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ABSTRACT 

 
This study introduces and shows the applicability of the XploRe commands of the parametric and the 
semiparametric single index models, which are two most popular alternatives of each other. The commands 
required for the estimation in all stages of the semiparametric estimation and the parametric logistic, probit and 
complementary log log regression models are introduced in detail. An artificial data set is used to demonstrate 
the applicability of the commands in practice. The major contribution of this study is that it enables researchers 
to obtain additional outputs in easier way that are not so easy to have in the standard statistical packages 
especially for the semiparametric models. Additionally, users could extend and adapt these commands in 
conjunction with the new developments in this area.    
 
 

 Key Words:  Single index model, Semiparametric approach, Binary response modelling, XploRe.                                        

 
1. INTRODUCTION

When the dependent variable Y is binary, the 
conditional expectation function gives the probability of 
belonging to the category “1” in the dependent variable 
conditional on the explanatory variables X. The model 
is generally defined as, 

[ ]
T

T
0

E(Y / X x) P Y 1/ X x

D{ (x)} D(X )

D( X )

= = = =

= υ = β

= β + β

                       (1) 

where β  is the unknown parameter vector and D is the 
distribution function related to the unobserved error 
term (also called link function between the probability  

P[Y 1 / X x]= =  and the index function (x)υ ). The 

linear form ( TX β ) is usually determined for (x)υ  by 
taking into consideration the simplicity of the model 
estimation under linearity. Since all explanatory 
variables are summed under only one linear index, these 
models are called “Single Index Models” (SIM).  
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It is a well known fact that the parametric and the semi-
parametric approaches are two most popular 
alternatives for the model estimation of binary 
responses. Binary Logit, Probit and Complementary log 
log models are widely used parametric models 
estimated based on the Maximum Likelihood 
Estimation (MLE) procedure whereas Density 
Weighted Average Derivative Estimator (DWADE) is 
one of the most popular estimators used in the 
semiparametric modelling.  

In the current study, I mainly aimed to introduce the 
commands for the estimation of both parametric and 
semiparametric models according to the different 
estimators in the windows based version 4.8 of the 
XploRe package. It is evident that these commands will 
provide easier way to the estimation procedure by 
means of their some available commands in the form of 
libraries and quantlets (single XploRe programs). 
Additionally, they enable researchers to obtain 
additional outputs in easier way that are not at hand in 
the existing standard statistical packages.   

In the application part of the study, all the commands 
are executed and the estimation of the model parameters 
is obtained over an artificial data set. In this way, the 
applicability of the commands in practice is supported.       

2. THE METHODOLOGY 

Because I mainly intended to introduce the XploRe 
commands I constructed for the parametric and the 
semiparametric single index models, a brief 
methodology of them is discussed in the following 
subsections. 

2.1. The Parametric Single Index Model 

In the standard parametric model, the function D, 
defined in Eq.(1), is assumed a known distribution 
function (denoted by xG Gε = ) and ε  is distributed 

independently of X. The model given by 

[ ]
T T

0

E(Y / X x) P Y 1/ X x G{ (x)}

G(X ) G ( X )

= = = = = υ

= β = β + β
            (2) 

is called the Parametric Single Index Model (PSIM). If 
G is correctly specified, this approach satisfies the 
efficiency condition of the model parameters and allows 
for the extrapolation for the values x out of the support 
of X. However, G is rarely known in most applications 
and the results are highly misleading when G is 
misspecified. The name of the model changes in 
conjunction with the change in G. The parametric Logit 
and Probit models are obtained by using the link 
functions given in Eq.(3) and (4), respectively ([1], 
[10]).  

[ ]
T

T

E(Y / X x) P Y 1/ X x

exp(X )
1 exp(X )

= = = =

β
=

+ β

                     (3) 

[ ] TE(Y / X x) P Y 1/ X x (X )= = = = = Φ β             (4) 

Here, Φ  denotes the standard normal cumulative 
distribution function.  

The complementary log-log model that is the third 
alternative to the binary logit and probit models is 
frequently used when the probability of an event is very 
small or very large. The major difference of the 
complementary log-log function given in Eq.(5) from 
the logit and probit is resulted 

from its asymmetrical structure. 

[ ]
T

E(Y / X x) P Y 1/ X x

1 exp[ exp(X )]

= = = =

= − − β
                     (5) 

2.1.1. The maximum likelihood estimator 

In the PSIM, parameter estimates are obtained by the 
method of MLE. The likelihood and the logarithmic 
likelihood functions for the MLE of β  are given by 
Eq.(6) and (7), respectively. 

i i

N
Y 1 Y

ii
i 1

L( / y,x) p (1 p ) −

=
β = −∏                        (6)                               

The calculations become much easier when sums are 
used instead of products in Eq.(6). In this case, the 
general form of the logarithmic likelihood function 
given below should be identified. 

N
i i

i ii 1

Y log p
log L( / y,x)

(1 Y )log (1 p )=

⎡ ⎤
β = ⎢ ⎥+ − −⎣ ⎦

∑                 (7) 

We know that if β̂  maximizes L( / y,x)β , it also 
maximizes log L( / y,x)β . Hence, the first order 
derivatives are computed and set to “0” to obtain 
estimates maximizing the likelihood of observing the 
sample Y.  

The logarithmic likelihood equations with respect to the 
logistic, probit and complementary log log models are 
obtained by replacing ip  in Eq.(7) with the functions 
given by Eq.(3), (4) and (5), respectively. 

T
i

i TN
i

Ti 1 i
i T

i

log L( / y,x)

exp(X )Y log
1 exp(X )

exp(X )(1 Y )log (1 )
1 exp(X )

=

β =

⎧ ⎫⎡ ⎤β⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥+ β⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪β
+ − −⎪ ⎪

+ β⎪ ⎪⎩ ⎭

∑
                      (8) 

TN i i
T

i ii 1

log L( / y,x)

Y log (X )

(1 Y )log 1 (X )=

β =

⎧ ⎫Φ β⎪ ⎪
⎨ ⎬⎡ ⎤+ − −Φ β⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

∑
                              (9) 
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log L( / y,x)

Y log 1 exp( exp(X ))

(1 Y )

log 1 1 exp( exp(X ))
=

β =

⎧ ⎫⎡ ⎤− − β⎪ ⎪⎢ ⎥⎣ ⎦
⎪ ⎪+ −⎨ ⎬
⎪ ⎪

− − − β⎪ ⎪
⎩ ⎭

∑
                    (10) 

Unknown β  parameters are estimated by maximizing 
the log likelihood functions given above ([1], [8], [10]). 

2.2. The Semi-Parametric Single Index Model 

Most estimation problems contain both an unknown 
finite-dimensional parameter (β ) and an unknown link 
function. These kinds of models are called “Semi-
Parametric”. 

In the Semiparametric Single Index Model (SSIM), the 

linearity assumption T(x) Xυ = β  is still valid but no 
additional assumption is made related to the error term. 
In other words, a specific link function is not assumed 
in the model and represented by the term “g” instead of 
“G” in Eq.(2). SSIM is defined as follows. 

[ ]
T

T
0

E(Y / X x) P Y 1/ X x

g{ (x)} g(X )

g ( X )

= = = =

= υ = β

= β + β

                   (11) 

The estimation procedure of SSIM is composed of two 
steps. In the first step, the parameter vector β  is 
estimated using one of the semi-parametric model 
estimation techniques according to the data structure 
such as DWADE introduced in detail in Subsection 
2.2.1. In the second step, the values of the linear index 

function T ˆX β  are computed. Finally, an unknown 
distribution function g is estimated and probabilities 
P[Y 1 / X x]= =  are obtained by the non-parametric 

regression of Y on T ˆX β , which is introduced in 
Subsection 2.2.2. ([2], [7]). 

2.2.1. The density weighted average derivative 
estimator 

The DWADE has two important advantages except that 
it could only be applied to the data with continuous 
explanatory variables. The first one is that no 
distributional assumption is needed for the dependent 
variable Y and the second one is that the resulting 
estimator is a direct estimator. It is based on the average 
derivatives of the conditional expectation function 
expressed in Eq.(12) with respect to the continuously 
distributed random vector x. 

' TE(Y / x) G (x )
x

∂
= β β

∂
                                  (12) 

The density weighted average derivatives are obtained 
by using the probability density function of x for any 
restricted and continuous function W. 

' T

E(Y / x)E W (x)
x

E W (x)G (x )

∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

⎡ ⎤= β β⎢ ⎥⎣ ⎦

                                   (13) 

Because of the scale normalization requirement of the 
semiparametric approach, β  is only defined according 
to the scale and any weighted average derivative of 
E (Y / x)  is equal to the β  ([9],[12]).  

The scale normalization of 1 1β =  can be achieved by 
dividing each component on the left side of Eq.(12) by 
the first component. The left side of Eq. (12) could be 
estimated by replacing the kernel estimator of 

E (Y / x)
x

∂
∂

 and the sample mean for the expected value 

of the population [ E (.) ]. The resulting estimator 
proposed by [12] is defined as, 

E(Y / x)E W (x)
x

p(x)2 E(Y / x) p(x)dx
x
p(x)2E E(Y / x)

x
p(x)2E Y

x

∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

∂
= −

∂
∂⎧ ⎫= − ⎨ ⎬
∂⎩ ⎭

∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦

∫
                               (14) 

Here, p (x)  denotes the joint probability density 
function of the random vector x. When we accept the 
equality W (x) p(x)= ; we conclude that 
W(x) p(x) 0= =  when x is on the boundary of the 
support of x. In such a case, we could easily obtain the 
following partial integration. 

k 1n n i j'
i

n ni 1 j 1
j i

E(Y / x) 2E W (x)
x n (n 1)

X X1 K Y
h h

+

= =
≠

∂⎡ ⎤ = −⎢ ⎥∂ −⎣ ⎦

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∑
                      (15) 

In Eq.(15), 'K is the first order derivatives of the kernel 
function K; n is the number of observations and nh  is 
the bandwidth parameter, dependent on n, required for 
the kernel estimation. (refer to [12] for detailed 
theoretical information and the proof of Eq.(14) and 
(15)). 

2.2.2. The theory of the nonparametric regression  

The estimation of the conditional expectation function 
given in Eq.(1) is defined as,  

ˆyf (x, y)m̂(x) E(Y x) dy
f̂ (x)

= = ∫                       (16)   

where f̂ (x, y)  and f̂ (x)  represent the estimated joint 
probability density function of X and Y and the 
marginal density function of X, respectively. The 
estimators of the regression function proposed by [11] 
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and [14] are obtained when the kernel type estimators 
developed based on the bandwidth parameter h and the 
kernel functions are used in the estimation of f (x, y)  
and f (x) . This requirement arises when no 
distributional assumption is made related to these two 
density functions.   

n
i

x xi 1

x X1f̂ (x) K( )nh h=

−
= ∑                                   (17) 

n
i i

X Y X Yi 1

1 1 x X y Yf̂ (x, y) K( , )
n h h h h=

− −
= ∑ &&                 (18) 

Here, K is called a “kernel function”. It is a symmetrical 
probability density function satisfying the following 
general assumptions. 

1. K (u)du 1,=∫     

2. u K (u)du 0,=∫     

3. 2
2u K (u)du (K) 0= µ ≠∫    

K(...)&&  is a bivariate kernel function, Xh  is a fixed 

bandwidth of a random variable X, and Yh  is a fixed 
bandwidth of a random variable Y. A bivariate kernel 
function could be obtained by using the multiplicative 
kernel functions defined as follows ([3],[11],[14]).  

i i
X Y

i i
1 2

X Y

x X y YK( , )
h h

x X y YK ( )K ( )
h h

− −

− −
=

&&

                                  (19) 

The kernel estimator of the bivariate probability density 
function of X and Y is obtained by using the same 
K1=K2=K kernel function in the estimation. The 
Nadaraya-Watson kernel estimator of the regression 
function ( NWm̂ (x) ) is obtained by replacing the 

density functions f̂ (x, y)  and f̂ (x)  in Eq. (16) with the 
kernel estimators given by Eq.(17) and (18). 

n
i

i
i 1

NW n
i

i 1

x XY K
h

m̂ (x)
x XK

h

=

=

−⎛ ⎞
⎜ ⎟
⎝ ⎠

=
−⎛ ⎞

⎜ ⎟
⎝ ⎠

∑

∑
                        (20) 

Epanechnikov ( 1K ) and Gaussian ( 2K ) are two most 
popular kernel functions used in practice. The 
defination of them is given as follows.  

2
1K (u) 3(1 u ) / 4= − ,      u 1≤  

2
2K (u) e xp( u / 2) / 2= − π ,  u−∞ < < ∞   

The bandwidth parameter, also called the smoothing 
parameter, h of the Nadaraya-Watson kernel estimator 
controls for the smoothing level of the estimation. h 
plays very important role in the performance of the 

kernel estimators. Various methods such as the cross-
validation, penalized functions, plug-in, bootstrap etc. 
have been developed to be able to obtain the optimal 
bandwidths. The cross-validation method is generally 
preferred due to its easier computable and applicable 
structure for any regression model.  

The bandwidth value which minimizes the Cross-
Validation (CV) function with a nonnegative weight 
function iw (X )  given as,  

n1 2
i i i i

i 1
ˆCV(h) n Y m (X ) w(X )−

=
= −⎡ ⎤⎣ ⎦∑                  (21)  

is considered the optimal one. The CV function contains 
the leave-one-out kernel estimator defined as follows.  

n i j
j

j i
i i n i j

j i

X X
Y K( )

h
m̂ (X )

X X
K( )

h

≠

≠

−

=
−

∑

∑
                    (22) 

The leave-one-out estimator is obtained by leaving out 
the observations i (the concerned observations iX  and 

iY ) from the data each time for satisfying the unbiased 
estimate of the bandwidth parameter h. The procedure is 
replicated n times (for all observations). The final 
optimal bandwidth value required for the kernel 
estimation is the mean of all these values computed. 
The bandwidth that minimizes the cross-validation 
function also minimizes the mean square error which is 
a performance criterion of an estimator ([3],[11],[14]). 

3. XploRe COMMANDS FOR THE SINGLE 
INDEX MODEL ESTIMATION  

In this section, all XploRe commands for the popular 
parametric and the semiparametric models for binary 
response data are introduced in detail.  

3.1. The Commands of the Parametric Single 
Index Models 

The XploRe commands for the estimation of the 
parametric logistic, probit and complementary log log 
models are given below ([4],[5],[6]). 

3.1.1. The logistic regression model 

proc(b)=main1() 

dat=read ("logistic") ;Reads the data set labeled by 
“logistic” written in ASCII format. 

y=dat[,1] ; Describes the column number of the 
dependent variable (y) in the data set. 
  

x=dat[,2:5] ; Describes the column numbers of 
the explanatory variable(s) (x) in the data set. 

x = matrix (rows (x)) ~ x[,1:4] ; Adds column vector 
“1”  to the left side of the matrix x.   

library ("glm") ; Calls the library “glm” (generalized 
linear model) for the estimation of β . 
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g=glmest ("bilo",x,y) ; Applies the logistic regression 
analysis to the data using the option “binomial 
logit” abbreviated by “bilo” by calling the 
command “glmest” (generalized linear model 
estimation) in the library “glm”.   

glmout ("bilo",x,y,g.b,g.bv,g.stat) ; Creates outputs of 
the logistic regression model by the command 
“glmout” (generalized linear model output). 
“g.b”; “g.bv” and “g.stat” include the estimated 
parameter vector b; variance-covariance matrix 
of b and some basic statistics such as the 
logarithmic likelihood value, degrees of 
freedom, residuals, some information criterion 
etc., respectively.  

  

index1=x*g.b ;Computes the linear index values 
T(x) x (g.b)υ = . 

index 1 ; Displays the index values on the output 
screen.  

prob1=exp (index1) / (1+exp (index1) 

 ;Computes the probabilities of belonging to the 
category “1” coded in the dependent variable 
obtained from the logistic  regression analysis in 
connection with the linear index values.  

prob1; Displays the calculated probabilities related to 
the each observation on the output screen. 

write1 (prob1, “output1.xls”) ;Writes the probabilities 
obtained from the logistic regression analysis to 
the file “output 1” in the xls format. 

endp 

main1() 

3.1.2. The probit regression model 

proc(b)=main2() 

 

dat=read ("probit") ; Reads the data set labeled by 
“probit” written in ASCII format. 

y=dat[,1] ; Describes the column number of the 
dependent variable (y) in the data set. 
  

x=dat[,2:5] ; Describes the column numbers of the 
explanatory variable(s) (x) in the data set. 

x = matrix (rows (x)) ~ x[,1:4] ; Adds column vector 
“1”  to the left side of the matrix x.   

library ("glm") ; Calls the library “glm” for the 
estimation of β . 

g=glmest ("bipro",x,y) ; Applies the probit regression 
analysis to the data using the option “binomial 
probit” abbreviated by “bipro” by calling the 
command “glmest” in the library “glm”.   

glmout ("bipro",x,y,g.b,g.bv,g.stat) ; Creates outputs of 
the probit regression by the command “glmout”.  

index2=x*g.b ; Computes the index values 
T(x) x (g.b)υ = .  

index 2; Displays the index values on the output 
screen. 

prob2=cdfn(index2) ; Calculates the probability of 
belonging to the category “1” coded in the 
dependent variable. The command “cdfn” stands 
for “cumulative distribution function of normal 
distribution”, which is the link function of the 
probit model.  

prob2; Displays the calculated probabilities related to 
the each observation on the output screen. 

write2 (prob2, “output2.xls”); Writes the probabilities 
obtained from the probit regression analysis to 
the file “output 2” in the xls format. 

endp 

main2() 

3.1.3. The complementary log log model 

proc(b)=main3() 

 

dat=read ("complementary") ; Reads the data set labeled 
by “complementary” written in ASCII format. 

y=dat[,1] ; Describes the column number of the 
dependent variable (y) in the data set. 
  

x=dat[,2:5] ; Describes the column numbers of the 
explanatory variable(s) (x) in the data set. 

x = matrix (rows (x)) ~ x[,1:4] ; Adds column vector 
“1”  to the left side of the matrix x.   

library ("glm") ; Calls the library “glm” for the 
estimation of β . 

g=glmest ("bicll",x,y) ; Applies the complementary log 
log regression analysis to the data using the 
option “binomial complementary log log” 
abbreviated by “bicll” by calling the command 
“glmest” in the library “glm”.   

glmout ("bicll",x,y,g.b,g.bv,g.stat); Creates outputs of 
the complementary log log model by the 
command “glmout”. 

index3=x*g.b ; Computes the index values 
T(x) x (g.b)υ = .  

index3; Displays the index values on the output screen. 

prob3= ( )1 exp exp(index3)− − ; Calculates the 
probability of belonging to the category “1” 
coded in the dependent variable.  

prob3; Displays the calculated probabilities related to 
the each observation on the output screen 

write3 (prob3, “output3.xls”) ; Writes the probabilities 
obtained from the probit regression analysis to 
the file “output 3” in the xls format. 
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endp 

main3() 

3.2. The Commands of the Semiparametric 
Single Index Model 

In this subsection, the XploRe commands related to the 
DWADE estimator used in the first step of the 
semiparametric modelling and the nonparametric 
regression that constitutes the second step of the 
estimation procedure are introduced.  

The commands related to the DWADE in an old version 
of XploRe package are written by [13], however, these 
commands could not be used in the current windows 
based version of the XploRe.    

proc(b) = main4() 

 

dat=read ("dwade") ; Reads the data set labeled by 
“dwade” written in ASCII format. 

 

y=dat[,1] ; Describes the column number of the 
dependent variable (y) in the data set. 
  

x=dat[,2:5] ; Describes the column numbers of the 
explanatory variable(s) (x) in the data set. 

x=x.-mean (x) ; Centralizes x values for eliminating the 
possible high correlation among x. 

ozdeg=eigsm (cov (x)) ; Calculates the eigenvalues and 
eigenvectors of the covariance matrix of x. 

v=ozdeg.vectors ; Expresses the eigenvectors by 
the matrix “v”. 

w=ozdeg.values ; Expresses the eigenvalues by the 
matrix “w”. 

mah=v*(sqrt (1./w).*v') ; Applies the Mahalanobis 
transformation to the values of the explanatory 
variables for eliminating the possible high 
correlation among them. 

x=x*mah ; Weights raw data matrix x by the 
transformation matrix “mah”. 

library ("smoother");  Calls the library “smoother” for 
the estimation of β .   

library ("metrics") ; Calls the library “metrics” for the 
mathematical computations. 

library("plot") ; Calls the library “plots” for the 
graphical representation. 

h=0.2*(max(x).-min(x))' ; Describes the optimal 
bandwidth values required for the estimation 
ofβ .   

b=dwade (x,y,h) ; Gives the semiparametric estimation 
of β  (b) by the method DWADE . 

b=mah*b ; Computes the original values of the b 
estimates. 

b=b./abs(b[1,]) ; Normalizes all estimated b s’ dividing 
by the first estimated coefficient.  

index4=x*b ; Gives the estimated linear index 
values. 

index4; Displays all the calculated index values on the 
output screen. 

write4 (index4, “output4.xls”) ; Writes 
the linear index values obtained from the dwade 
to the file “output 4” in the xls format. 

 

;the nonparametric regression of Y on the estimated 
index values and the graphical representation 

 

yindex4=index4∼y ; Adds the dependent 
variable column y to the right side of the 
variable “index4”. This is required for the 
nonparametric regression method used for the 
second step of the semiparametric modelling. 

h1=regxbwsel (yindex4) ; Selects the optimal 
bandwidth value for the nonparametric 
regression by the command “regxbwsel” 
(regression bandwidth selection). 

mh=regxest(yindex4,h1,"qua") ; Computes the 
nonparametric estimates mh by the command 
“regxest” (regression estimate) dependent on 
the values of y and index4, optimal bandwidth 
value h1 and the kernel function used (here the 
quadratic kernel function abbreviated by “qua” 
is preferred). 

mh ;Displays the nonparametric regression 
estimates on the output screen. 

mh=setmask(mh,"line","blue");  Describes 
some diagrammating characteristics such as the 
color and the shape. 

xy=setmask(yindex4,"cross","small")  

; Describes the image of the “yindex4”. 

plot(xy,mh) ;  Plots “xy” and “mh”.  

endp 

main4() 

4. A NUMERICAL EXAMPLE 

The applicability of all the XploRe commands I 
constructed above in practice are supported over an 
artificial data derived according to sample size of 100 in 
the linear index functional form of  

(i) (i)

1(i) 2(i) 3(i) 4(i)

(X ) index

1 X X X 3X

;i 1,2, ,n

β =

= + + + −

= K

               (23) 

where n denotes the number of observations and X 
represents the vector of the explanatory variables. It 
should be taken into consideration that the estimation of 
the constant term is not required and the first coefficient 
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of a continuous explanatory variable of the linear index 
function should set to “1” to satisfy the identifiability 
condition of the parameters in the semiparametric 
modelling (for details, see [9]).    

1X  2X , 3X  and 4X  are assumed to follow a 
Standard Normal, Uniform (0,1), Exponential (3) and 
Weibull (6,2) distributions, respectively. The dependent 
variable iY  is assumed to follow a Bernoulli 

distribution with the parameter (i)p , which is the 

probability of belonging to the category “1” coded in 
the dependent variable of observation i. (i)p  is 

assumed to be calculated based on the logistic 
regression function given below. 

(i)
(i)

(i)

exp index
p

1 exp index

⎡ ⎤⎣ ⎦=
⎡ ⎤+ ⎣ ⎦

                                         (24) 

The outputs obtained by executing all the XploRe 
commands given above are discussed in the following 
subsections.  

 

It should be again noted that I do not focus on to the 
interpretations of the model results here. I mainly 

intended to introduce the XploRe commands of the 
most popular SIM that enable to display the required 
additional outputs on the screen, which are not so easy 
in the standard statistical packages. 

Researchers interesting in the interpretations to the 
model results could refer to [1],[2],[7],[8] and [10]. 

4.1. The Results of the Logistic Regression Model 

The results related to the logistic regression model are 
expressed by Figure 1 and 2.  

Estimated parameters (b), standard error of the estimate 
(s.e) and related t values, other statistics measuring the 
quality of the model such as the log-likelihood value 
and some residual types such as Pearson and Deviance 
are presented on the left side of Figure1. The graphical 
representation of the link function “logit” is given on 
the right side of the figure. 

Figure 2 shows the output screen related to the 
computed index values ( xb ) and the probabilities of 
belonging to the category “1” coded in the dependent 
variable. 

Further details could be obtained by extending and 
adapting the existing commands.

 . 

 
Figure 1. Estimated parameters and some basic statistics related to the logistic regression model. 
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 Figure 2. Estimated index values and probabilities in the logistic regression model. 

4.2. The Results of the Probit Regression Model 

The similar outputs with respect to the probit 
regression model as in the case of the logistic 
regression could be obtained. Therefore I only gave 
the basic results by  

Figure 3. It is evident that the results obtained from 
the logistic and probit regression models are parallel 
with each other due to the fact that they only differ 
from the link functions used in the terminology.

 
    Figure 3. Estimated parameters and some basic statistics related to the probit regression model. 

4.3. The Results of the Complementary Log Log 
Model 

The results of the third alternative, the 
complementary log log model, 

to the logistic and the probit regression models are 
given below in the same form as the other two 
parametric SIM models.
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Figure 4. Estimated parameters and some basic statistics related to the complementary log log model.

4.4. The Results of the Semiparametric SIM 

The output screen on the left side of Figure5 appears 
by executing the first part of the commands given in 
Subsection 3.2. It shows the optimal bandwidth 
values (h), the estimated parameters (b) and the 
related index values (index4) of the 

method DWADE in the semiparametric approach. 
The window on the right side of Figure5 appears 
when we run the command “regxbwsel” and enables 
users to choose one of the estimation methods of the 
parameter h1 such as Cross Validation, Shibata’s 
Model Selector etc. required in the nonparametric 
estimation.  

 
            Figure 5. The results obtained by the method DWADE. 

As mentioned above, the use of the method CV is 
commonly preferred in most studies due to its easier 
mathematical structure and the power in applications. 
The results obtained after selecting one of the 
methods are given by Figure6.  

The bandwidths (h1’s) giving the best results range 
between the values 1.23 and 19.68 and the optimal h1 
is determined as 2.27765.  

The left side of Figure6 graphs the values of h1 and 
the nonparametric regression (mh) of Y on the 
estimated index values for the optimal bandwidth 
parameter with the quadratic kernel function, which is 
optional in the commands.  
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Figure 6. The results of the nonparametric regression applied in the second part of the semiparametric approach. 

5. THE CONCLUDING REMARKS 

Because the main aim of this study is to introduce the 
commands constructed for the estimation of the 
parametric and the semiparametric SIM in the new 
windows based version of the XploRe package,    
researchers studying in this area could refer to related 
references listed below for  comprehensive 
interpretations of the results. 

As emphasized above, the major contribution of this 
study is that it simplifies the estimation procedures of 
PSIM and SSIM and provides users to create their 
own outputs easily by some additions to the 
commands.   
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