# Coincidence Points of Hybrid Functions on Cone Metric Spaces 

K.P.R.RAO ${ }^{1, »}$, K.Siva PARVATHI ${ }^{1}$, Md. Mustaq ALI ${ }^{1}$<br>${ }^{1}$ Department of Applied Mathematics, A.N.U.-Dr.M.R.Appa Row Campus,NUZVID-521 201, Krishna Dt, A.P., INDIA.

Received: 26/03/2011 Accepted:04/07/2011

## ABSTRACT

In this paper, we obtain a common coincidence point theorem for two pairs of hybrid functions on cone metric spaces.
Key words: Cone metric spaces,coincidence points, multi functions.
2000 Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.

## 1. INTRODUCTION

In 2007,Huang and Zhang defined cone metric spaces by substituting an ordered normed space for the real numbers([9]). In 2008,Rezapour and Hamlbarani characterized types of cones ([17]). Some interesting works about fixed point and common fixed point results on cone metric spaces are $[1-8,10,11,13-24]$ etc.

In this paper, we prove a common coincidence point theorem for two pairs of hybrid functions on cone metric spaces. our result generalizes and improves the theorems of $[18,19]$. First we give some known definitions and lemmas.

Let $E$ be a real Banach space and $P$ a subset of $E$. $P$ is called a cone whenever
(i) P is closed, non empty and $\mathrm{P}=[0]$
(ii) $a x+$ by for all $x, y \in P$ and non negative real numbers $a$ and $b$
(iii) $\mathrm{P} \cap(-\mathrm{P})=\{0\}$.

For a given cone $\mathrm{P} \subseteq \mathrm{E}$, we can define a partial ordering $\leq$ with respect to P by $\mathrm{x} \leq \mathrm{y}$ if and only if $y-x \in P . x<y$ will stand for $x \leq y$ and $x \neq y$, while $x$ $\ll y$ will stand for $y-x \in \operatorname{int} P$, where int $P$ denotes the interior of P .

[^0]The cone P is called normal if there is a number $\mathrm{M}>0$ such that for all $\mathrm{x}, \mathrm{y} \in \mathrm{E}, 0 \leq \mathrm{x} \leq \mathrm{y}$ implies
$\|\mathrm{x}\| \leq \mathrm{M}\|\mathrm{y}\|$. The least positive number satisfying the above inequality is called the normal constant of P . Rezapour and Hamlbarani [17] observed that there are no normal cones with $\mathrm{M}<1$. Hene $\mathrm{M} \geq 1$.

Definition 1.1. [9]: Let $X$ be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow$ E satisfies
$\left(d_{1}\right) 0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
$\left(\mathrm{d}_{2}\right) \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,
$\left(d_{3}\right) d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.
Then $d$ is called a cone metric on $X$ and $(X, d)$ is called a cone metric space.

Definition 1.2. [9]: Let ( $X, d$ ) be a cone metric space, $x$ $\in X$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ a sequence in X .Then
(i) $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to x whenever for every $\mathrm{c} \in \mathrm{E}$ with $0 \ll \mathrm{c}$, there is a natural
number $N$ such that $d\left(x_{n}, x\right) \ll c$ for all $n \geq N$. we denote this by $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\mathrm{x}$ or $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$,
(ii) $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy sequence whenever for every c $\in \mathrm{E}$ with $0 \ll \mathrm{c}$, there is a natural number N such
that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \ll \mathrm{c}$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{N}$,
(iii) $(\mathrm{X}, \mathrm{d})$ is a complete metric space if every Cauchy sequence in X is convergent in X .
Definition 1.3. [18]: Let ( $\mathrm{X}, \mathrm{d}$ ) be a cone metric space and $\mathrm{B} \subseteq \mathrm{X}$.
(i) $A$ point $b \in B$ is called an interior point of $B$ whenever there is a $0 \ll \mathrm{p}$ such
that $\mathrm{N}(\mathrm{b}, \mathrm{p}) \subseteq \mathrm{B}$, where $\mathrm{N}(\mathrm{b}, \mathrm{p})=\{\mathrm{y} \in \mathrm{X} / \mathrm{d}(\mathrm{y}, \mathrm{b}) \ll$ $\mathrm{p}\}$.
(ii) A subset $\mathrm{A} \subseteq \mathrm{X}$ is called open if each element of A is an interior point of A .
The family $\beta=\{\mathrm{N}(\mathrm{x}, \mathrm{p}): \mathrm{x} \in \mathrm{X}, 0 \ll \mathrm{p}\}$ is a sub basis for a topology on X .
we denote this cone topology by $\tau_{c}$. Then $\tau_{c}$ is Hausdorff and first countable.
Recently Rezapour and Haghi [18] proved the following
Lemma 1.4. (Lemma 2.1, [18]) : Let (X, d) be a cone metric space, P a normal cone with normal constant M $=1$ and A a compact set in $\left(\mathrm{X}, \tau_{\mathrm{c}}\right)$. Then for every x $\in X$, there exists $\mathrm{a}_{0} \in \mathrm{~A}$ such that
$\left\|d\left(x, a_{0}\right)\right\|=\inf _{a \in \mathrm{~A}}\|d(x, a)\|$.
Lemma 1.5. [Lemma 2.2, [19]] : Let (X, d) be a cone metric space, P a normal cone with normal constant M $=1$ and $\mathrm{A}, \mathrm{B}$ two compact sets in ( $\mathrm{X}, \tau_{\mathrm{c}}$ ). Then
$\sup _{x \in B} d^{1}(x, A)<\infty$, where $d^{1}(x, A)=\inf _{a \in A}\|d(x, a)\|$.
Definition 1.6. [18]:Let ( $X, d$ ) be a cone metric space, $P$ a normal cone with normal constant $\mathrm{M}=1, \mathcal{F}_{\mathrm{c}}(\mathrm{X})$ be the set of all compact subsets of ( $\mathrm{X}, \tau_{\mathrm{c}}$ ) and $\mathrm{A} \in$ $\mathcal{F} \mathrm{c}(\mathrm{X})$. Define $\mathrm{h}_{\mathrm{A}}: \mathcal{F} \mathrm{c}(\mathrm{X}) \rightarrow[0, \infty)$ and
$\mathrm{d}_{\mathrm{H}}: \mathcal{F} \mathrm{c}(\mathrm{X}) \times \mathcal{F} \mathrm{c}(\mathrm{X}) \rightarrow[0, \infty)$ by $\mathrm{h}_{\mathrm{A}}(\mathrm{B})=\sup _{\mathrm{x} \in \mathrm{A}} \mathrm{d}^{1}$ $(x, B)$ and $d_{H}(A, B)=\max \left\{h_{A}(B), h_{B}(A)\right\}$ respectively. For each $\mathrm{A}, \mathrm{B} \in \mathcal{F} \mathrm{C}(\mathrm{X})$ and $\mathrm{x}, \mathrm{y} \in \mathrm{A}$, we have
(i) $\quad d^{1}(x, A) \leq\|d(x, y)\|+d^{1}(y, A)$
(ii) $d^{1}(x, A) \leq d^{1}(x, B)+h_{B}(A)$
(iii) $\quad d^{1}(x, A) \leq\|d(x, y)\|+d^{1}(y, B)+h_{B}(A)$.

Definition 1.7. : Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{F}: \mathrm{X} \rightarrow \mathcal{F} \mathrm{c}(\mathrm{X})$. f is said to be F -weakly commuting at $\mathrm{x} \in \mathrm{X}$ if $f^{2} x \in F f x$.

Kamran [12] defined the above in metric spaces.
Definition 1.8. : Let $\varphi$ denote the class of all functions $\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$such that $\phi$ is non decreasing, continuous and $\sum_{\mathrm{n}=1}^{\infty} \phi^{\mathrm{n}}(\mathrm{t})<\infty$ for all $\mathrm{t}>0$.

It is clear that $\phi^{\mathrm{n}}$ (t) $\rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ for all $\mathrm{t}>0$ and hence, we have $\phi(\mathrm{t})<\mathrm{t}$, for all $\mathrm{t}>0$.

Now we give our main result.

## 2. THE MAIN RESULT

Theorem 2.1. Let ( $\mathrm{X}, \mathrm{d}$ ) be a complete cone metric space with normal constant $\mathrm{M}=1$. Let $\mathrm{F}, \mathrm{G}: \mathrm{X} \rightarrow \mathcal{F} \mathrm{c}$ (X) be two multifunctions and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be self maps satisfying

$$
\begin{array}{r}
(2.1 .1) d_{H}(F x, G y) \leq \phi \\
\left.\max \left\{\begin{array}{l}
\|d(f x, g y)\|, d^{\prime}(f x, F x), d^{\prime}(g y, G y) \\
\frac{1}{2}\left[d^{\prime}(f x, G y)+d^{\prime}(g y, F x)\right.
\end{array}\right\}\right)
\end{array}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\phi \in \varphi$,
(2.1.2) $\mathrm{Fx} \subseteq \mathrm{g}(\mathrm{X}), \mathrm{G}(\mathrm{x}) \subseteq \mathrm{f}(\mathrm{X})$ for all $\mathrm{x} \in \mathrm{X}$,
(2.1.3) one of $f(X)$ and $g(X)$ is a complete subset of $X$ and
(2.1.4) f is F-weakly commuting and g is G -weakly commuting at their coincidence points.
Then the pairs (f, F) and ( $\mathrm{g}, \mathrm{G}$ ) have the same coincidence point in X .

Proof. Let $\mathrm{x}_{0} \in \mathrm{X}$.Then by Lemma 1.4, there exists $\mathrm{gx}_{1} \in \mathrm{Fx}_{0}$ such that
$\mathrm{d}^{1}\left(\mathrm{fx}_{0}, \mathrm{Fx}_{0}\right)=\left\|\mathrm{d}\left(\mathrm{fx}_{0}, \mathrm{gx}_{1}\right)\right\|$. Again by Lemma 1.4, there exists $\mathrm{fx}_{2} \in \mathrm{Gx}_{1}$ such
that $\mathrm{d}^{1}\left(\mathrm{gx}_{1}, \mathrm{Gx}_{1}\right)=\left\|\mathrm{d}\left(\mathrm{gx}_{1}, \mathrm{fx}_{2}\right)\right\|$.
Continuing in this way, we get the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{y_{n}\right\}$ in $X$ such that
$d^{1}\left(y_{2 n-1}, F x_{2 n}\right)=\left\|d\left(y_{2 n-1}, y_{2 n}\right)\right\| \operatorname{and~d}^{1}\left(y_{2 n}, G x_{2 n+1}\right)$
$=\left\|d\left(y_{2 n}, y_{2 n+1}\right)\right\|$,where
$\mathrm{y}_{2 \mathrm{n}}=\mathrm{gx}_{2 \mathrm{n}+1} \in \mathrm{Fx}_{2 \mathrm{n}}$ and
$y_{2 n+1}=f^{2 n+2} \operatorname{CGx}_{2 n+1} n=0,1,2 \ldots \ldots$
Case(i): Suppose $y_{2 n}=y_{2 n+1}$ for some $n$.
Assume that $\mathrm{y}_{2 \mathrm{n}+1} \neq \mathrm{y}_{2 \mathrm{n}+2}$.

$$
\begin{aligned}
\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)\right\| & =\mathrm{d}^{1}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{Fx}_{2 \mathrm{n}+2}\right) \\
& \leq \mathrm{d}_{\mathrm{H}}\left(\mathrm{Fx}_{2 \mathrm{n}+2}, \mathrm{Gx}_{2 \mathrm{n}+1}\right)
\end{aligned}
$$

It is a contradiction. Hence $y_{2 n+1}=y_{2 n+2}$.
Continuing in this way, we have $\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}+\mathrm{k}}$ for all $\mathrm{k}=$ $1,2,3, \ldots$. Hence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X .
Case (ii): Suppose that $\mathrm{y}_{\mathrm{n}} \neq \mathrm{y}_{\mathrm{n}+1}$ for all n . Now

$$
\leq \phi
$$

$$
\left\{\max \left\{\begin{array}{l}
\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|,\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|, \\
\frac{1}{2}\left[\left\|\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|+\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|\right]
\end{array}\right\}\right)
$$

$=\phi\left(\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|\right)$.
Similarly we can show that $\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\| \leq$ $\phi\left(\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}-2}, \mathrm{y}_{2 \mathrm{n}-1}\right)\right\|\right)$.

Thus
$\left\|\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right\| \leq \phi\left(\left\|\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right)\right\|\right) \leq \phi^{2}$ $\left(\left\|\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-2}, \mathrm{y}_{\mathrm{n}-1}\right)\right\|\right) \leq \ldots \ldots . . \leq \phi^{\mathrm{n}}\left(\left\|\mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)\right\|\right)$

$$
\begin{aligned}
& \left\|d\left(y_{2 n+1}, y_{2 n+2}\right)\right\|=d^{1}\left(y_{2 n}, G x_{2 n+1}\right) \\
& \leq \mathrm{d}_{\mathrm{H}}\left(\mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Gx}_{2 \mathrm{n}+1}\right) \\
& \leq \phi \\
& \left.\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left\|d\left(y_{2 n-1}, y_{2 n}\right)\right\|, d^{\prime}\left(y_{2 n-1}, F x_{2 n}\right), d^{\prime}\left(y_{2 n}, G x_{2 n+1}\right) \\
\frac{1}{2}\left[d^{\prime}\left(y_{2 n-1}, G x_{2 n+1}\right)+d^{\prime}\left(y_{2 n}, F x_{2 n}\right)\right.
\end{array}\right.
\end{array}\right\}\right) \\
& \leq \phi
\end{aligned}
$$

$$
\begin{aligned}
& \leq \phi \\
& \left\{\max _{\left\{\begin{array}{l}
\left\|\mathrm{d}\left(\mathrm{y}_{2 n+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|, \mathrm{d}^{\prime}\left(\mathrm{y}_{2 n+1}, F \mathrm{x}_{2 n+2}\right), \mathrm{d}^{\prime}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{Gx}_{2 n+1}\right), \\
\frac{1}{2}\left[\mathrm{~d}^{\prime}\left(\mathrm{y}_{2 n+1}, G \mathrm{Gx}_{2 n+1}\right)+\mathrm{d}^{\prime}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{Fx}_{2 n+2}\right)\right.
\end{array}\right.}^{\}}\right\} \\
& \leq \phi \\
& \left(\max \left\{\begin{array}{l}
0,\left\|\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)\right\|, 0 \\
\frac{1}{2}\left[0+0+\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)\right\|\right]
\end{array}\right\}\right) \\
& =\phi\left(\left\|d\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)\right\|\right) \\
& <\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
\left\|\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)\right\| & \leq \sum_{\mathrm{i}=\mathrm{m}+1}^{\mathrm{n}}\left\|\mathrm{~d}\left(\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}-1}\right)\right\| \\
& \leq \phi^{\mathrm{m}}\left(\left\|\mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)\right\|\right)+\phi^{\mathrm{m}+1} \\
\left(\left\|\mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)\right\|\right) & +\ldots \ldots \ldots \ldots \ldots+\phi^{\mathrm{n}}\left(\left\|\mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)\right\|\right) \\
& \leq \sum_{\mathrm{i}=\mathrm{m}}^{\infty} \varphi^{i}\left(\left\|\mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right)\right\|\right) \\
& \rightarrow 0 \text { as } \mathrm{m} \rightarrow \infty, \text { since } \sum_{\mathrm{n}=1}^{\infty} \varphi^{\mathrm{n}}(\mathrm{t})<\infty
\end{aligned}
$$

for all $\mathrm{t}>0$.
This is implies that $\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty}\left\|\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right)\right\|=0$.
By Lemma 4, ([2]), $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X .
Suppose $g(X)$ is complete.
Then $\mathrm{y}_{2 \mathrm{n}}=\mathrm{g} \mathrm{x}_{2 \mathrm{n}+1} \rightarrow \mathrm{p}=\mathrm{g} \mathrm{v} \in \mathrm{g}(\mathrm{X})$ for some p and $\mathrm{v} \in \mathrm{X}$.
Since $\left\{y_{n}\right\}$ is Cauchy, we have $y_{2 n+1} \rightarrow p$.

$$
\mathrm{d}^{\prime}(\mathrm{p}, \mathrm{Gv}) \leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|+\mathrm{d}^{\prime}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{G} v\right)
$$

$$
\leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|+\mathrm{d}_{\mathrm{H}}\left(\mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Gv}\right)
$$

$$
\leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|+\phi
$$

$$
\left\{\begin{array}{l}
\left.\max \left\{\begin{array}{l}
\| \mathrm{d}_{\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{gv}\right) \|, \mathrm{d}^{\prime}\left(\mathrm{y}_{2 \mathrm{n}-1}, F x_{2 n}\right), \mathrm{d}^{\prime}(\mathrm{gv}, \mathrm{Gv}),} \\
\frac{1}{2}\left[\mathrm{~d}^{\prime}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{Gv}\right)+\mathrm{d}^{\prime}(\mathrm{gv}, \mathrm{Fx}\right. \\
2 \mathrm{n}
\end{array}\right)\right]
\end{array}\right\}
$$

$$
\leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|+\phi
$$

$$
\left(\max \left\{\begin{array}{l}
\| \mathrm{d}^{\left(\mathrm{y}_{2 \mathrm{n}-1}, p\right)\|,\| \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right) \|, \mathrm{d}^{\prime}(\mathrm{p}, \mathrm{G} \mathrm{v}),} \\
\frac{1}{2}\left[\left\|\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{p}\right)\right\|+\mathrm{d}^{\prime}(\mathrm{p}, \mathrm{G} \mathrm{v})+\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}}\right)\right\|\right]
\end{array}\right\}\right)
$$

Letting $\mathrm{n} \rightarrow \infty$, we get
$\mathrm{d}^{1}(\mathrm{p}, \mathrm{Gv}) \leq \phi\left(\mathrm{d}^{1}(\mathrm{p}, \mathrm{G} v)\right)$ so that $\mathrm{d}^{1}(\mathrm{p}, \mathrm{G} v)=0$.
Hence $p \in G v$. Thus $g v=p \in G v$.
Since g is G-weakly commuting at the coincidence point v , we have $\mathrm{g} p=\mathrm{g}^{2} \mathrm{v} \in \mathrm{Gg} \mathrm{v}=\mathrm{G}$ p. Thus p is a coincidence point of $g$ and $G$. Since $G v \subseteq f(X)$,there exists $w \in X$ such that $p=g v=f w \in G v$.
$d^{\prime}(\mathrm{p}, \mathrm{F} w) \leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|+\mathrm{d}^{\prime}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{Fw}\right)$
$\leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|+\mathrm{d}_{\mathrm{H}}\left(\mathrm{FW}, \mathrm{Gx}_{2 \mathrm{n}+1}\right)$
$\leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|+\phi$

[^1]$\left\{\max \left\{\begin{array}{l}\left\|d\left(f w, y_{2 n}\right)\right\|, d^{\prime}(f w, F w), d^{\prime}\left(y_{2 n}, G x_{2 n+1}\right), \\ \frac{1}{2}\left[d^{\prime}\left(f w, G x_{2 n+1}\right)+d^{\prime}\left(y_{2 n}, F w\right)\right]\end{array}\right\}\right)$
$\leq\left\|\mathrm{d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|+\quad \phi$
$\left\{\begin{array}{l}\left.\left.\max \left\{\begin{array}{l}\left\|d\left(p, y_{2 n}\right)\right\|, \mathrm{d}^{\prime}(\mathrm{p}, \mathrm{Fw}),\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|, \\ \frac{1}{2}\left[\left\|\mathrm{~d}\left(\mathrm{p}, \mathrm{y}_{2 \mathrm{n}+1}\right)\right\|+\left\|\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{p}\right)\right\|+\mathrm{d}^{\prime}(\mathrm{p}, \mathrm{Fw})\right]\end{array}\right\}\right),{ }^{2}\right)\end{array}\right\}$
Letting $\mathrm{n} \rightarrow \infty$,we get
$d^{1}(\mathrm{p}, \mathrm{F} w) \leq \phi\left(\mathrm{d}^{1}(\mathrm{p}, \mathrm{F} w)\right)$ so that $\mathrm{d}^{1}(\mathrm{p}, \mathrm{F} w)=0$.
Hence $\mathrm{p} \in \mathrm{F} w$. Thus $\mathrm{f} w=\mathrm{p} \in \mathrm{Fw}$.
Since f is F - weakly commuting at the coincidence point $w$, we have $\mathrm{f} p=\mathrm{ffw} \in \mathrm{Ffw}=\mathrm{Fp}$.
Thus $p$ is a coincidence point of $f$ and $F$. Hence, the pairs ( $\mathrm{f}, \mathrm{F}$ ) and $(\mathrm{g}, \mathrm{G})$ have the same coincidence point.
By putting $\mathrm{f}=\mathrm{g}=\mathrm{I}$ (the identity map) in Theorem 2.1,we have

Corollary 2.2. Let ( $\mathrm{X}, \mathrm{d}$ ) be a complete cone metric space with normal constant $\mathrm{M}=1$. Let $\mathrm{F}, \mathrm{G}: \mathrm{X} \rightarrow \mathcal{F} \mathrm{c}$ (X) be two multi functions satisfying

$$
(2.2 .1) \mathrm{d}_{\mathrm{H}}(\mathrm{Fx}, \mathrm{~Gy}) \leq \alpha
$$

$$
\left.\max \left\{\begin{array}{l}
\|\mathrm{d}(\mathrm{x}, \mathrm{y})\|, \mathrm{d}^{\prime}(\mathrm{x}, \mathrm{~F} \mathrm{x}), \mathrm{d}^{\prime}(\mathrm{y}, \mathrm{G} y), \\
\frac{1}{2}\left[\mathrm{~d}^{\prime}(\mathrm{x}, \mathrm{G} \mathrm{y})+\mathrm{d}^{\prime}(\mathrm{y}, \mathrm{Fx})\right.
\end{array}\right\}\right)
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\alpha \in[0,1)$.
Then $F$ and $G$ have a common fixed point in $X$.
Corrolary 2.2 is a generalization and improvement of Theorems 1 and 2 of [19] for a pair of multi functions and of Theorems 2.6 and 2.7 of [18]for a single multi function with $G=F$.

## REFERENCES

[1] .Abbas M, and Jungck, G., "Common fixed point result for non commuting mappings without continuity in cone metric spaces", J.Math.Anal.Appl. 341:416-420(2008).
[2] Azam, A., Arshad M., and Beg., I., "Common fixed points of two maps in cone metric spaces", Rend.Ciric.Mat.Palermo,57:433-441 (2008),
[3] A.Azam,M.Arshad, "Common fixed points of generalized contractive maps in cone uniform spaces", Bull.Iranian Math.Soc., 35(2) 255-264. (2009).
[4] Arshad, M., Azam, A., Vetro, P., "Some common fixed point results in cone uniform spaces", Fixed Point Theory and Appl. 2009,Article ID 493965,11 Pages,doi: 10.1155/2009/493965.
[5] Bari C.Di, and Vetro. P., $\phi$-pairs and common fixed points in cone metric spaces", Rend.Ciric.Mat. Palermo,57:279-285 (2008).
[6] Bari C.Di, and Vetro P., "Weakly $\phi$-pairs and common fixed points in cone metric spaces" Ciric.Mat.Palermo,58 125-132 (2009).
[7] Haghi, R.H., Rezapour, Sh., "Fixed points of multifunctions on regular cone metric spaces", Expo.Math.,28:71-77 (2010),
[8] Harjani, J., Sadarangani, K., "Generalized contractions in partially ordered metric spaces and Applications to ordinary differential equations", Nonlinear Analysis,72(2010),1188-1197.
[9] L.G.Huang and X.Zhang., "Cone metric spaces and fixed point theorems of contractive mappings", J.Math.Anal.Appl.332(2007), 14681476.
[10] D.Ilic and V.Rakocevic., "Common fixed point result for maps on cone metric spaces", J.Math. Anal.Appl.341(2008), 867-882.
[11]S.Jankovic,Z.Kadelburg,S.Radonevic.B.E.Rhoades, "Assad-Kirk type fixed point theorems for a pair of nonself mappings on cone metric spaces",Fixed point Theory and Appl.Vol.2009,Article ID 761086,16 Pages,doi:10.1155/2009/761086.
[12] T.Kamaran., "Coincidence and fixed points for hybrid strict contractions", J.Math.Anal.Appl. 299464-468(2007).
[13] D.Kim,D.Wardowski, "Dynamics processes and fixed points of set-valued nonlinear contractions in cone metric spaces",Nonlinear Analysis 71,5170-5175(2009).
[14] Z.Kadelburg,S.Radonevic,B.Rosic, "Strict contractive conditions and common fixed point theorems in cone metric spaces", Fixed point Theory and Appl.Vol.2009,Article ID 173838,14 Pages,doi:10.1155/2009/173838.
[15] Z.Kadelburg,S.Radonevic,V.Rakocevic, "Remarks on quasi-contraction on a cone metric space", Appl.Math.Lett.,22:1674-1679(2009).
[16] Radonevic, S., "Common fixed points under contractive conditions in cone metric spaces", Computer and Math.with Appl.,5812731278(2009).
[17] .Rezapour Sh., and.Hamalbarani., R., "Some notes on paer "cone metric spaces and fixed point theorems of contractive mappings", J.Math.Anal.Appl. 345(2008), 719-724.
[18] Rezapour Sh, and Haghi., R.H, "Fixed points of multi functions on cone metric spaces", Numerical Functional Analysis and optimization,30:7(2009),825-832. DOI:10.108001630560903123346.
[19] Rezapour S., Khandani H., and Vaezpour., S., M., "Efficacy of cones on topological vector spaces and application to common fixed points of multi functions", Rend.Ciric.Mat. Palermo,59 185-197(2010).
[20] Rezapour, Sh., Haghi, R.H., Shahzad, N., "Some notes on fixed points of quasi-contraction maps", Appl.Math.Lett.,23:498-502(2010).
[21] Wei-Shih Du, "A note on cone metric fixed point theory and its equivalence",Nonlinear Analysis, 72:2259-2261(2010).
[22] Vetro., P., "Common fixed points in cone metric spaces", Rend. Ciric. Mat. Palermo, 56:464-468 (2007).
[23] Wlodarczyk, K., Plebaniak, R., Obczynski, C., "Convergence theorems,best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces", Nonlinear Analysis 72:794805(2010).
[24] Zhao, Z., Chen, X., "Fixed points of decreasing operators in ordered Banach spaces and applications to nonlinear second order elliptic equations",Computer and Math.with Appl. 58:1223-1229 (2009).


[^0]:    "Corresponding author, e-mail: kprrao2004@yahoo.com

[^1]:    Now for $\mathrm{n}>\mathrm{m}$ we have

