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Abstract 

The single machine total weighted tardiness problem with sequence dependent setup times is a challenging and 
heavily studied problem. This problem is NP-hard, so several heuristics have been proposed in the literature so 

far. One of them is the genetic algorithm. The genetic algorithm is both powerful solution technique and 

applicable to wide range of different problem types, although its performance is heavily parameter and operator 
dependent. It is seen in literature that the well-conducted and adapted genetic algorithm operators and 

parameters increase the solution quality. In this study, a new crossover operator is proposed for the single 

machine with sequence dependent setup times problem to minimize the total weighted tardiness. The proposed 
crossover operator improves the relative positions by using apparent tardiness cost with setups (ATCS) heuristic 

while preserving the absolute positions. These are the two main aspects of the permutation type crossover 

operators for scheduling problems. The performance of the proposed crossover operator is tested by comparing 
it with partially mapped crossover (PMX) in different test cases using benchmark instances from literature. It is 

shown that the proposed ATCS based crossover operator gives better results than PMX in all test problems. 

Key Words: Weighted tardiness scheduling, Sequence dependent setups, Genetic algorithm, Crossover operator 

 

1. INTRODUCTION 

There has been a vast body of research on scheduling 

problems for more than fifty years. Among them, 

single-machine scheduling is one of the most popular 

problems. A group of machines may possibly be treated 

as a single unit in the context of single-machine 

scheduling problem. For scheduling purposes, 

computer-controlled machining centers and robotic cells 

are often evaluated as single-machine scheduling 

problems. 

 

Panwalkar et al. reveals the fact that, about three 

quarters of managers scheduled at least one operation 

that required sequence-dependent setup times; whereas 

only 15% of them stated that all operations required 

sequence-dependent setup times [1]. There are two 

types of scheduling problems that involve setup times: 

the ones that are sequence-dependent and the sequence-

independent ones. The setups are sequence dependent 

when the setup time of a job depends on the job that is 

processed immediately before it on the machine. If the 

setup time depends only on the job that the machine is 

being setup for, but not on the previously processed job, 

then that the setups are sequence-independent. There 

are many examples of sequence-dependent setups in 

different fields of the industry like stamping operation 

in plastic manufacturing, roll slitting in the paper 
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industry and die changing in a metal processing shop. In 

[2] a review of scheduling research that includes the 

setup time considerations is presented. 

 

As the just-in-time (JIT) production philosophy spread 

out over the last two decades, many researchers worked 

on scheduling problems to meet the due date 

requirements. The underlying principle of JIT is 

producing goods only when it is necessary. Panwalkar 

et al. defined meeting due dates as the most important 

scheduling criterion for JIT problems [1]. 

 

A due-date related performance measure is the 

minimization of total weighted tardiness. In 

manufacturing systems, this is achieved by using 

specific penalty (weight) functions. This paper 

considers single-machine total weighted tardiness 

problems with sequence-dependent setup times 

(STWTSDS). This problem is represented as 

 by using three-field notation. The special 

case of this problem is denoted as and it is 

proved as NP-hard [3, 4]. Therefore, STWTSDS 

problem is also NP-hard. 

 

In the literature, both exact and heuristic algorithms are 

proposed for the single machine total weighted tardiness 

problem [5-7]. However, exact algorithms can only 

solve small sized instances, since the required 

computational effort is huge. Consequently, the design 

of heuristics has become the main aspect in recent 

studies. These heuristics can be classified as 

constructive and improvement heuristics. Constructive 

heuristics use dispatching rules to determine a complete 

job sequence. At each step, a new job is fixed in a 

position and this position cannot be changed at later 

steps. The dispatching rule can be a static one such as 

earliest due date (EDD) or a dynamic one such as the 

apparent tardiness cost (ATC) rule. ATC is proposed for 

the single machine total weighted tardiness (STWT) 

problem in [8]. Up to now, the best-known construction 

heuristic for single machine total weighted tardiness 

with sequence-dependent setup time problem given in 

the literature is the apparent tardiness cost with setups 

(ATCS) rule [9]. Although, ATCS is very fast to 

develop a feasible solution, the solution quality is quite 

unsatisfactory, especially for large-sized problems. The 

other type of heuristics is the improvement heuristics, 

which start with an initial solution and may provide 

better solutions by rearranging the sequence. In [10], 

several heuristics are compared for single machine total 

tardiness problem. It is shown that the pairwise 

interchange methods outperform the other methods. In 

[9], two types of improvement methods proposed for 

single machine total weighted tardiness with sequence-

dependent setup time problem which are swap and 

insertion based hill-climbing search procedures.  

 

In addition to the constructive and the improvement 

heuristics, metaheuristics are extensively studied 

recently in the literature to solve this problem. A 

metaheuristic is a framework of the general algorithm 

and it can be used in different optimization problems 

with small changes. In [11], 120 problem instances 

were generated for STWTSDS problem, each with 60 

jobs. The effectiveness of stochastic sampling 

approaches as value-biased stochastic sampling 

(VBSS), a VBSS with hill-climbing (VBSS-HC), 

limited discrepancy search (LDS), heuristic-biased 

stochastic sampling (HBSS) and a simulated annealing 

(SA) approach [11] are discussed for this problem. In 

[12] and [13] ant colony optimization (ACO) algorithms 

are proposed. Lin and Ying compared results of three 

different metaheuristics including Genetic Algorithm 

(GA), Tabu Search (TS) and SA [14]. In [15], 

Cicirello’s best known results are improved by means 

of a GA approach by introducing a non-wrapping order 

crossover (XO). A beam search with variable beam and 

certain filter widths is proposed in [16]. In addition, a 

discrete particle swarm optimization algorithm (DPSO) 

is presented with the best known results [17]. Recently, 

a discrete differential evolution (DDE) algorithm is 

developed for this problem and the previous best known 

solutions were improved with excellent results [18]. 

 

In STWTSDS literature, GA is one of the common 

solution techniques used to solve the problem. In fact, 

GA is the most widespread tool used to generate 

solutions for combinatorial optimization problems. 

Although, GA is a powerful solution technique, its 

performance is operator-dependent, that is, the results 

are subject to the nature of selection, crossover and 

mutation operators. Especially, crossover operator 

affects the quality of the solution deeply [19]. In this 

study, a problem specific crossover operator called as 

ATCS-based crossover is proposed. This operator is 

developed by combining good aspects of the partially 

mapped crossover operator (PMX) and the ATCS rule. 

Meanwhile the absolute positions of the genes inherited 

from parents are preserved by PMX, ATCS rule 

improves the solution. Performance of the proposed and 

the PMX operators are compared by using of the 

benchmark problems from [11]. 64,800 different tests 

are realized to reveal the effectiveness of the proposed 

crossover operator combining of it by three different 

mutation operators. 

 

This paper will proceed as follows. In section 2, 

mathematical model of STWTSDS is given. In section 

3, genetic algorithms are explained briefly. In section 4, 

PMX and proposed ATCS-based crossover operators 

are given. This is followed by computational results in 

section 5. Finally, conclusions are presented. 

2. PROBLEM FORMULATION 

In the mathematical formulation, we want to obtain a 

sequence of jobs, so that binary variable 1ijx  if job 

j is scheduled immediately after job i, 

otherwise 0ijx  where . If the first 

scheduled job is job j; the variable 10 jx ,  

otherwise 00 jx . If the last scheduled job is job j; 
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the variable 11,njx , otherwise 01,njx . 

Additionally, 00 js  is the setup time for job j, if the 

job j scheduled in first position in the sequence. 

Mathematical model of the STWTSDS problem is given 

below.  

 

Sets 

J: Jobs set },...,2,1{ n

 Indexes 

i,j  The job index used as a unique identifier for 

each job, Jji,  

 

Parameters 

n : The number of jobs 

pj : Processing time of the job j, Jj  

wj : Weight (priority) of the job j, Jj  

dj: Due date of the job j, Jj

 sij : Sequence dependent setup time of job j if job i 

precedes job j Jji,  

 

Decision Variables 

otherwise0

 jobafter   processedjobIf1 ij
xij

 

Cj : The completion time of the job j, Jj  

Tj : Tardiness of the job j, Jj   

Model 

j

jj Twmin  (1) 

Subject to,  

1
}0{

ji
i

ijx , Jj  (2) 

10

Jj

jx  (3) 

11,

Jj

njx  (4) 

0
}1{}0{

ji
ni

ji

ji
i

ij xx , Jj  (5) 

}0{i

ijjijij xpsCC , Jj  (6) 

jjj dCT , Nj  (7) 

}1,0{ijx , }0{Ji , 

}1{nJj  (8) 

 

The objective function (1) minimizes total weighted 

tardiness of the jobs. Constraint (2) ensures that each 

job is processed exactly once. Constraint (3) guarantees 

that exactly one job is assigned to first position. 

Similarly, constraint (4) ensures that exactly one job is 

assigned to last position. Constraint set (5) is flow 

conservation constraint that ensures the jobs are 

correctly ordered within a machine schedule. Equation 

(6) defines the completion time of the jobs. Equation (7) 

defines the tardiness of the jobs. Constraint (8) is the 

integrality for the decision variables. This is a non-

linear integer model, which is not easy to solve. 

3. GENETIC ALGORITHMS 

Genetic algorithms are defined as general purpose 

population based search techniques and their logic 

depends on the principle of natural selection and natural 

genetics [20]. The concept of GA is introduced by 

Holland [21]. It has been used in many optimization 

problems so far [20, 22]. Michalewicz, also showed 

good examples to employ GAs to problems encountered 

in production systems and operations research areas 

[23]. 

The idea of GA is based on the populations of potential 

solutions, which are called chromosomes. These set of 

potential solutions are recombined or evolved by using 

of genetic operators. These genetic operators are 

selection, crossover and mutation. Each individual 

chromosome has its own fitness value. The selection 

operator randomly chooses amongst the best-fitted 

chromosomes based on a fitness criterion and executes 

the reproduction process. Then, new individuals are 

created by crossover and mutation operators following 

reproduction process. 

Crossover operators are used to exchange information 

between parent chromosomes. This operator takes the 

genetic information of two parent chromosomes and 

recombines them to produce children chromosomes for 

the next generation to get better properties than of those 

parents. Mutation operator is executed selectively after 

crossover, so the solution is prevented from focusing 

into a narrow area of the search space or getting stuck 

into a local optimum. 

4. PMX AND ATCS-BASED CROSSOVER 

4.1. Partially Mapped Crossover 

Goldberg and Lingle proposed the partially mapped 

crossover for permutation coding [24]. In this operator, 

two crossover points are selected randomly and the 

substrings defined by these two points are called 

mapping sections. The mapping relationship between 

these two sections is determined. One of these mapping 

sections is directly inherited to the child chromosome 

from one parent by considering predetermined mapping 

relationship; the remaining elements are inherited from 

the other parent. 

 

In partially mapped crossover, two offsprings are 

copied from parents P1 and P2, called O1 and O2, and i-

th index value of P1 and P2 are represented as v1(i) and 

v2(i), respectively. Randomly, two positions, a and b, 

are selected uniformly from interval (1,L), where L is 

the length of the permutations. Let’s assume (a≤b). The 

values of the ath positions of parents P1 and P2 are v1(a) 

and v2(a), respectively. These values are determined in 

O1 and O2, and they are swapped. This swapping 
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operation is repeated for all v1(a+i) and v2(a+i) in O1 

and O2 where . The remaining 

elements, which become the duplicates of the swapped 

elements in O1, are changed according to the 

predetermined swapping relationship. An example for 

the PMX operator is given in Fig. 1. Here, the parent 

chromosomes, which are generated randomly (Fig1.a), 

consist of 15 genes (number of jobs to be scheduled). 

The segment is chosen between 6th and 11th positions. 

Sequentially, segments are swapped without breaking 

mapping rule given in Fig. 1.c. Obtained offspring 

chromosomes (by using of PMX operator) O1 and O2 

from example parents P1 and P2 are given in Fig. 1.b. 

 

P1 1 5 11 13 12 4 8 10 3 9 2 14 7 6 15

4 13

P2 4 11 1 15 10 13 12 3 6 5 14 2 9 8 7 8 12

10 3 6

9 5

2 14

O1 1 9 11 4 8 13 12 3 6 5 14 2 7 10 15

O2 13 11 1 15 6 4 8 10 3 9 2 14 5 12 7

(c)  Mapping

(a) Parents

(b) Offsprings
 

 

Figure 1. Example for PMX 

 

4.2. ATCS-based Crossover 

For some problems represented as permutations, the key 

building blocks of a solution are derived from the 

absolute position in the permutation. For others, the 

relative positions are the most important [15]. For 

STWTSDS problem solutions are affected by both the 

absolute and the relative positions at the same time. 

Absolute positions are important because of the fact that 

the jobs with very high weights and early due dates 

need to occur towards the beginning of the sequence. 

Additionally, because of the sequence-dependent nature 

of the setup times, the relative positions of the jobs are 

also important. 

 

In GA literature, some crossover operators preserve 

absolute positions while, some of them preserve relative 

positions. Cycle crossover is one of the position based 

crossover operators that preserves the absolute positions 

of the jobs without considering their relative positions. 

On the other hand, the order crossover intends to 

preserve relative order of jobs. However, to the best 

knowledge of authors, in literature there is no crossover 

operator that aims both to preserve absolute position 

and relative positions simultaneously. 

 

In this study, a new crossover operator is proposed that 

increases the performance of the solution by preserving 

both absolute and relative positions. For this purpose, 

ATCS heuristic is used, proposed by Lee et al. in 1997. 

Essentially, ATCS heuristic generates a schedule by 

using job order priority considering weights, sequence 

dependent setups and due dates. Below, the working 

logic of ATSC is explained. 

 

ATCS consists of two stages. The first stage of ATCS 

includes running statistical analysis of the problem 

instances that are generated randomly. In this stage, 

formulas are determined to estimate three factors that 

define the problem instance and makespan. It is most 

likely a pre-processing stage. In the second stage, by 

use of these estimations, the look-ahead parameter 

values are calculated. These values are used for a given 

problem to apply the ATCS priority index. The 

importance of these priority indices are biased on the 

fact that they are used to determine the sequence of the 

jobs when assigned to the machines that are available at 

the earliest time point. The following three factors 

quantify the problem characteristics:  

 

a. Due date tightness 

b. Due date range 

c. Setup time severity factor 

 

The first factor is due date tightness τ, which is given in 

equation (9). 

max

1
C

d
        (9) 

In this equation, Cmax is the makespan, which is the 

completion time of the last job to leave the system, and 

d  is the average of the due dates. Due to the sequence 

dependent setup times, determining the makespan value 

beforehand is difficult. Estimation of the maxC  value is 

explained below.  gives a information about the 

tightness of the due dates. The second factor is due date 

range (R), which is described in equation (10). 
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max

minmax

C

dd
R    (10) 

In this equation, 
maxd  shows the maximum due date 

value, similarly mind  shows the minimum due date 

value. R provides an empirical measurement about 

spread of the due dates. As due date tightness factor, 

maxC  estimation is necessary to determine due date 

range factor. The next factor is setup time severity 

factor, )( , which is defined in equation (11). 

p

s
         (11) 

 

In this equation, s  represents average setup time and 

p  represents average processing time.  describes 

the relative importance of the setup times compared to 

the processing times. 

 

Finally, it is necessary to determine makespan value of 

the instance to calculate  and R coefficients. Lee et al. 

proposed an equation to estimate the completion time of 

the last processed job that is given in equation (12). 

Obtained makespan value is correlated with average 

processing time, average setup time and . Variability 

of setup times and number of jobs in the instance affect 

the value of  (1997). 

)sβpn(Cmax
     (12) 

By using of these factors, the heuristic determines 

the parameters k1 and k2, which affect the performance 

of the priority rule. The equations of k1 and k2 are given 

in (13). 

 

5.020.6

5.05.4

1

1

RRk

RRk

     (13)

 

2
2k  

 

First step of the ATCS is completed with determination 

of k1 and k2 parameters. In the second step, the priority 

index employed by ATCS heuristic is calculated as 

follows:  

 

sk

s

pk

tpd

p

w
ltI

ljjj

i

i

j

21

exp
)0,max(

exp),(

     
(14) 

 

In equation (14), t denotes the current time and l the 

index of the job just completed; s  is the average setup 

time; k1 and k2 are scaling parameters. The ATCS rule 

separates the effect of the setup time. The priority of a 

job given by weighted shortest processing time ratio is 

exponentially discounted twice, once based on slack 

and again based on setup. These two effects are scaled 

separately by the parameters k1 and k2, which jointly 

provide the look-ahead capabilities of the ATCS rule. 

The values of the parameters depend on the problem 

instance as they essentially perform the scaling. 

 

The proposed ATCS-based crossover operator uses a 

modified version of ATCS heuristic and PMX. This 

operator follows the logic of PMX, it retains the 

absolute positions as well as improving the positions 

replaced (both absolute and relative) by use of ATCS 

heuristics. 

 

In ATCS-based heuristic crossover, two children are 

copied from parents P1 and P2, called O1 and O2, 

respectively. Randomly, two positions, a and b, are 

selected uniformly from interval (1,L), where L is the 

length of the permutations. Let’s assume ba . 

Offspring O1 is searched for v2(a), v2(a + 1), . . . , 

v2(b) between [1,(a-1)] and [(b+1), L]. Those locations 

are replaced by holes. From all jobs, scheduled jobs in 

O1 are removed to determine unscheduled job list for 

the O1. This procedure is repeated by inserting holes in 

O2 in the place of values v1(a), v1(a+1), . . . , v1(b). 

The values v1(a),v1(a+1),..,v1(b) are directly inherited 

to the offspring O2 by preserving their actual order and 

values. Then, these holes in offspring O1 are filled with 

unscheduled jobs by using of the modified ATCS rule. 

The same procedure is applied for offspring O2. The 

ATCS heuristic generates whole schedule by 

calculating job scheduling order priorities. On the other 

hand, the modified ATCS determines the best fit job for 

each hole position from unscheduled job list. Briefly, 

for each hole position in the offspring chromosomes, 

priorities are determined by using of equation (14) for 

all unscheduled jobs. Then, the highest priority-

unscheduled job is assigned to that hole position and 

removed from unscheduled jobs list. When the 

unscheduled job list is empty, the procedure is ended. 

 

An example is given in Figure 2 for the proposed 

crossover operator. The problem parameters (process 

time, weight, sequence dependent setup, due date) are 

necessary to apply ATCS-based crossover. Hence, first 

15 job parameters of the first instance are used from 

120 STWTSDS problem benchmark instances. In the 

example parameters, due dates were divided by 5. 

Firstly, two offspring (O1 and O2) are copied from 

parents P1 and P2. Then, in O1 between positions [1, 5] 

and [12, 15] search for segment of P2 which is {13, 12, 

3, 6, 5, 14}. Those locations (2, 4, 5, 12, 14) are 

replaced by holes and unscheduled jobs list is obtained 

{4, 8, 9, 10}. After that, values between [6, 11] in P2 

are assigned to O1 between [6, 11] (Figure 2.b). Finally, 

hole locations are filled by using modified ATCS 

heuristic with unscheduled jobs. Consequently, 

offsprings are obtained by ATCS heuristic are given in 

Fig. 2.c. 
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P1 1 5 11 13 12 4 8 10 3 9 2 14 7 6 15

P2 4 11 1 15 10 13 12 3 6 5 14 2 9 8 7

O1 1 _ 11 _ _ 13 12 3 6 5 14 _ 7 _ 15

O2 _ 11 1 15 _ 4 8 10 3 9 2 _ _ _ 7

O1 1 2 11 10 8 13 12 3 6 5 14 4 7 9 15

O2 13 11 1 15 13 4 8 10 3 9 2 12 14 5 7

(a) Parents

(b) Offsprings with holes

(c) Offsprings
 

Figure 2. Example for the ATCS-based Crossover 

 

5. COMPUTATIONAL RESULTS 

The proposed crossover operator, PMX and other 

operators of the genetic algorithm are coded in C++ and 

run with an Intel Pentium Core2 Duo 2.0 GHz at 2048 

MB RAM under the Linux OS. Performance 

comparison of ATCS-based crossover and PMX were 

realized by using of 120 benchmark instances, each 

with 60 jobs [11]. Three parameters characterize each 

problem instance: the due-date tightness factor ( ), the 

due-date range factor ( R ) and the setup time severity 

factor ( ). The benchmark set is established by the 

following parameter values: ={0.3,0.6,0.9}, 

R ={0.25,0.75},and ={0.25,0.75}. Each of the 12 

combinations of parameters leads to 10 problem 

instances. The benchmark problems can be obtained 

from OR-lib. 

5.1. Improving Performance of ATCS heuristic 

The results obtained by ATCS are parameter dependent, 

so an analysis is conducted to evaluate the improvement 

of these parameters. In [9], three different parameters 

are defined for deriving k1 and k2 parameters. These 

three parameters are due date tightness factor, due date 

range factor and setup times’ severity factor. Due date 

tightness and due date range factors are dependent to 

maxC . 
maxC  is calculated by equation (12)

 
. As seen 

from the equation β coefficient affects the result of the 

makespan. Lee et al. proposes coefficient of variation of 

setup times and number of jobs to determine β [9]. 

Since β is highly correlated with setup times, it is better 

to test different β values to improve the results. For this 

purpose, different β values are tested starting from 0 to 

1 by increasing 0.01 at each step. Additionally,  and 

 parameters, which directly affect the solution of 

ATCS heuristic are tested to improve the solution of 

ATCS heuristic.  is tested as starting from 1 to 6 by 

increasing by 0.25 at each step and is tested 

starting from 0.1 to 0.9 by increasing them by 0.05 at 

each step. 

 

In this study, objective function values are compared 

according to the ATCS sequence. Best results obtained 

from both β search and ,  parameter search are 

compared with proposed method in [9]. The results are 

reported in Table 1. 
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Table 1. Improvements in ATCS heuristic 

Instance 

Group 

Instance Number 

Range 
 R   Beta 

Search 
1k  and 2k

 
Search 

1 1-10 0.3 0.25 0.25 23.780 65.658 

2 11-20 0.3 0.25 0.75 32.287 79.180 

3 21-30 0.3 0.75 0.25 52.503 146.015 

4 31-40 0.3 0.75 0.75 25.148 93.851 

5 41-50 0.6 0.25 0.25 6.384 17.469 

6 51-60 0.6 0.25 0.75 6.284 29.653 

7 61-70 0.6 0.75 0.25 3.418 20.219 

8 71-80 0.6 0.75 0.75 12.435 35.527 

9 81-90 0.9 0.25 0.25 0.053 3.795 

10 91-100 0.9 0.25 0.75 0.758 6.370 

11 101-110 0.9 0.75 0.25 0.015 1.555 

12 111-120 0.9 0.75 0.75 1.631 9.929 

 

5.2. Comparing Performance of Crossover   

Operators 

In this subsection, comparative test results between 

ATCS-based XO and PMX are presented. For the 

comparison of crossover operators of GA approach, the 

chromosome representation, reproduction strategy, 

crossover operators, mutation operators and termination 

condition are described as follows: 

 

Chromosome representation: In this study, permutation 

coding is used to represent a feasible schedule.  The 

chromosome consists of an order of jobs where the jth 

number in the permutation denotes that the job is the jth 

job to be processed. Each chromosome in the initial 

population is generated randomly. Population size is 30.  

 

Reproduction Strategy: The objective function of the 

STWTSDS problem is minimization of total weighted 

tardiness value. So that, the smaller the total objective 

function value means higher fitness value of the 

chromosome. During the evaluation process, a super 

chromosome may be obtained that dominates the 

population. To avoid this circumstance and to transform 

minimization type objective function into the fitness 

maximization type, a scaling operator (normalizing) is 

used as [25]. 

minmax

max

ff

ff
f k
k

 (15)

 

In the equation (15), kf  is the total weighted tardiness 

value of the chromosome, maxf  and minf  represent 

maximum and minimum total weighted tardiness value 

of the population respectively,  is a very small 

positive number, and 
kf  is the scaled fitness value of 

the chromosome.  

 

Brindle’s selection operator is used to obtain the next 

generation in the GA [26]. This selection operator 

works along deterministically. It determines the number 

of copies of each chromosome in the population by 

using expected value of the individuals and then copies 

selected chromosomes for the next generation.  

 

Crossover Operators: During the tests to show the 

effectiveness of the ATCS-based XO, the result of the 

proposed crossover is compared with PMX. Therefore, 

two different crossover operators used are ATCS-based 

XO and PMX. Besides, different crossover rates are 

tested to present effectiveness of the proposed crossover 

in different crossover ratios. 0.8, 0.9 and 1.0 are used as 

crossover rates.   

 

Mutation: The proposed ATCS-based XO and PMX 

operator is tested with different mutation operators with 

different mutation rates. Three different mutation 

operators are used are insertion mutation, swap 

mutation and swap-insertion mutation. As insertion 

mutation is concerned, a random gene and a position are 

selected, and the selected gene is removed from original 

place and inserted into a randomly selected position. As 

for swap mutation, two genes are selected and the 

content of the selected genes are swapped. Finally, 

swap-insertion mutation applied either insertion 

mutation or swap mutation with 50% probability. In 

addition, these mutation operators are tested with 

different mutation rates, which are 0, 0.005 and 0.01. 

The meaning of the 0 mutation rate is mutation operator 

is not applied. Summary of the results are given in Fig. 

3. 
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Termination Condition: GA is terminated after certain iterations. In all tests, GA is terminated after 500 generations.  

 

% difference 

  Mutation Rates 

  0 0.005 0.010 

C
ro

ss
o

v
er

 

R
a

te
s 

0.8 55.22 58.33 57.08 
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Figure 3. Mutation operators test results 

 

 

 
 

In Table 2, results of the ATCS-based XO and PMX 

operators with different mutation rates are given. In this 

table, average relative differences and execution times 

are presented. Relative differences and execution time 

differences are calculated with equation (16). In this 

equation, D represents the relative difference between 

PMX and ATCS-based crossover, Z represents the 

objective value with the given crossover operator, and t 

represents the execution time of the given crossover 

operator. Both operators are tested on 120 benchmark 

instances with 27 different cases (three different 

mutation rates, three different crossover rates and three 

different mutation operators). Besides, each test is 

replicated 10 times. Therefore, during the tests 64,800 

runs are applied to compare the results of the crossover 

operators.  

 

As seen from the table, superiority of ATCS-based XO 

against PMX is clear. Especially, differences are peak 

when the insertion mutation is applied. On the other 

hand, computation time of the ATCS-based XO is a 

little bit longer compared to PMX execution time. 

6. CONCLUSION 

In this study, a new crossover operator is proposed for 

STWTSDS problem. Thanks to this proposed operator, 

formation of illegal chromosomes is avoided while 

absolute positions of parent chromosomes are 

preserved. Here, ATCS heuristic that determines job 

order according to priority of jobs for STWTSDS 

problem by considering the problem parameters is used 

to change the absolute and relative position of genes to 

improve the solution by using of ATCS priority rule. 
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The performance of ATCS heuristic is changed 

depending on job priority that in turn depends on k1 and 

k2 parameters and β. Therefore, a search to determine 

optimal parameters is done first to improve the 

performance of ATCS heuristic. Firstly, a beta value 

search is realized which coefficient is used to estimate 

the makespan. The second type of search is conducted 

to find the k1 and k2 parameters to minimize the 

obtained objective function. As a result of the search 

procedures, considerable improvements are obtained 

(an average of 13.73% for the first type and an average 

of 42.44% for the second type searches). In addition to, 

an amount of improvement up to 146.02% is observed 

in a sample group. 

 

Finally, to show the effectiveness of the proposed 

ATCS based crossover operator, this crossover operator 

was compared by PMX by using three different 

mutation operators with three different mutation rates 

(0, 0.005, and 0.01). These mutation operators are swap 

and an insertion based search and a heuristic mutation 

that combine swap and insertion. In this phase, 64,800 

tests are realized. In all test results, the proposed ATCS 

based crossover gave better results in terms of solution 

quality though its solution time is slightly higher than 

that of PMX. In addition, the differences between the 

performance of two crossover operators is observed as 

204.5% when the mutation rate is 0.005 by using of 

insert mutation and crossover with a rate of  1.0. 

 

For further studies, ATCS based crossover operator can 

be compared with other permutation type crossover 

operators which can be used for STWTSDS problem. 
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