow Cl*(A) $\leq A \Longrightarrow \operatorname{Int}(\operatorname{Cl}^*(A)) \leq \operatorname{Int}(A).$ Since $A \leq \operatorname{Cl}^*(A) \Longrightarrow$ $Int(A) \leq Int(Cl^*(A))$. Therefore, we obtain Int(A) =Int(Cl*(A)). This shows that A is fuzzy t-*I*-set.

Remark 1. The converses of Theorem 1 need not be true as the following examples show.

Example 1. Let X={a, b, c} and A, B be fuzzy subsets of X defined as follows:

A(a)=0,4 A(b)=0,7 A(c)=0,5B(a)=0,6 B(b)=0,3 B(c)=0,5We put $\tau = \{0_X, 1_X, A\}$. If we take $I = \{0_X\}$, then B is fuzzy *-perfect set but not fuzzy regular-I-closed set.

Example 2. Let X={a, b, c} and A, B be fuzzy subsets of X defined as follows:

A(a)=0,1 A(b)=0,3 A(c)=0,5

B(a)=0,4 B(b)=0,6 B(c)=0,7

We put $\tau = \{0_X, 1_X, A\}$. If we take I=P(X), then B is fuzzy τ^* -closed set but not fuzzy *-perfect set.

Example 3. Let $X=\{a, b, c\}$ and A, B be fuzzy subsets of X defined as follows: A(a)=0,2 A(b)=0,3 A(c)=0,1 B(a)=0,5 B(b)=0,6 B(c)=0,7 We put $\tau = \{0_X, 1_X, A\}$. If we take $I=\{0_X\}$, then B is fuzzy t-*I*-set but not fuzzy τ^* -closed set

For the relationship related to several sets defined above, we have the following diagram:

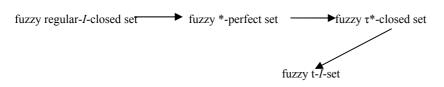


Diagram II

Remark 2.Since every fuzzy open set is fuzzy α -*I*-open, fuzzy regular-*I*-closed and fuzzy α -*I*-open (fuzzy open) set are independent concepts as show in the following examples;

Example 4. Let $X=\{a, b, c\}$ and A, B be fuzzy subsets of X defined as follows:

A(a)=0,3 A(b)=0,2 A(c)=0,4B(a)=0,7 B(b)=0,8 B(c)=0,6

We put $\tau = \{0_X, 1_X, A\}$. If we take $I = \{0_X\}$, then B is fuzzy regular-*I*-closed set but not fuzzy α -*I*-open (fuzzy open) set.

Example 5. In Example(3) A is fuzzy α -*I*-open (fuzzy open) set but not fuzzy regular-*I*-closed set.

Theorem 2. For a fuzzy subset A of a fuzzy ideal topological space (X, τ, I) , the following property holds: A is a fuzzy regular-*I*-closed set if and only if A is a fuzzy semi-*I*-open set and a fuzzy *-perfect set.

Proof. Necessity. The proof is obvious [Theorem 1 a), Diagram II].

Sufficiency. Let A be a fuzzy semi-*I*-open set and a fuzzy *-perfect set. Since A is a fuzzy semi-*I*-open set, there is $A \leq Cl^*(Int(A))$. Respectively, by using Lemma

1 a), d) and c)

$$A \le (Cl^*(Int(A)))^* = (Int(A) \lor (Int(A))^*)^* \\ = (Int(A))^* \lor ((Int(A))^*)^* \le$$

(Int (A))*,

and hence we have $A^* \leq (Int(A))^*$. On the other hand, since Int $(A) \leq A$,

we already have $(Int(A))^* \leq A^*$ using Lemma 1a). Therefore, we obtain

that $A^* = (Int(A))^*$. Furthermore by hypothesis, since A is also a fuzzy *-perfect set, we have $A = A^*$. So, $A = A^* = (Int(A))^*$; that is, $A = (Int(A))^*$ and hence A is a fuzzy regular-*I*-closed set.

4. FUZZY SEMI-I-REGULAR SETS

We give some new definitions for fuzzy sets and some examples for those fuzzy sets in any ideal fuzzy topological spaces.

Definition 4. A fuzzy subset A of a fuzzy ideal topological space (X, τ, I) is said to be fuzzy semi-*I*-regular if A is both a fuzzy t-*I*-set

and a fuzzy semi-*I*-open set.

We will denote the family of all fuzzy semi-*I*-regular sets of (X, τ, I) by

FSIR(X), if there is no chance for confusion with the fuzzy ideal.

Remark 3. Note first that fuzzy t-*I*-sets and fuzzy semi-*I*-open sets are independent concepts as shown in the following examples.

Example 6. Let $X=\{a, b, c\}$ and A, B be fuzzy subsets of X defined as follows:

A(a)=0,3 A(b)=0,1 A(c)=0,6 B(a)=0,5 B(b)=0,2 B(c)=0,7

We put $\tau = \{0_X, 1_X, A\}$. If we take $I = \{0_X\}$, then B is fuzzy semi-*I*-open set but not fuzzy t-*I*-set.

Example 7. In Example 2. B is fuzzy t-*I*-set but not fuzzy semi-*I*-open set.

Theorem 3. In a fuzzy ideal topological space (X, τ, I) , the following properties hold:

a) Every fuzzy regular-*I*-closed set is a fuzzy semi-*I*-regular set.

b) Every fuzzy semi-*I*-regular set is a fuzzy semi-*I*-open set.

c) Every fuzzy semi-I-regular set is a fuzzy t-I-set.

Proof. a) Let A be a fuzzy regular-I-closed set. According to Diagram II, A is both a fuzzy t-*I*-set and a fuzzy semi-*I*-open set. So, A is a fuzzy semi-*I*-regular set.

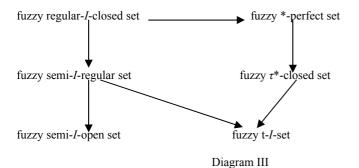
b), c) The proof is obvious as seen by Definition 4.

Remark 4. The converses of Theorem 3 need not be true as the following examples show.

Example 8. Let $X=\{a, b, c\}$ and A, B be fuzzy subsets of X defined as follows:

 $\begin{array}{l} A(a)=0,1 \quad A(b)=0,3 \quad A(c)=0,8 \\ B(a)=0,7 \quad B(b)=0,6 \quad B(c)=0,9 \end{array}$ We put $\tau = \{0_X,1_X,A\}$. If we take I=P(X), then A is fuzzy semi-Lectored

fuzzy semi-I-regular set but not fuzzy regular-I-closed set.



Remark 5. Since every fuzzy *-perfect set is a fuzzy τ^* -closed set and every fuzzy semi-*I*-regular set is a fuzzy semi-*I*-open set, a fuzzy τ^* -closed (hence fuzzy*-perfect) set and a fuzzy semi-*I*-open (hence fuzzy semi-*I*-regular) set are independent concepts as shown in the following examples.

Example 11. In Example 3. A is fuzzy semi-*I*-regular (hence fuzzy semi-*I*-open) set but not a fuzzy τ^* -closed set.

Example 12. Let X={a, b, c} and A, B be fuzzy subsets of X defined as follows:

A(a)=0,2 A(b)=0,6 A(c)=0,5

B(a)=0,8 B(b)=0,4 B(c)=0,5

We put $\tau = \{0_X, 1_X, A\}$. If we take $I = \{0_X\}$, then B is fuzzy *-perfect (fuzzy τ *-closed) set but not a fuzzy semi-*I*-open (hence fuzzy semi-*I*-regular) set.

Remark 6. Since every fuzzy open set is a fuzzy α -*I*-open set and a fuzzy pre-*I*-open set, a fuzzy pre-*I*-

Example 9. In Example 6. B is fuzzy semi-*I*-open set but not fuzzy semi-*I*-regular set.

Example 10. In Example 2. B is fuzzy t-*I*-set but not fuzzy semi-*I*-regular set.

By Theorem 3 and Diagram II, we obtain the following diagram:

open (hence resp. fuzzy α -*I*-open and fuzzy open) set and a fuzzy semi-*I*-regular set are independent concepts as shown in the following examples.

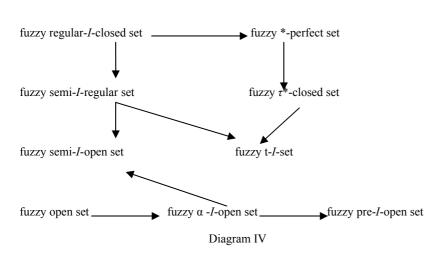
Example 13. In Example 1. A is a fuzzy open (hence fuzzy α -*I*-open and fuzzy pre-*I*-open) set, but not fuzzy semi-*I*-regular set.

Example 14. Let X={a, b, c} and A, B be fuzzy subsets of X defined as follows:

A(a)=0,3 A(b)=0,1 A(c)=0,2 B(a)=0,7 B(b)=0,2 B(c)=0,6

We put $\tau = \{0_X, 1_X, A\}$. If we take $I = \{0_X\}$, then B is a fuzzy semi-*I*-regular set but not fuzzy pre-*I*-open (hence fuzzy α -*I*-open) set.

Diagram III can be expanded to the following diagram using Remark 5 and Remark 6.



5. FUZZY AB_I –SETS

We give some another new definitions for fuzzy sets and the relationships between them. In addition, we give some diagram for those fuzzy sets.

Definition 5. A fuzzy subset A of a fuzzy ideal topological space (X, τ, I) is said to be a fuzzy A_I -set (resp. fuzzy B_I -set, fuzzy *I*-local closed set) if A =U \wedge V, where U $\in \tau$ and V is fuzzy regular-*I*-closed (resp. fuzzy t-*I*-set, fuzzy *-perfect).

Definition 6. A fuzzy subset A of a fuzzy ideal topological space (X, τ, I) is said to be a fuzzy AB_I-set if A =U \land V, where U $\in \tau$ and V is fuzzy semi-*I*-regular set.

We will denote the family of all fuzzy AB_I -sets in (X, τ , *I*) by FAB_I (X) if there is no chance for confusion with the ideal.

Theorem 4. In a fuzzy ideal topological space (X, τ, I) , the following properties hold:

a) Every fuzzy open set is a fuzzy AB_I -set.

b) Every fuzzy semi-*I*-regular set is a fuzzy AB_I -set.
c) Every fuzzy AB_I -set is a fuzzy B_I -set.
d) Every fuzzy A_I -set is a fuzzy AB_I -set.

Proof. a), b) Since $X \in \tau \land FSI R(X)$, the statements are clear.

c) Since every fuzzy regular-*I*-closed set is fuzzy semi-*I*-regular it is obvious by Diagram III.

d) Since every fuzzy semi-*I*-regular set is a fuzzy t-*I*-set it is obvious by Diagram III.

Remark 7. The converses of Theorem 4. need not be true as shown in the following examples.

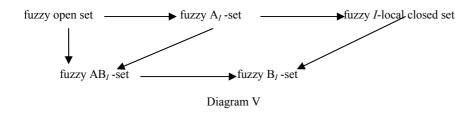
Example 15. In Example 8. B is fuzzy AB_I -set but not fuzzy open set.

Example 16. In Example 1. B is fuzzy AB_I -set but not fuzzy semi-*I*-regular set.

Example 17. In Example 2. B is fuzzy B_I -set but not fuzzy AB_I -set .

Example 18. In Example 8. B is fuzzy AB_I -set but not fuzzy A_I -set .

By using Theorem 4 and Remark 7 we have the following diagram:



Remark 8. A fuzzy AB_I -set and a fuzzy *I*-local closed set are independent concepts as shown in the following examples.

Example 19. In Example 3. B is fuzzy AB_I -set but not fuzzy *I*-local closed set.

Example 20. In Example 12. B is fuzzy *I*-local closed set but not fuzzy AB_I -set.

Remark 9. As every fuzzy α -*I*-open set is fuzzy pre-*I*-open, a fuzzy pre-*I*-open (hence Fuzzy α -*I*-open) set and a fuzzy AB₁ -set are independent concepts as the following examples show.

Example 21. In Example 1. B is fuzzy pre-*I*-open (hence fuzzy α -*I*-open) set but not fuzzy AB_I -set.

Example 22. In Example 14. B is fuzzy AB_I -set but not fuzzy pre-*I*-open (hence fuzzy α -*I*-open) set.

Theorem 5. For a fuzzy subset A of a fuzzy ideal topological space (X, τ, I) , the following property holds: Every fuzzy AB_I-set is fuzzy semi-*I*-open.

Proof. Let A be a fuzzy AB_I -set. Then according to Definition 6, $A = U \land V$, where $U \in \tau$ and V is fuzzy semi-*I*-regular set. By Definition 4, V is also fuzzy semi-*I*-open set. Since V is fuzzy semi-*I*-open,

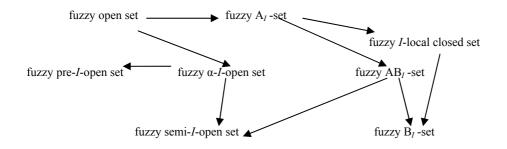
$$\begin{split} A &= U \wedge V \leq U \wedge Cl^* (Int (V)) \leq Cl^* \\ (U \wedge Int (V)) &= Cl^* (Int (U \wedge V)) = Cl^* \end{split}$$

and hence $A \le Cl^*$ (Int (A)) by using Definition 1 c) This shows that A is fuzzy semi-*I*-open.

Remark 10. The converse of Theorem 4 need not be true as shown by the following example.

Example 23. In Example 6. B is fuzzy semi-*I*-open set but not fuzzy AB_I -set.

By using Diagrams I and V with Remarks 8,9,10 and Theorem 5 we have the following diagram:



Theorem 6. For a fuzzy subset A of a fuzzy ideal topological space (X, τ, I) , the following properties are equivalent:

a) A is a fuzzy open set,

b) A is a fuzzy α -*I*-open set and a fuzzy AB_I-set,

c) A is a fuzzy pre-*I*-open set and a fuzzy AB_I -set.

Proof. We prove only the implication c) \Rightarrow a), the other implications

a) \Rightarrow b) and b) \Rightarrow c) being obvious from Diagram VI.

c) \Rightarrow a). Let A be a fuzzy pre-*I*-open set and a fuzzy AB_I-set. Then, since A is

a fuzzy pre-*I*-open set, we have $A \le Int(Cl^*(A))$. Furthermore, because A is a fuzzy AB_I -set, we have $A = U \land V$, where U is fuzzy open and V is a fuzzy semi-*I*-regular set. Since Cl* is a fuzzy Kuratowski closure operation,

 $\begin{array}{rll} A \leq & Int(Cl^*(A)) = & Int(Cl^*(U \land V)) \\ & Int(Cl^*(U) \land Cl^*(V)) \end{array}$

Int(Cl*(V))

and hence

 $A \leq Int(Cl^*(U)) \land Int(Cl^*(V))$ (1.5)

Int(Cl*(U))

Λ

Additionally, since V is a fuzzy semi-*I*-regular set, V is also a fuzzy t-*I*-set. Thus, Int (V) = $Int(Cl^*(V))$. Using this in (1.5), we have

 $A \leq Int(Cl^*(U)) \land Int(Cl^*(V)) = Int(Cl^*(U)) \land Int(V).$

Therefore, we obtain that A \leq Int(Cl*(U)) \wedge Int (V). Besides, because

 $A \le U$, we have

$$A = U \land A \le U \land [Int(Cl^*(U)) \land Int(V)]$$

= [U \land Int(Cl^*(U))] \land Int(V) = U \land Int(V)

)

and $A \leq U \wedge \mbox{Int} \ (V$). Since U is an fuzzy open set, we have

 $A \leq U \wedge Int \ (V \) = Int \ (U \wedge V \) = Int \ (A).$ Thus $A \in \tau$.

6. DECOMPOSITIONS OF FUZZY REGULAR-*I*-CONTINUITY

We give some decompositions of fuzzy regular-Icontinuity and some examples for those continuity in any ideal fuzzy topological spaces. **Definition 7.** A function $f: (X, \tau, I) \to (Y, \Psi)$ is said to be fuzzy *-perfectly continuous (resp. fuzzy semi-*I*regular continuous, fuzzy semi-*I*-continuous [13], FR*I*C-continuous, fuzzy contra*-continuous) if for every $V \in \Psi$, $f^{-1}(V)$ is fuzzy *-perfect (resp. fuzzy semi-*I*-regular, fuzzy semi-*I*-open, fuzzy regular-*I*closed, fuzzy τ^* -closed) set of (X, τ, I) .

Theorem 7. For a function $f: (X, \tau, I) \rightarrow (Y, \Psi)$ the following statements hold:

- a) Every FRIC-continuous is fuzzy *-perfectly continuous,
- b) Every FRIC-continuous is fuzzy semi-Iregular continuous,
- c) Every fuzzy *-perfectly continuous is fuzzy contra*-continuous,
- d) Every fuzzy semi-*I*-regular continuous is fuzzy semi-*I*-continuous.

Proof. This follows from Theorem1, Theorem 2 and Definition 7.

Remark 11. The converses of Theorem 7. need not be true as shown in the following examples.

Example 24. Let $X=\{a, b, c\}, Y=\{x, y, z\}$ and A, B be fuzzy subsets defined as follows:

A(a)=0.7 A(b)=0.4 A(c)=0.8 B(x)=0.3 B(y)=0.6 B(z)=0.2

Let $\tau = \{0_X, 1, A\}, \Psi = \{0_Y, 1_Y, B\}$ and $I = \{0_X\}$. Then the function $f : (X, \tau, I) \to (Y, \Psi)$ defined by f(a)=x, f(b)=y and f(c)=z then f is fuzzy *-perfectly continuous but not FRIC-continuous.

Example 25. Let $X=\{a, b, c\}, Y=\{x, y, z\}$ and A, B be fuzzy subsets defined as follows: A(a)=0.1 A(b)=0.4 A(c)=0.3B(x)=0.3 B(y)=0.5 B(z)=0,2

Let $\tau = \{0_X, 1_X, A\}$, $\Psi = \{0_Y, 1_Y, B\}$ and $I = \{0_X\}$. Then the function $f : (X, \tau, I) \rightarrow (Y, \Psi)$ defined by f(a)=x, f(b)=y and f(c)=z then f is fuzzy semi-*I*-regular continuous but not FR*I*C-continuous.

Example 26. Let $X=\{a, b, c\}, Y=\{x, y, z\}$ and A, B be fuzzy subsets defined as follows:

A(a)=0.8 A(b)=0.2 A(c)=0.4 B(x)=0.9 B(y)=0.4 B(z)=0,7

Let $\tau = \{0_X, 1_X, A\}, \Psi = \{0_Y, 1_Y, B\}$ and $I = \{0_X\}$. Then the function $f : (X, \tau, I) \rightarrow (Y, \Psi)$ defined by f(a)=x,

f(b)=y and f(c)=z then f is fuzzy contra*-continuous but not fuzzy *-perfectly continuous.

Example 27. Let $X=\{a, b, c\}, Y=\{x, y, z\}$ and A, B be fuzzy subsets defined as follows:

 $\begin{array}{c} A(a){=}0.2 \ A(b){=}0.7 \ A(c){=}0.1 \\ B(x){=}0.6 \ B(y){=}0.8 \ B(z){=}0.3 \\ \text{Let } \tau{=}\{0_X,1_X,A\}, \ \Psi {=}\{0_Y,1_Y,B\} \ \text{and } I{=}\{0_X \ \}. \ \text{Then the function } f: (X, \ \tau, \ I \) \rightarrow (Y, \ \Psi) \ \text{defined by } f(a){=}x, \end{array}$

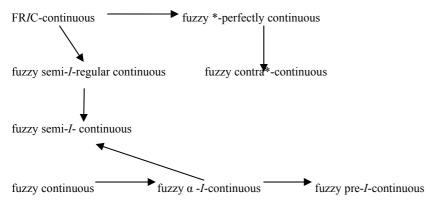


Diagram VII

7. DECOMPOSITIONS OF FUZZY A_I CONTINUITY

We give some decompositions of fuzzy A_{I} - continuity and some diagram for those continuity in any ideal fuzzy topological spaces.

Theorem 8. For a fuzzy subset A of a fuzzy ideal topological space (X, τ, I) , the following property holds: A is a fuzzy A_I -set if and only if A is a fuzzy semi-*I*-open set and a fuzzy *I*-local closed set.

Proof. This is obvious from Definition 5 and Theorem 2.

Definition 8. A function $f: (X, \tau, I) \rightarrow (Y, \Psi)$ is said to be fuzzy A_I -continuous (resp. fuzzy AB_I continuous, fuzzy *I*-LC-continuous ,fuzzy B_I continuous) if for every $V \in \Psi, f^{-1}(V)$ is fuzzy A_I -set (resp. fuzzy AB_I -set, fuzzy *I*-local closed set, fuzzy B_I set) of (X, τ, I) **Theorem 9.** For a function $f: (X, \tau, I) \rightarrow (Y, \Psi)$, the following properties hold:

a) If f is fuzzy continuous, then f is fuzzy AB_I - continuous;

b) If f is fuzzy semi-*I*-regular continuous, then f is fuzzy AB_{*I*}-continuous;

c) If f is fuzzy AB_I -continuous, then f is fuzzy B_I - continuous;

d) If f is fuzzy A_I -continuous, then f is fuzzy AB_I - continuous.

Proof. The proof is obvious from Theorem 4.

We have the following diagram using Diagram VI, Definition 8 and Theorem 9:

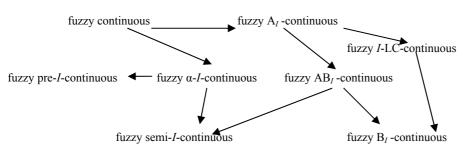


Diagram VIII

f(b)=y and f(c)=z then f is fuzzy semi-*I*-continuous but not fuzzy semi-*I*-regular continuous.

We have the following diagram using Diagram IV and Theorem 7 and Remark 11:

Theorem 10. For a function $f: (X, \tau, I) \rightarrow (Y, \Psi)$, the following properties are equivalent:

a) f is fuzzy continuous;

b) f is fuzzy α -*I*-continuous and fuzzy AB₁ –continuous; c) f is fuzzy pre-*I*-continuous and fuzzy AB₁ – continuous.

Proof. This is an immediate consequence of Theorem 6.

Theorem 11. For a function $f: (X, \tau, I) \to (Y, \Psi)$, the following property holds: f is fuzzy A_I -continuous if and only if f is fuzzy semi-*I*-continuous and fuzzy *I*-LC-continuous.

Proof. This is an immediate consequence of Theorem 8.

REFERENCES

- Zadeh L. A., "Fuzzy sets", *Inform. And control*, 8: 338-353, (1965).
- [2] Yüksel S., Gürsel Caylak E., Acikgöz A., "On Fuzzy α -*I*-continuous and fuzzy α -*I*-open functions", *Chaos, Solitons & Fractals*, 41: 1691-1696 (2009).
- [3] Nasef A. A., Mahmoud R. A., "Some topological applications via fuzzy ideals", *Chaos, Solitons & Fractals*, 13: 825-831 (2002).
- [4] Yalvac T. H., "Fuzzy sets and functions on fuzzy spaces", *Journal of Mathematical Analysis and Applications*, 126(2): 409-423 (1987).
- [5] Wong C. K., "Fuzzy points and local properties of fuzzy topology", *Journal of Mathematical Analysis and Applications*, 46: 316-328 (1974).
- [6] Vaidyannathaswamy R, "The localization theory in set topology", *Proceedings of the Indian National Science Academy*, (20): 51-61 (1945).
- [7] Sarkar D, "Fuzzy ideal theory, fuzzy local function and generated fuzzy topology", *Fuzzy Sets and Systems*, 87: 117-123 (1997).
- [8] Nasef A. A., Hatir E, "On fuzzy pre-*I*-open sets and a decomposition of fuzzy-*I*-continuity", *Chaos, Solitons & Fractals*, doi:10.1016/j.chaos.2007.08.073 (2007).
- [9] Azad K. K, "On fuzzy semi continuity, fuzzy almost continuity", *Journal of Mathematical Analysis and Applications*, 82: 14-23 (1981).
- [10] Bin Shahana A. S., "On fuzzy strong semi continuity and fuzzy pre continuity", *Fuzzy Sets* and Systems, 44: 303-308 (1991).
- [11] Chankraborty M. K., Ahsanullah T. M. G., "Fuzzy topology on fuzzy sets and tolerance topology", *Fuzzy Sets and Systems*, 45: 189-97 (1991).

- [12] Chang C, "Fuzzy topological spaces", Journal of Mathematical Analysis and Applications, 24: 182-9 (1968).
- [13] Hatir E, Jafari S, "Fuzzy semi-*I*-open sets and fuzzy semi-*I*-continuity via fuzzy idealization", *Chaos, Solitons & Fractals*, 34: 1220-1224 (2007).
- [14] Jankovic D, Hamlet T. R., "New topologies from old via ideals", *The American Mathematical Monthly*, 97(4): 295-310 (1990).
- [15] Lowen R., "Fuzzy topological spaces and fuzzy compactness", *Journal of Mathematical Analysis* and Applications, 56: 621-633 (1976).
- [16] Kuratowski K., "Topology", Vol.1 (transl.) Academic Press, New York (1966).