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ABSTRACT 

 
In this study, commands written on the basis of Uniform Confidence Bands (UCB) in the new windows version 
of the XploRe package for testing the validity of the link function assumed for binary parametric 
complementary log log model were introduced. Models including only continuous and both continuous and 
discrete (mixed) explanatory variables cases were discussed, separately. I intended here to present researchers 
an easier way for testing the accuracy of the assumed parametric complementary log log model for the data that 
could not be tested by the existing standard statistical packages. The applicability of the commands was shown 
over an artificial and a real data set on gastric cancer.      
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1. INTRODUCTION

Parametric modelling is based on the validity of the 
model assumptions related to the error term in binary 
response models. However, the validity tests of the 
assumptions are ignored in most applications. In such a 
case, the use of the semiparametric approach that requires 
less assumption compared with the parametric alternative 
is proposed.  

Because the application and the interpretation of the 
results are easier in the parametric approach, testing the 
validity of the model assumptions is the most important 
point to be taken into consideration in the first step of the 
data modelling process. There is no user friendly 
statistical package testing the parametric model 
assumptions for binary responses. Therefore, I generated 
easily applicable and optional new commands here on the 
basis of the UCB limits in the statistical software package 
XploRe 

This study focuses on testing the validity of the binary 
parametric complementary log log model assumptions.  

Some related studies in the literature are briefly reviewed 
below.  

Hardle (1988), Klinke et.al. (1997), Hardle et.al. (2003) 
and Hardle et.al. (2007) introduced the use of the XploRe 
package in detail. 

Müller et.al. (1997) tested the validity of the generalized 
partially linear model against the parametric generalized 
linear model over a data set on East-West German 
Migration using the commands written in the XploRe 
package. 

Proença and Werwatz (1994) introduced the commands 
written for testing the parametric logit model assumptions 
including only continuous explanatory variables in an old 
MsDos version of the XploRe package.  

The current study may be considered as an updated and 
extended version of the study of Proença and Werwatz 
(1994) with four contributions.  

The first one is that it updates the commands written in 
an old MsDos format to the windows based 4.8 version of 
the XploRe package. Therefore, testing the parametric 
model assumptions becomes easier.  

The second one is related to the modification of the 
commands written for the binary logit model to the 
binary parametric complementary log log model.  

The third one extends the commands restricted for the 
model including only continuous explanatory variables to 
the model with mixed (both discrete and continuous) 
explanatory variables.  

The last one enables some parts of the commands to be 
optional and provides the user the chance to obtain 
alternative results according to the kernel function used 
(Gaussian, Epanechnikov etc.), the confidence level for 
the UCB limits (0.05, 0.10 etc.) and the bandwidth 
selection methods (Cross validation, AIC, etc.). 
Therefore, the commands become more flexible. 

2. THE THEORETICAL BACKGROUND    

In binary dependent variable modelling, the mean 
function that is conditional on the vector of the 

explanatory variables X given in Eq.(1) expresses the 
probability of belonging of observations to the category  
“1” coded in the dependent variable.  

[ ]E(Y / X x ) P Y 1 / X x= = = =           (1) 

The fully parametric and the semiparametric approaches 
are used for the estimation of the model parameters. 

2.1. The Parametric Approach 

There are finite number of estimates of the ββββ  parameter 

vector and the linear index restriction is accepted ( X ββββ ) 

in the parametric approach. The model is defined as, 

[ ]= = = = =E(Y / X x ) P Y 1 / X x G( X )β    (2)          

where G is a known function that represents the 
distribution of the error term. G or G-1 is called link 
function in the family of the generalized linear models. 
The name and the parameters of the distribution are also 
known. This approach is called the parametric approach 
due to the assumption of the linear functional form of the 

explanatory variables ( X ββββ ).  

The name of the models changes in conjunction with the 
change in G. The parametric complementary log log 
model is obtained by using the link function given in Eq. 
(3).  

ilog { log [1 P(Y 1)]} X β− − = =                 (3)   

The probability expression of the model is defined as 
follows. 

[ ]= = = =

= − −

E(Y / X x ) P Y 1 / X x

1 exp [ exp( X )]β
       (4) 

Complementary log-log model is frequently used when 
the probability of an event is very small or very large. 
The major difference of the complementary log-log 
function from its alternatives such as logit and probit 
models is resulted from its asymmetrical structure. 

The maximum likelihood estimation technique is used in 

the estimation of the model parameters ( ββββ ’s) 

(McCullagh and Nelder 1989; Wang and Dey 2008).  

2.2. The Semiparametric Approach 

The model estimation procedure is composed of two parts 

in the semiparametric modelling. In the first step, ββββ  is 

estimated and the linear index function ˆX ββββ  is 

calculated. In the second step, an unknown function G 
(denoted by g) is estimated by the nonparametric 

regression of Y on the estimated linear index ˆX ββββ .  

The model is expressed as follows.   

[ ]= = = =

=

E(Y / X x ) P Y 1 / X x

ˆg ( X )β
                (5) 
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Various methods used according to the type of the 
explanatory variables have been developed for the 

estimation of ββββ ’s. In this study, continuous and mixed 

explanatory variable cases of models are discussed, 
separately.   

The XploRe commands in the estimation of ββββ ’s are 

constructed according to the estimator of Powell et al. 
(1989) based on the Density Weighted Average 
Derivatives (DWADE). The command “dwade” is used 

in the estimation of the ββββ ’s for the model with 

continuous explanatory variables whereas the “adedis” is 
used for the mixed model (Powell et al. 1989). 

2.3. The Density Weighted Average Derivative 

Estimator of the Index Parameters 

Since the DWADE is a direct estimator, the estimation of 
unknown parameters of the linear index function is easier 
compared with the other semiparametric estimators. It 
does not require iterative procedure but is considerably 
restrictive due to the fact that it can only be applied to the 
models including only continuous explanatory variables 
for satisfying the differentiability condition.   

Assume that G is a differentiable function required for 

the identifiability of ββββ , X is a continuously distributed 

random vector and W is a continuous function. The 
following two expressions are derived under these 
assumptions. 

∂
=

∂
'E (Y / x )

G ( X )
x

β β             (6) 

∂   =   ∂ 
'E(Y/ X)

E W(X) E W(X)G(X )
x

β β            (7)          

The left side of the Eq.(7) is called Weighted Average 
Derivative Estimator (WADE) with weight function W. 
The model given by Eq.(8) is called DWADE when the 

probability density function of X ( p( x ) ) is determined 

as a weight function.  

∂ ∂   =   ∂ ∂   
∂

=
∂∫ 2

E(Y / X ) E(Y / X )
E W ( x ) E p( X )

x x

E(Y / x )
p( x ) dx

x

   (8)      

It is evident in Eq.(8) that the DWADE of E (Y / x )  

is proportional to the ββββ . The scale normalization 

required in the semiparametric approach can be achieved 
by dividing each component on the left side of Eq.(8) by 

the first component of ββββ  ( 1 1β = ). 

The left side of Eq.(8) can be estimated by replacing the 

kernel estimator of 
E (Y / X )

x

∂
∂

 and the sample mean 

for the population expected value [ (.)E ]. The resulting 

DWADE estimator weighted by p( x )  and denoted by 

δ  is given as follows.  

k 1
n n

i j'
i

i 1 j 1 n n
j i

X X2 1
K Y

n( n 1 ) h h
δ

+

= =
≠

−   
= −    −    

∑∑ (9)          

The weight function p( x )  is defined as,  

k
n

j

j 1 n n
j i

x X1 1
p( x ) K

n 1 h h=
≠

−   
=    −    

∑            (10) 

where k denotes the dimension of X, K is a multivariate 

kernel function with k-dimensional component and 
n
h  is 

the series of bandwidth parameters (Powell et al. 1989).  

2.4. The Estimation Procedure of ββββ ’s in the Model 
with Mixed Explanatory Variable   

The conditional expectation is given as, 

= = = +E(Y / X x,Z z ) g ( X Z )β α        (11) 

where Z denotes the discrete and X denotes the 

continuous explanatory variables in the model. ββββ  and 

αααα  are vectors of parameters to be estimated. The 
method DWADE explained in the Subsection 2.3 is used 

in the estimation of ββββ . Horowitz and Hardle (1996) 

developed an estimator for αααα  that is the parameter 
vector of the discrete explanatory variables. The 

horizontal distance between 
( i )g ( v z )α+  and 

( 1 )g ( v z )α+ , ( i 2, ,M )= K  is used for the 

estimation. Here, 
( i )

zS { z :i 1, ,M }≡ = K  defines 

the discrete random variable Z. They assumed that 

g ( v z )α+  satisfies a weak monotonicity condition. 

They also assumed that there are finite numbers 

0 1 0v , v , c  and 1c  such that 0 1v v< ,  0 1c c< , 

0g ( v z ) cα+ <  for each zz S∈  if 0v v<  

and 1g ( v z ) cα+ >  for each zz S∈  if 1v v> .  

In the XploRe commands, the determination of the 

scalars 0c  and 1c  is required. In order to do this, the 

data is graphed on the each level of the discrete variable 
and the interval satisfying the monotonicity condition is 
determined (Horowitz 1998; Horowitz and Hardle 1996).  

2.5. The Optimal Bandwidth Selection Problem in the 

Nonparametric Regression 

After estimating the linear index function in the first step 
of the semiparametric approach, the nonparametric 
regression method is applied in the estimation of the link 
function g. The main problem here is to determine the 
method that gives the optimal bandwidth parameter value 
h.  

Taking into consideration of its easier mathematical 
structure, the Least Square Cross-Validation (LSCV) 
method defined as,  
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2n

j h i jn
j i

i n
i 1

h i j
j i

Y K ( X X )
1

LSCV(h) Y )
n

K ( X X )

≠

=

≠

 
− 

 = −
 − 
 

∑
∑

∑
     (12) 

is used here. The value h minimizing the LSCV function 
is the optimal one. In Eq.(12), K is a kernel function used 
in the nonparametric regression, Y is the vector of values 
of the observed dependent variable, X is the vector of the 

explanatory variables ( i j 1, ,n≠ = K ) and n is the 

sample size (Hardle et al. 2004; Horowitz 1998).  

3. THE UNIFORM CONFIDENCE BANDS  

Because new XploRe commands testing the validity of 
the parametric complementary log log model assumptions 
are constructed based on the UCB limits, the three steps 
of the UCB procedure are discussed below. 

1. In the first step, the linear index function X ββββ  is 

estimated by using one of the semiparametric estimators.  

2. In the second step, the nonparametric regression of Y 

on the estimated ˆX ββββ  denoted by m( x )  is obtained. 

3. In the last step, the UCB limits are constructed based 
on the nonparametric estimates.  

If the parametric link function lies around the 
nonparametric estimates between the confidence limits, it 
is concluded that the parametric model assumptions are 
satisfied. The UCB limits for the nonparametric estimate 

( m( x ) ) at point x is defined as, 

 
2 22 2

h h2 2
h n, h n,

h h

ˆ ˆK K
ˆ ˆP m(x) z m(x) m(x) z 1

ˆ ˆnhf (x) nhf (x)
α α

σ σ
α

 
 

− ≤ ≤ + ≅ − 
  

  (13)        

where h is the optimal bandwidth parameter required for 

the nonparametric estimate, 
2
hσ̂  is the estimated variance 

of m( x )  given by Eq.(16), K is a kernel function, 
'K  

is the first order derivative of K and 
2

2
K  is the second 

order norm of K defined by Eq.(14). 

[ ]22

2
K K ( s ) ds= ∫            (14)

  
1/ 2

n, n1/ 2

1
log log (1 )

2
z d

( 2 log n )
α

α

δ

  − − −    = + 
 
  

 

          

Here, the open form of nd  is given as follows.  

 
1/2

'

1/2 1/2 2
n

2

K1
d (2 logn) (2 logn) log

2 K
δ δ

π
−

 
 = +
 
 

(15)

          

{ }
n

2i
i h

2 i 1
h n

i

i 1

x x1
ˆK y m ( x)

n hˆ ( x)
x x

K
h

σ =

=

−  − 
 =

− 
 
 

∑

∑
            (16) 

Gaussian, Epanechnikov and Quadratic kernels are 
frequently used in practice. Any kernel function could be 
used in the estimation procedure by considering the 
support of the distributions and type of the data. 

Another important point that worth mentioning here is 
that because different scale and normalization methods 
are used in the estimation of the semiparametric (g) and 
the parametric (G) link functions, they can not be shown 
in the same graph simultaneously. The following 
procedure is proposed for solving this problem (Horowitz 
1998, Horowitz and Hardle 1994). 

1. ββββ  is estimated using one of the semiparametric 

methods.  

2. Index values are computed using β̂βββ  estimates. 

( i i
ˆxυ β=  ; i 1, ,n= K ) 

3. The scale parameter s and the constant term c of the 

parametric model are estimated using iy  and iυ . 

4. A probability estimation for observation i is obtained 

from i iŷ 1 exp{ exp [( c ) / s ]}υ= − − −  for the 

parametric complementary log log model. 

5. The iy% ’s are computed by applying the nonparametric 

regression of iy  on iυ . Then the link function is 

estimated and the confidence limits are constructed.  

6. iŷ , iy%  and the confidence limits are graphed against 

iυ . 

4. NEW XploRe COMMANDS FOR TESTING THE 

PARAMETRIC COMPLEMENTARY LOG LOG 

MODEL ASSUMPTIONS 

In this section, new commands testing the parametric 
complementary log log model assumptions against its 
semiparametric alternative based on the UCB limits in the 
windows based version 4.8 of the XploRe package are 
introduced. Models including only continuous and mixed 
explanatory variables are discussed, separately.  

The quantlet “dwade” in XploRe is used for the model 
with continuous explanatory variables whereas the 
“adedis” is used for the estimation of the mixed model. 
The explanations of the commands are given in detail 
below (Hardle 1988, Hardle et al. 2007, Hardle et al. 
2003, Klinke et.al. 1997, Proença and Werwatz 1994).  
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4.1. Commands for the Model with Mixed 

Explanatory Variable (s) 

proc(cb4)=procedure2() 

dat=read("comploglog2");Reads the data set 
"comploglog2" written  in 
ASCII format. 

y=dat[,4] ; Describes the column number        
of the dependent variable (y) in the 
data set. 

x=dat[,1:2] ; Describes the column numbers of 
the continuous explanatory 
variable(s) (x) in the data set. 

z=dat[,3] ; Describes the column number of 
the discrete explanatory variable(s) 
(z) in the data set. 

x=x.-mean(x) ; Centralizes x values to eliminate 
the possible correlation among 
them. 

eigen=eigsm(cov(x)); Calculates the eigenvalues and 
eigenvectors of the covariance 
matrix of x. 

w=eigen.values ; Expresses the eigenvalues using a 
matrix “w”. 

v=eigen.vectors ; Expresses the eigenvectors using 
a matrix “v”. 

mah=v*(sqrt(1./w).*v') ;Applies the Mahalanobis 
transformation. 

x=x*mah ; Weights the raw data matrix x by 
the transformation matrix “mah”. 

library("smoother") ; Calls the “smoother” library for 

the estimation of ββββ .   

library("metrics") ; Calls the “metrics” library for the 
mathematical calculations. 

library("plot") ; Calls the “plot” library for the 
graphical representation. 

h=0.2*(max(x).-min(x))' ; Describes the bandwidth value 
required for the estimation 

of ββββ . 

{delt,alphahat,lim,hd,text}=adedis(z,x,y,h,1.5,0.2,0.8)  

 ; Calls the command “adedis” for the 

estimation of the ββββ ’s for the discrete 

and continuous explanatory variables, 

separately. The ββββ  estimations of the 

continuous variable(s) are assigned to 

the vector “delt” whereas ββββ  

estimations of the discrete one(s) are 
assigned to the vector “alphahat”. 
Additionally, hfac=1.5; c0= 0.2 and 
c1=0.8 are determined here using the 
methods in Subsection 2.4.     

b=mah*delt ; Describes the transformations to the 
original values of the estimations of the 
continuous explanatory variables. 

b=b./abs(b[1,]) ; Normalizes all estimated b s’ by 
dividing them to the first estimated 
coefficient. This normalization is 
required for the comparison of the 
estimated parameters of the parametric 
complementary log log model and its 
semiparametric alternative.  

iυ = x*b+z*alphahat ; Computes the value of the linear 

index estimation of observation i. 

x=matrix(rows(x))~ iυ ; Adds a column vector including 

only the elements “1” to the left 

side of the matrix iυ .  

; The estimation of the scale s and the constant c of the 

complementary log log model 

library("glm") ;Calls the “glm” library for the 
estimation of the parametric model.       

g=glmest("bicll",x,y) ;Gives the estimations of the 
complementary log log model. 

glmout("bicll",x,y,g.b,g.bv,g.stat) ; Displays the required 
outputs on the output screen. 

c=g.b[1,] ; Gives the first estimated coefficient of 

the model  ( 0b ). 

s=g.b[2,] ; Gives the second estimated coefficient 

of the model ( 1b ). 

yhat= i1 exp( exp(( c) / s))− − υ − ; Calculates the 

probability of belonging to the category 
“1” coded in the dependent variable for 
each observation using the c and s 
values of the model. 

z=y~yhat ; Adds the yhat column to the right side 
of y. 

z1= iυ ~yhat ; Adds the yhat column to the right side 

of iυ . 

z1sorted=sort(z1) ; Sorts z1 values. 

; Nonparametric regression of y on iυ   

data= iυ ~y ; Adds the column matrix y to the right 

side of iυ . 

h1=regxbwsel(data); Presents alternative bandwidth 
selection methods such as Cross-
Validation, Shibata’s Model Selector, 
Akaike’s Information Criterion, Rice’s 
T etc. The Cross-Validation, generally 
accepted method due to its simplicity in 
the estimation procedure, is used here.  

{mh,clo,cup}=regxcb(data,h1,0.05,”gau”) ; 
Calculates mh, the lower confidence 
band (clo) limit and the upper 
confidence band (cup) limit at the 

0.05α =  confidence level and with 
the “Gaussian” kernel function. This 
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command becomes the confidence level 
and the kernel function optional.  

{mh,cli,cui}=regxci(data,h1,0.05,”gau”); Calculates mh 
and the pointwise confidence intervals 
at the 0.05α =  level with the 
“Gaussian” kernel function.    

; Graphical representation of mh, yhat and confidence 

bands  

z1sorted=setmask(z1sorted,"circles","red")  

; Describes the image of  “z1 sorted” in the graph. 

mh=setmask(mh,"line","black")  

; Describes the image of “mh”. 

clo=setmask(clo,"line","blue","thin","dashed")  

; Describes the image of “clo”. 

cup=setmask(cup,"line","blue","thin","dashed")  

; Describes the image of  “cup”. 

plot(z1sorted,mh,clo,cup) ; Plots “z1sorted”, “mh”, 
“clo” and “cup” 

endp 

procedure2() 

5. A NUMERICAL EXAMPLE 

In this section, both an artificial and a real data set are 
used to show the applicability of all XploRe commands 
in practice. Some popular bandwidth selection methods 
such as Cross-Validation, Shibata’s Model Selector, AIC 
for the estimation of mh are displayed in the screen when 
the commands are executed. The UCB confidence limits 
are calculated and graphed after doing the required 
selections.  

5.1. The Results over an Artificial Data  

The data used here has been taken from the original data 
library of the XploRe package. The name of the data is 
“dwade” with the sample size of 80.     

Y is a binary outcome coded as 0 and 1; X is a nx2 matrix 
denoting the continuous explanatory variables and Z is a 
nx1 matrix that represents the discrete explanatory 
variable. Z has been added to the data “dwade” for 
illustrating the usage of the commands for the mixed 
explanatory variable model.  

5.1.1. The Results of the model with only continuous 

explanatory variables 

The optimal bandwidth value ( 1 06988opth .= ) 

obtained by the method LSCV is shown in Figure1. The 
optimal range of h is (0.168495-2.69593). The quadratic 
kernel function (abbreviated by “qua”) is used in the 
estimation.  

 

Figure1.The optimal bandwidth value of the nonparametric regression of Y on X in the model with continuous explanatory 
variables. 
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Figure 2. The estimated parametric curve, the nonparametric curve and the UCB limits at the 1 0.95− α =  confidence level in 
the model with continuous explanatory variables. 

The estimated parametric curve, the nonparametric curve 
and the UCB limits are graphed in Figure 2. at the 

1 0.95− α =  confidence level with the Gaussian 
kernel. 

The circles represent the parametric link function, the line 
represents the estimated nonparametric curve and the 
broken line represents the lower and the upper UCB 
limits.  

Because some parts of the circles lie out of the UCB 
upper limit in Figure 2, it is concluded that the use of the 

parametric complementary log log model is not 
appropriate for modelling the data.  

5.1.2. The results of the model with mixed explanatory 

variables 

As shown in Figure 3, the optimal bandwidth value 
obtained by the method LSCV and using the quadratic 

kernel function is 0 386358opth .= . The optimal 

range of h is (0.283922-4.54275) 
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Figure 3. The optimal bandwidth value of the nonparametric regression of Y on X in the model with mixed explanatory variables. 

 

Figure 4. The estimated parametric curve, the nonparametric curve and the UCB limits at the 1 0.95− α =  confidence level in 
the model with mixed explanatory variables. 

 

Figure 4 indicates that the use of the parametric 
complementary log log model with mixed explanatory 
variables is also rejected.  

5.2. A Real Data Results  

Here, the commands given in Subsection 4.2 are run over a 
real data set on gastric cancer including male patients of 65 to 
illustrate the usage of them in practice. The gastric cancer 
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data is obtained from the project report of Akkaya (2008) in 
the department of Biostatistics of Hacettepe University of 
Turkey. 

Y is a binary variable coded as follows. 


= 


i

0 if patient i is alive.
Y

1 if patient i is dead .
  

Three important factors that may affect the disease are 
determined. The age of the patient and the tumour size are 

continuous variables represented by
1

X  and 
2

X , 

respectively. 
3

X  is a discrete variable coded as,  


= 


3

0 if the metastasiz is not stated.
X

1 if stated .
 

No other change in the commands is required beyond 
rearrangement of the column numbers of the new variables.  

 

   Figure 5. The optimal bandwidth value of the nonparametric regression of Y on X for the gastric cancer data. 

 

Figure 5 shows that the optimal bandwidth value obtained 
based on the method LSCV and the quadratic kernel 

function is 3 42557opth .= . The optimal range of h is 

(0.214098-3.42557).  

Figure 6 displays that the important factors affecting the 
probability of being dead of patients could not be 
determined by using the parametric complementary log 

log model. In other words, the gastric cancer data could 
not be modeled by the method of the parametric 
complementary log log model due to the violation of the 
model assumptions. Instead, the semiparametric 
alternative of the model could be dealt with.      

.      
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Figure 6. The estimated parametric curve, the nonparametric curve and the UCB limits at the 1 0.95− α =  confidence level for the 
gastric cancer data. 

6. CONCLUDING REMARKS 

In binary dependent variable modelling, the use of the 
parametric approach is common in most applications 
because of its simplicity in interpretation and application. 
However, the validity of these types of models is all 
based on the assumptions related to the error term. The 
main problem in the parametric modelling is how to test 
the validity of the model assumptions. At this point, a 
statistical testing criterion is required.  

In this study, the validity test of the model assumptions 
related to the one of the most popular binary parametric 
models, the complementary log log model, is focused. 
The UCB limits are used as testing criteria in the XploRe 
commands written in the windows based version 4.8 for 
models with continuous and mixed explanatory variables. 
This study also modifies and updates the commands of 
Proença and Werwatz (1994) to the case of the 
parametric complementary log log model. It also extends 
the commands restricted for the model including only 
continuous explanatory variable to the model with mixed 
explanatory variables and enables some commands to be 
optional. The explanations of the commands are given in 
Section 4.  

The applicability of all XploRe commands is shown over 
an artificial and a real data set. They are executed for 
testing the validity of the parametric complementary log 
log model assumptions. In conclusion, the parametric 
model is rejected against the semiparametric alternative 
in both situations. These commands are considered to 
provide an easy way for testing the validity of the 
parametric complementary log log model assumptions by 

taking into consideration the lack of a user friendly 
standard statistical package in existing literature.  
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