GENERALIZED BURNSIDE ALGEBRA OF TYPE B_{n}

HASAN ARSLAN AND HIMMET CAN

Abstract

In this paper, we firstly give an alternative method to determine the size of $C\left(S_{n}\right)$ which is the set of elements of type S_{n} in a finite Coxeter system $\left(W_{n}, S_{n}\right)$ of type B_{n}. We also show that all cuspidal classes of W_{n} are actually the conjugacy classes \mathcal{K}_{λ} for every $\lambda \in \mathcal{D} \mathcal{P}^{+}(n)$. We then define the generalized Burnside algebra $H B\left(W_{n}\right)$ for W_{n} and construct a surjective algebra morphism between $H B\left(W_{n}\right)$ and Mantaci-Reutenauer algebra $\mathcal{M} \mathcal{R}\left(W_{n}\right)$. We obtain a set of orthogonal primitive idempotents $e_{\lambda}, \lambda \in \mathcal{D} \mathcal{P}(n)$ of $H B\left(W_{n}\right)$, that is, all the characteristic class functions of W_{n}. Finally, we give an effective formula to compute the number of elements of all the conjugacy classes $\mathcal{K}_{\lambda}, \lambda \in \mathcal{D} \mathcal{P}(n)$ of W_{n}.

1. Introduction

Solomon's descent algebra of a finite Coxeter system (W, S) was introduced by Solomon in 1976 in [11. In 1992, Bergeron, Bergeron, Howlett and Taylor elegantly reconstructed the Solomon's descent algebra for a finite Coxeter system by using the group structure of Coxeter group and also they introduced a family of orthogonal primitive idempotents of the Solomon's descent algebra by lifting orthogonal primitive idempotents of parabolic Burnside algebra in [1].

Let W_{n} be the Coxeter group of type B_{n}. As a convention, throughout this paper, we denote by $H B\left(W_{n}\right), \mathcal{M} \mathcal{R}\left(W_{n}\right), \mathcal{S C}(n)$ and $\mathcal{D P}(n)$ the generalized Burnside algebra of type B_{n}, the Mantaci-Reutenauer algebra, the set of all signed compositions of n and the set of all double partitions of n, respectively.

Mantaci-Reutenauer algebra $\mathcal{M} \mathcal{R}\left(W_{n}\right)$, which is a subalgebra of the group algebra $\mathbb{Q} W_{n}$ and contains the Solomon's descent algebras of type A_{n} and B_{n}, was firstly constructed in [10]. In [2], Bonnafé and Hohlweg reconstructed $\mathcal{M} \mathcal{R}\left(W_{n}\right)$ by the methods which depend more on the structure of W_{n} as a Coxeter group. Bonnafé studied the representation theory of Mantaci-Reutenauer algebra in 3].

Received by the editors: July 31, 2019; Accepted: October 18, 2019.
2010 Mathematics Subject Classification. Primary 20F55; Secondary 19A22.
Key words and phrases. Cuspidal class, Mantaci-Reutenauer algebra, Burnside algebra, orthogonal primitive idempotents.

In Section 3, we prove that for every positive signed composition A of n, the parabolic closure of the reflection subgroup W_{A} is W_{n}. As a result of this, we obtain that the number of all elements of type S_{n} is equal to $\sum_{\lambda \in \mathcal{D} \mathcal{P}^{+}(n)}\left|\mathcal{K}_{\lambda}\right|$ and realize that all cuspidal classes of W_{n} are the conjugacy classes \mathcal{K}_{λ} for $\lambda \in \mathcal{D} \mathcal{P}^{+}(n)$.

In Section 4, we introduce the Burnside algebra $H B\left(W_{n}\right)$ generated by isomorphism classes of reflection subgroups of W_{n} corresponding to signed compositions of n. We call $H B\left(W_{n}\right)$ generalized Burnside algebra of type B_{n}. Generalized Burnside algebra $H B\left(W_{n}\right)$ is isomorphic to the algebra $\mathbb{Q} \operatorname{Irr} W_{n}$ generated by the irreducible characters of W_{n}. Then we construct a set of orthogonal primitive idempotents of $H B\left(W_{n}\right)$. These orthogonal primitive idempotents are actually all the characteristic class functions of the Coxeter group W_{n}. We determine the coefficient of the sign character ε_{n} of W_{n} in the expression of the each orthogonal primitive idempotent of $H B\left(W_{n}\right)$ in terms of irreducible characters of W_{n}. We get a formula to compute the number of elements of all the conjugacy classes $\mathcal{K}_{\lambda}, \lambda \in \mathcal{D} \mathcal{P}(n)$ of W_{n}.

2. Preliminaries

2.1. Hyperoctahedral group. Let $\left(W_{n}, S_{n}\right)$ denote a Coxeter group of type B_{n} and write its generating set as $S_{n}=\left\{t, s_{1}, \cdots, s_{n-1}\right\}$. Any element w of W_{n} acts by the permutation on the set $X_{n}=\{-n, \cdots,-1,1, \cdots, n\}$ such that for every $i \in I_{n}, w(-i)=-w(i)$. The Dynkin diagram of W_{n} is as follows:

$$
B_{n}: \stackrel{t}{\circ} \Leftarrow \stackrel{s}{1}_{\circ}^{\circ}-s_{\circ}^{s_{2}}-\cdots-\stackrel{s_{n-1}}{\circ} .
$$

If $J \subset S_{n}$, the subgroup W_{J} generated by J is called a standard parabolic subgroup of W_{n}. A parabolic subgroup of W_{n} is a subgroup of W_{n} conjugate to W_{J} for some $J \subset S_{n}$. Let $t_{1}:=t$ and $t_{i}:=s_{i-1} t_{i-1} s_{i-1}$ for each i, $2 \leq i \leq n$. Put $T_{n}:=\left\{t_{1}, \cdots, t_{n}\right\}$. It is well-known that there are the following relations between the elements of S_{n} and T_{n} :
(1) $t_{i}^{2}=1, s_{j}^{2}=1$ for all $i, j, 1 \leq i \leq n, 1 \leq j \leq n-1$;
(2) $t s_{1} t s_{1}=s_{1} t s_{1} t$;
(3) $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for all $i, 1 \leq i \leq n-2$;
(4) $t s_{i}=s_{i} t, 1<i \leq n-1$;
(5) $s_{i} s_{j}=s_{j} s_{i}$ for $|i-j|>1$;
(6) $t_{i} t_{j}=t_{j} t_{i}$ for $1 \leq i, j \leq n$.

We denote by $l: W_{n} \rightarrow \mathbb{N}$ the length function attached to S_{n}. Let \mathcal{T}_{n} denote the reflection subgroup of W_{n} generated by T_{n}. It is also clear that \mathcal{T}_{n} is a normal subgroup of W_{n}. Now let $S_{-n}=\left\{s_{1}, \cdots, s_{n-1}\right\}$ and let W_{-n} denote the reflection subgroup of W_{n} generated by S_{-n}, where W_{-n} is isomorphic to the symmetric group Ξ_{n} of degree n. Thus $W_{n}=W_{-n} \ltimes \mathcal{T}_{n}$.

Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be the canonical basis of the Euclidian space \mathbb{R}^{n} over \mathbb{R}. Let

$$
\Psi_{n}^{+}=\left\{e_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{j}+\lambda e_{i}: \lambda \in\{-1,1\} \text { and } 1 \leq i<j \leq n\right\}
$$

Then Ψ_{n} is a root system of type B_{n}. For further information about the Coxeter groups of type B_{n}, see [8], [9].

A signed composition of n is an expression of n as a finite sequence $A=$ $\left(a_{1}, \cdots, a_{k}\right)$ whose each part consists of non-zero integers such that $\sum_{i=1}^{k}\left|a_{i}\right|=n$. Put $|A|=\sum_{i=1}^{k}\left|a_{i}\right|$. We write $\mathcal{S C}(n)$ to denote the set of all signed compositions of n.

Let $A=\left(a_{1}, \cdots, a_{k}\right) \in \mathcal{S C}(n) . A$ is said to be positive(resp. negative) if $a_{i}>0$ (resp. $a_{i}<0$) for every $i \geq 1$. If $a_{i}<0$ for every $i \geq 2$, then A is called parabolic. Let define $A^{+}=\left(\left|a_{1}\right|, \cdots,\left|a_{r}\right|\right)$. Then A^{+}is a positive signed composition of n. The set of positive signed compositions of n is denoted by $\mathcal{S C}^{+}(n)$.

A double partition $\mu=\left(\mu^{+} ; \mu^{-}\right)$of n consists of a pair of partitions μ^{+}and μ^{-}such that $|\mu|=\left|\mu^{+}\right|+\left|\mu^{-}\right|=n$. If the number of positive parts of n (resp. negative parts of n) is equal to zero, then we write \emptyset instead of μ^{+}(resp. μ^{-}). We denote the set of all double partitions of n by $\mathcal{D} \mathcal{P}(n)$. We define $\mathcal{D} \mathcal{P}^{+}(n)=\{\mu=$ $\left.\left(\mu^{+} ; \mu^{-}\right) \in \mathcal{D} \mathcal{P}(n): \mu^{-}=\emptyset\right\}$. For $\mu=\left(\mu^{+} ; \mu^{-}\right) \in \mathcal{D} \mathcal{P}(n), \hat{\mu}:=\mu^{+} *-\mu^{-}$is the signed composition obtained by appending the sequence of components of μ^{+}to that of $-\mu^{-}$[2].

Now let $A \in \mathcal{S C}(n)$. If μ^{+}(resp. μ^{-}) is rearrangement of the positive parts (resp. absolute value of negative parts) of A in decreasing order, then $\boldsymbol{\lambda}(A):=\left(\mu^{+} ; \mu^{-}\right)$is a double partition of n and also $\boldsymbol{\lambda}(\hat{\mu})=\mu$ for every $\mu \in \mathcal{D} \mathcal{P}(n)$ [2]. In [2], Bonnafé and Hohlweg constructed some reflection subgroups of W_{n} corresponding to signed compositions of n as an analogue to Ξ_{n} as follows: For each $A=\left(a_{1}, \cdots, a_{k}\right) \in$ $\mathcal{S C}(n)$, the reflection subgroup W_{A} of W_{n} is generated by S_{A}, which is

$$
\begin{aligned}
S_{A}= & \left\{s_{p} \in W_{-n}:\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|+1 \leq p \leq\left|a_{1}\right|+\cdots+\left|a_{i}\right|-1\right\} \\
& \left.\cup\left\{t_{\left|a_{1}\right|+\cdots+\left|a_{j-1}\right|+1} \in T_{n}\right\} \mid a_{j}>0\right\} \subset S_{n}^{\prime}
\end{aligned}
$$

where $S_{n}^{\prime}=\left\{s_{1} \cdots s_{n-1}, t_{1}, t_{2}, \cdots, t_{n}\right\}$. By the definition of S_{A}, there exists an isomorphism $W_{A} \cong W_{a_{1}} \times \cdots \times W_{a_{k}}$ [2]. By taking into account the definition of the generating set S_{A} and the isomorphism $W_{A} \cong W_{a_{1}} \times \cdots \times W_{a_{r}}$, for $i, 1 \leq i \leq r$ if $a_{i}>0$ then we have rank $W_{a_{i}}=a_{i}$ and if $a_{i}<0$ then we have rank $W_{a_{i}}=\left|a_{i}\right|-1$. Therefore, we get

$$
\operatorname{rank} W_{A}=\left|S_{A}\right|=n-n g(A)
$$

where $n g(A)$ denotes the number of negative parts of A. Because of $\sum_{i=1}^{r}\left|a_{i}\right|=n$, we obtain $\operatorname{rank} W_{A}=\left|S_{A}\right| \leq n$.

For $A, B \in \mathcal{S C}(n)$, we write $A \subset B$ if $W_{A} \subset W_{B}$, where \subset is a partial ordering relation on $\mathcal{S C}(n)$ 2]. For $A \in \mathcal{S C}(n)$ let cox_{A} be a Coxeter element of W_{A} in terms of generating set S_{A}. For $B, B^{\prime} \subset A$, we write $B \equiv{ }_{A} B^{\prime}$ if W_{B} is conjugate to $W_{B^{\prime}}$ under W_{A} and also cox_{B} and $\operatorname{cox}_{B^{\prime}}$ are conjugate to each other in W_{A} if and only if $B \equiv_{A} B^{\prime}$ [3]. We write $B \equiv_{n} B^{\prime}$ if W_{B} is conjugate to $W_{B^{\prime}}$ under W_{n}. This equivalence is a special case for these kind of reflection subgroups of W_{n}, because this statement is not true for every reflection subgroup of W_{n}. Although some two
reflection subgroups R and R^{\prime} of W_{n} contain W_{n}-conjugate Coxeter elements cox ${ }_{R}$ and $\operatorname{cox}_{R^{\prime}}$ respectively, these subgroups are not able to W_{n}-conjugate to each other [6]. For every element w of W_{n}, there exists a unique $\lambda \in \mathcal{D} \mathcal{P}(n)$ such that w is W_{n}-conjugate to $\operatorname{cox}_{\hat{\lambda}}$ [3]. Let \mathcal{K}_{λ} be the conjugacy class of W_{n} corresponding to $\lambda \in \mathcal{D P}(n)$. Since the number of conjugacy classes of W_{n} is equal to $|\mathcal{D} \mathcal{P}(n)|$, thus we may split up W_{n} into $|\mathcal{D P}(n)|$ conjugacy classes. In 3], Bonnafé showed that for $A, B \in \mathcal{S C}(n), W_{A}$ is conjugate to W_{B} in W_{n} if and only if $\boldsymbol{\lambda}(A)=\boldsymbol{\lambda}(B)$.

For a subset X of W_{n}, we denote by $\operatorname{Fix}(X)=\left\{v \in \mathbb{R}^{n}: \forall x \in X, x(v)=v\right\}$ the subspace of \mathbb{R}^{n} fixed by X and let write $W_{\operatorname{Fix}(X)}=\left\{w \in W_{n}: \forall v \in \operatorname{Fix}(X), w(v)=\right.$ $v\}$ for the stabilizer of $\operatorname{Fix}(X)$ in W_{n}. By [6], the set $W_{\operatorname{Fix}(X)}$ is called the parabolic closure of X and it is denoted by $A(X)$. For any $w \in W_{n}$, if we take $X=\{w\}$ then we write $\operatorname{Fix}(w)$ and $A(w)$ instead of $\operatorname{Fix}(\{w\})$ and $A(\{w\})$, respectively. By [1], w is said to be an element of type J if there exists a $J \subset S_{n}$ such that $A(w)$ is conjugate to W_{J} under W_{n}.
2.2. Mantaci-Reutenauer algebra. For any $A \in \mathcal{S C}(n)$, we set

$$
D_{A}=\left\{x \in W_{n}: \forall s \in S_{A}, l(x s)>l(x)\right\} .
$$

By [2] and [7], D_{A} is the set of distinguished coset representatives of W_{A} in W_{n}. Let

$$
d_{A}=\sum_{w \in D_{A}} w \in \mathbb{Q} W_{n}
$$

and let

$$
\mathcal{M R}\left(W_{n}\right)=\bigoplus_{A \in \mathcal{S C}(n)} \mathbb{Q} d_{A}
$$

For every $A \in \mathcal{S C}(n)$, from [2] $\Phi_{n}: \mathcal{M} \mathcal{R}\left(W_{n}\right) \rightarrow \mathbb{Q} \operatorname{Irr} W_{n}$ is a surjective algebra morphism such that $\Phi_{n}\left(d_{A}\right)=\operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}$, where 1_{A} stands for the trivial character of W_{A}. It is well-known from [2] that the radical of $\mathcal{M} \mathcal{R}\left(W_{n}\right)$ is $\operatorname{Ker} \Phi_{n}=\bigoplus_{A, B \in \mathcal{S C}(n), A \equiv_{n} B} \mathbb{Q}\left(d_{A}-d_{B}\right)$

By [2], for $A, B \in \mathcal{S} \mathcal{C}(n)$, the set of distinguished double coset representatives is defined as $D_{A B}=D_{A}^{-1} \cap D_{B}$ and for any $x \in D_{A B}$,

$$
W_{A} \cap{ }^{x} W_{B}=W_{A \cap^{x} B}
$$

For $A, B \in \mathcal{S C}(n)$, let define [3] the sets $D_{A B}^{\subset}=\left\{x \in D_{A B}:{ }^{x^{-1}} W_{A} \subset W_{B}\right\}$ and $D_{\overline{\bar{A}}}^{\overline{\bar{\prime}}}=\left\{x \in D_{A B}: W_{A}={ }^{x} W_{B}\right\}$.

The following proposition proved by Bonnafé in [3] gives the ring multiplication structure in $\mathcal{M} \mathcal{R}\left(W_{n}\right)$.

Proposition 1 ([3]). Let A and B be any two signed composition of n. Then,
i. There is a map $f_{A B}: D_{A B} \rightarrow \mathcal{S C}(n)$ satisfying the following conditions:

- For every $x \in D_{A B}, f_{A B}(x) \subset B$ and $f_{A B}(x) \equiv_{B}{ }^{x^{-1}} A \cap B$.
- $d_{A} d_{B}-\sum_{x \in D_{A B}} d_{f_{A B}(x)} \in \mathcal{M} \mathcal{R}_{\subsetneq_{\lambda} A}\left(W_{n}\right) \cap \mathcal{M} \mathcal{R}_{\prec B}\left(W_{n}\right) \cap \operatorname{Ker} \Phi_{n}$.
ii. If A parabolic or B is semi-positive, then $f_{A B}(x)={ }^{x^{-1}} A \cap B$ for $x \in D_{A B}$ and $d_{A} d_{B}=\sum_{x \in D_{A B}} d_{x^{-1} A \cap B}$.
iii. $\tau_{\boldsymbol{\lambda}(A)}\left(d_{B}\right)=\left|D_{A B}^{\subset}\right|$.
iv. $D_{\overline{\bar{A}}}^{\overline{\bar{A}}}=\left\{x \in W_{n}: S_{A}={ }^{x} S_{B}\right\}$.
v. $\mathcal{W}(B)=\left\{w \in W_{n}:{ }^{w} S_{B}=S_{B}\right\}$.
vi. $\mathcal{W}(B)$ is a subgroup of $N_{W_{n}}\left(W_{B}\right)$.
vii. $N_{W_{n}}\left(W_{B}\right)=\mathcal{W}(B) \ltimes W_{B}$.

In the Proposition 1 the symbols $\subset_{\boldsymbol{\lambda}}$ and \prec denote a pre-order and an ordering defined on $\mathcal{S C}(n)$, respectively. If $A \equiv_{n} B$, then it is clear $D_{\bar{A} B}^{\bar{A}}=D_{A B}^{\subset}$ and $\mathcal{W}(A)=D_{A A}^{\subset}$. Thus $\mathcal{M} \mathcal{R}\left(W_{n}\right)$ is called Mantaci-Reutenauer algebra of W_{n}.

For $\lambda \in \mathcal{D} \mathcal{P}(n)$, the $\operatorname{map} \tau_{\lambda}: \mathcal{M} \mathcal{R}\left(W_{n}\right) \rightarrow \mathbb{Q}, x \mapsto \Phi_{n}(x)\left(\operatorname{cox}_{\hat{\lambda}}\right)$ is independent of the choice of $\operatorname{cox}_{\hat{\lambda}} \in \mathcal{K}_{\lambda}$ and it is also an algebra morphism [2].

3. Some Properties of Coxeter group of type B_{n}

Let $A \in \mathcal{S C}(n)$ and let $l_{A}: W_{A} \rightarrow \mathbb{N}$ be the length function of W_{A} in terms of its generating set S_{A}. When A is not a parabolic signed composition of n, the value $l_{A}(w)$ is not equal to $l(w)$ for some $w \in W_{A}$. The following lemma gives a relation between these two length functions. The proof of the following lemma is clear from the fact that $l\left(t_{i}\right)=2 i-1$ for $\mathrm{i}, 1 \leq i \leq n$.

Lemma 2. Let $A \in \mathcal{S C}(n)$. Then for every $w \in W_{A}$

$$
l(w) \equiv l_{A}(w)(\bmod 2)
$$

Let ε_{n} and ε_{A} be the sign character of W_{n} and W_{A}, respectively. As a result of the previous lemma, we get

$$
\varepsilon_{n}(w)=(-1)^{l(w)}=(-1)^{l_{A}(w)}=\varepsilon_{A}(w)
$$

Since the restriction of ε_{n} to W_{A}, that is $\operatorname{res}_{W_{A}}^{W_{n}} \varepsilon_{n}$, is an irreducible character of W_{A} for every $A \in \mathcal{S C}(n)$ and Lemma 2, then we have $\operatorname{res}_{W_{A}}^{W_{n}} \varepsilon_{n}=\varepsilon_{A}$.
Example 3. For a concrete example, let $A=(-2,3,-1,-3,1) \in \mathcal{S C}(10)$. Then $S_{A}=\left\{s_{1}\right\} \cup\left\{t_{3}, s_{3}, s_{4}\right\} \cup\left\{s_{7}, s_{8}\right\} \cup\left\{t_{10}\right\} \subset S_{10}^{\prime}$ and $S_{A}^{\prime}=W_{A} \cap S_{10}^{\prime}=\left\{s_{1}\right\} \cup$ $\left\{t_{3}, s_{3}, s_{4}, t_{4}, t_{5}\right\} \cup\left\{s_{7}, s_{8}\right\} \cup\left\{t_{10}\right\}$. Thus $W_{A} \cong W_{-2} \times W_{3} \times W_{-1} \times W_{-3} \times W_{1}$. For $w=s_{7} t_{3} s_{3} s_{1} t_{10} \in W_{A}, l_{A}(w)=5$ and also
$w=s_{7} t_{3} s_{3} s_{1} t_{10}=s_{7} s_{2} s_{1} t_{1} s_{1} s_{2} s_{3} s_{1} s_{9} s_{8} s_{7} s_{6} s_{5} s_{4} s_{3} s_{2} s_{1} t_{1} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} \in W_{10}$, so $l(w)=27$. It follows that $l(w) \equiv l_{A}(w) \equiv 1(\bmod 2)$.

Proposition 4. If $B \in \mathcal{S C}^{+}(n)$, then the parabolic closure of W_{B} is $A\left(W_{B}\right)=W_{n}$.
Proof. Since $B \in \mathcal{S C}^{+}(n)$, we have $\mathcal{T}_{n} \leq W_{B}$ and so $w_{n} \in W_{B}$. By considering w_{n} as a linear map $-i d_{\mathbb{R}^{n}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we obtain $\operatorname{Fix}\left(w_{n}\right)=\{\overrightarrow{0}\}$. Thus, the parabolic closure of w_{n} is $A\left(w_{n}\right)=W_{\mathrm{Fix}\left(w_{n}\right)}=W_{n}$. Because of the relation $w_{n} \in$ $W_{B} \subset A\left(\operatorname{cox}_{B}\right)=A\left(W_{B}\right)$, we get $w_{n} \in A\left(\operatorname{cox}_{B}\right)$. By [11], the inclusion $A\left(w_{n}\right) \subset$
$A\left(\operatorname{cox}_{B}\right)=A\left(W_{B}\right)$ holds. If we take into account the fact that $A\left(w_{n}\right)=W_{n}$, then we have $A\left(W_{B}\right)=W_{n}$. This completes the proof.

As a consequence of Proposition 4, if $B \in \mathcal{S C}^{+}(n)$, then the parabolic closure of W_{B} is W_{n} and each element of $\mathcal{K}_{\boldsymbol{\lambda}(B)}$ is of type S_{n}.
Lemma 5. Let A be a signed composition of n. Then w_{n} belongs to W_{A} if and only if $A \in \mathcal{S C}^{+}(n)$.
Proof. When A is a positive signed composition of n, we can easily see from the proof of Proposition 4 that w_{n} is an element of W_{A}. Conversely, let w_{n} be in W_{A}. We suppose that $A=\left(a_{1}, \cdots, a_{i}, \cdots, a_{r}\right)$ is not a positive signed composition of n. Then there exists $a_{i}<0$ for some $i, 1 \leq i \leq r$. Thus from the definition of W_{A}, we obtain $t_{\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|+1}, \cdots, t_{\left|a_{1}\right|+\cdots+\left|a_{i}\right|} \notin S_{A}^{\prime}=W_{A} \cap S_{n}^{\prime}$. Hence for any $x \in W_{A}$ and $e_{\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|+1}+\cdots+e_{\left|a_{1}\right|+\cdots+\left|a_{i}\right|} \in \mathbb{R}^{n}$, we have $x\left(e_{\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|+1}+\cdots+\right.$ $\left.e_{\left|a_{1}\right|+\cdots+\left|a_{i}\right|}\right)=e_{\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|+1}+\cdots+e_{\left|a_{1}\right|+\cdots+\left|a_{i}\right|}$ and so $e_{\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|+1}+\cdots+$ $e_{\left|a_{1}\right|+\cdots+\left|a_{i}\right|} \in \operatorname{Fix}\left(W_{A}\right)$. This is a contradiction, because the subspace $\operatorname{Fix}\left(W_{A}\right)$ consists of only $\overrightarrow{0}$. Therefore, we get $A \in \mathcal{S C}^{+}(n)$.

Theorem 6. If the set $\mathcal{C}\left(S_{n}\right)$ denotes the set of all elements of W_{n} of type S_{n}, then we have

$$
\begin{equation*}
\mathcal{C}\left(S_{n}\right)=\coprod_{\lambda \in \mathcal{D P}^{+}(n)} \mathcal{K}_{\lambda} \tag{1}
\end{equation*}
$$

Proof. For each $\lambda \in \mathcal{D P}^{+}(n)$, we have $\hat{\lambda} \in \mathcal{S C}^{+}(n)$. From Proposition 4, for every element of \mathcal{K}_{λ} is of type S_{n} and so the reverse inclusion holds. Now let $w \in \mathcal{C}\left(S_{n}\right)$. Then w is W_{n}-conjugate to cox_{A} for some $A \in \mathcal{S C}(n)$. Thus we get $A(w)=A\left(\operatorname{cox}_{A}\right)=A\left(W_{A}\right)=W_{n}$. From here, for every $x \in W_{n}$ and every $v \in \operatorname{Fix}\left(W_{A}\right)$ we obtain $x(v)=v$. In particular, if we take $w_{n}=-i d_{\mathcal{R}^{n}} \in W_{n}$, then it is seen that $\operatorname{Fix}\left(W_{A}\right)$ includes just $\{\overrightarrow{0}\}$. Thus w_{n} is an element of W_{A}. Otherwise, if $A \notin \mathcal{S C}^{+}(n)$, then from the proof of Lemma 5 we get $\operatorname{Fix}\left(W_{A}\right) \neq\{\overrightarrow{0}\}$, which is a contradiction. Hence $A \in \mathcal{S C}^{+}(n)$. By taking the definition of $\boldsymbol{\lambda}$ into account, we get a $\lambda \in \mathcal{D P}^{+}(n)$ such that $\boldsymbol{\lambda}(A)=\lambda$. Thus w belongs to \mathcal{K}_{λ} and so it is seen that the inclusion $\mathcal{C}\left(S_{n}\right) \subset \coprod_{\lambda \in \mathcal{D} \mathcal{P}^{+}(n)} \mathcal{K}_{\lambda}$ satisfies. It is required.

Since the exponents of W_{n} are in turn $1,3, \cdots, 2 n-1$, then from [1] the number of elements of type S_{n} is equal to the product of exponents of W_{n} and so $\left|\mathcal{C}\left(S_{n}\right)\right|=$ $1 \cdot 3 \cdots 2 n-1$. By the equation (1), we obtain the formula

$$
\left|\mathcal{C}\left(S_{n}\right)\right|=\sum_{\mu \in \mathcal{D P}^{+}(n)}\left|\mathcal{K}_{\mu}\right|
$$

Thus Theorem 6 gives us an alternative method to compute the number of elements of type S_{n}. We will give a formula in Corollary 19 to find the number of elements of every conjugacy class $\mathcal{K}_{\lambda}, \lambda \in \mathcal{D} \mathcal{P}(n)$ of W_{n}. Moreover, we will give an example for Theorem 6 in Section 5.

A conjugacy class of a finite Coxeter group W which does not contain an element of a proper standard parabolic subgroup of W is called a cuspidal class of W [8].
Corollary 7. Let A be a positive signed composition of n. Then the conjugacy class $\mathcal{K}_{\boldsymbol{\lambda}(A)}$ is a cuspidal class of W_{n}.

If we consider the proof of Proposition 4 and Corollary 7 , then all cuspidal classes of W_{n} are the conjugacy classes $\mathcal{K}_{\boldsymbol{\lambda}(A)}$ for every $A \in \mathcal{S C}^{+}(n)$. From Theorem 6 , the set $\mathcal{C}\left(S_{n}\right)$ is disjoint union of cuspidal classes of W_{n}. Therefore, each element of W_{n} of type S_{n} belongs to a unique cuspidal class of W_{n}.

4. Generalized Burnside Algebra of W_{n}

Let A, B be any two signed compositions of n. Then, we have that

$$
A \equiv_{n} B \Leftrightarrow W_{A} \sim_{W_{n}} W_{B} \Leftrightarrow\left[W / W_{A}\right]=\left[W / W_{B}\right]
$$

where $\left[W / W_{A}\right]$ represents the isomorphism class of W_{n}-set W / W_{A}. The orbits of W_{n} on $W / W_{A} \times W / W_{B}$ are of the form $\left(W_{A} x, W_{B}\right)$ where $x \in D_{A B}$. The stabilizer of $\left(W_{A} x, W_{B}\right)$ in W_{n} is ${ }^{x^{-1}} W_{A} \cap W_{B}=W_{x^{-1} A \cap B}$. Therefore

$$
\left[W / W_{A}\right] \cdot\left[W / W_{B}\right]=\left[W / W_{A} \times W / W_{B}\right]=\sum_{x \in D_{A B}}\left[W / W_{x^{-1} A \cap B}\right]
$$

Thus, we are now in a position to give the following definition.
Definition 8. The generalized Burnside algebra of W_{n} is \mathbb{Q}-spanned by the set $\left\{\left[W / W_{A}\right]: A \in \mathcal{S C}(n)\right\}$ and it is denoted by $\operatorname{HB}\left(W_{n}\right)$.

From part (i) of Proposition 1 and the structure of $\operatorname{Ker}\left(\Phi_{n}\right)$, the ring multiplication rule in $\mathcal{M} \mathcal{R}\left(W_{n}\right)$ may be expressed by

$$
d_{A} d_{B}=\sum_{x \in D_{A B}} d_{f_{A B}(x)}+\sum_{N \equiv_{n} N^{\prime}} a_{N N^{\prime}}\left(d_{N}-d_{N^{\prime}}\right),
$$

where $a_{N N^{\prime}} \in \mathbb{Z} ; N, N^{\prime} \subsetneq_{\boldsymbol{\lambda}} A ; N, N^{\prime} \prec B ; f_{A B}(x) \subset B$ and $f_{A B}(x) \equiv_{B}{ }^{x^{-1}} A \cap B$.
Now we define

$$
\psi: \mathcal{M R}\left(W_{n}\right) \rightarrow H B\left(W_{n}\right), d_{A} \mapsto\left[W / W_{A}\right]
$$

Thus ψ is well-defined and surjective linear map. By considering the structure of $\operatorname{Ker} \Phi_{n}$ and $f_{A B}(x) \equiv_{B}{ }^{x^{-1}} A \cap B \Rightarrow W_{f_{A B}(x)} \sim_{W_{B}} W_{x^{-1} A \cap B}$, we get

$$
\begin{aligned}
\psi\left(d_{A} d_{B}\right) & =\psi\left(\sum_{x \in D_{A B}} d_{f_{A B}(x)}+\sum_{N \equiv_{n} N^{\prime}} a_{N N^{\prime}}\left(d_{N}-d_{N^{\prime}}\right)\right) \\
& =\sum_{x \in D_{A B}}\left[W / W_{f_{A B}(x)}\right] \\
& =\psi\left(d_{A}\right) \psi\left(d_{B}\right)
\end{aligned}
$$

Then the map ψ is an algebra morphism. Since $\operatorname{dim}_{\mathbb{Q}} H B\left(W_{n}\right)=\operatorname{dim}_{\mathbb{Q}} \mathbb{Q} \operatorname{Irr} W_{n}=$ $|\mathcal{D} \mathcal{P}(n)|$, then there is an algebra isomorphism between $\mathrm{HB}\left(W_{n}\right)$ and $\mathbb{Q} \operatorname{Irr} W_{n}$ such that

$$
\operatorname{HB}\left(W_{n}\right) \rightarrow \mathbb{Q} \operatorname{Irr} W_{n}, \quad\left[W / W_{A}\right] \mapsto \operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}
$$

Now let $\lambda, \mu \in \mathcal{D} \mathcal{P}(n)$ and let $\varphi_{\lambda}=\operatorname{Ind}_{W_{\hat{\lambda}}}^{W_{n}} 1_{\hat{\lambda}}$. From part (iii) of Proposition 1. $\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\lambda}}\right)=\tau_{\lambda}\left(d_{\hat{\lambda}}\right)=\left|D_{\hat{\lambda} \hat{\lambda}}^{\subset}\right| \neq 0$ and $\tau_{\lambda}\left(d_{\hat{\mu}}\right)=0$ if $\lambda \nsubseteq \mu$. Thus the matrix $\left(\tau_{\lambda}\left(d_{\hat{\lambda}}\right)\right)_{\lambda, \mu \in \mathcal{D} \mathcal{P}(n)}$ is lower diagonal. Then $\left(\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\mu}}\right)\right)_{\lambda, \mu}$ is upper diagonal and also has positive diagonal entries. Therefore $\left(\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\mu}}\right)\right)_{\lambda, \mu}$ is invertible and we write $\left(u_{\lambda \mu}\right)_{\lambda, \mu \in \mathcal{D P}(n)}$ for the inverse of $\left(\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\mu}}\right)\right)_{\lambda, \mu}$. We define

$$
e_{\lambda}=\sum_{\mu \in \mathcal{D P}(n)} u_{\lambda \mu} \varphi_{\mu}
$$

By definition of e_{λ} and $\left(\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\mu}}\right)\right)^{-1}=\left(u_{\lambda \mu}\right)$, we obtain that

$$
e_{\lambda}\left(\operatorname{cox}_{\hat{\mu}}\right)=\sum_{\gamma \in \mathcal{D P}(n)} u_{\lambda \gamma} \varphi_{\gamma}\left(\operatorname{cox}_{\hat{\mu}}\right)=\delta_{\lambda, \mu}
$$

Hence the set $\left\{e_{\lambda}: \lambda \in \mathcal{D} \mathcal{P}(n)\right\}$ is a collection of orthogonal primitive idempotents of $\operatorname{HB}\left(W_{n}\right)$. Consequently, we have $H B\left(W_{n}\right)=\oplus_{\lambda \in \mathcal{D P}(n)} \mathbb{Q} e_{\lambda}$.

For each $A \in \mathcal{S C}(n)$,

$$
s_{A}: H B\left(W_{n}\right) \rightarrow \mathbb{Q}, s_{A}([X])=\left|{ }^{W_{A}} X\right|
$$

is an algebra map, where ${ }^{W_{A}} X=\left\{x \in X: W_{A} x=x\right\}$. Since $H B\left(W_{n}\right)$ is semisimple and commutative algebra, then all algebra maps $H B\left(W_{n}\right) \rightarrow \mathbb{Q}$ are of the form s_{A} for every $A \in \mathcal{S C}(n)$. The proof of the following lemma is immediately seen from [5].
Lemma 9. For $A, B \in \mathcal{S C}(n)$, we have that

$$
s_{A}=s_{B} \Leftrightarrow \boldsymbol{\lambda}(A)=\boldsymbol{\lambda}(B)
$$

Thus the dual basis of $H B\left(W_{n}\right)$ is $\left\{s_{\hat{\lambda}}: \lambda \in \mathcal{D} \mathcal{P}(n)\right\}$. For any $\lambda, \mu \in \mathcal{D} \mathcal{P}(n)$, we have the following equality

$$
\begin{equation*}
s_{\hat{\lambda}}\left(e_{\mu}\right)=\delta_{\lambda, \mu} \tag{2}
\end{equation*}
$$

and so any element x in $H B\left(W_{n}\right)$ can be expressed as $x=\sum_{\lambda \in \mathcal{D P}(n)} s_{\hat{\lambda}}(x) e_{\lambda}$.
Let A be a signed composition of n. Induction and restriction of characters give rise to two maps between $H B\left(W_{A}\right)$ and $H B\left(W_{n}\right)$. For any $A, B \in \mathcal{S C}(n)$ such that $B \subset A$, we have $\operatorname{Ind}_{W_{A}}^{W_{n}}\left(\left[W_{A} / W_{B}\right]\right)=\left[W_{n} / W_{B}\right]$.
Definition 10. Let $A, B \in \mathcal{S C}(n)$ be such that $B \subset A$. The restriction is a linear map

$$
\operatorname{res}_{W_{B}}^{W_{A}}: H B\left(W_{A}\right) \rightarrow H B\left(W_{B}\right), \operatorname{res}_{W_{B}}^{W_{A}}\left(\left[W_{A} / W_{C}\right]\right)=\sum_{d \in W_{A} \cap D_{C B}}\left[W_{B} / W_{B \cap^{d^{-1} C} C}\right]
$$

Before going into a further discussion of the restriction and induced character theories of generalized Burnside algebra, we shall first mention the number of elements of the conjugacy class of W_{A} in W_{n}.
Proposition 11. Let $A \in \mathcal{S C}(n)$ and $\boldsymbol{\lambda}(A)=\lambda$. The number of all reflection subgroups of W_{n} which are conjugate to W_{A} is

$$
\left|\left[W_{A}\right]\right|=\left|D_{A}\right| \cdot u_{\lambda, \lambda}
$$

Proof. Put $\left[W_{A}\right]=\left\{{ }^{x} W_{A}: x \in W_{n}\right\}$. Now we note that $x W_{A} x^{-1}=y W_{A} y^{-1}$ if and only if $x \in y N_{W_{n}}\left(W_{A}\right)$. Thus, the number of distinct conjugates of W_{A} in W_{n} is $\left[W_{n}: N_{W_{n}}\left(W_{A}\right)\right]$. Since also $N_{W_{n}}\left(W_{A}\right)=\mathcal{W}(A) \ltimes W_{A}$, we have

$$
\left|\left[W_{A}\right]\right|=\frac{\left|W_{n}\right|}{|\mathcal{W}(A)| \cdot\left|W_{A}\right|}=\frac{\left|D_{A}\right|}{|\mathcal{W}(A)|}
$$

Furthermore, from the fact that $\tau_{\boldsymbol{\lambda}(A)}\left(d_{A}\right)=\left|D_{A A}^{\subset}\right|=|\mathcal{W}(A)|$ and $\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\lambda}}\right)=$ $\tau_{\boldsymbol{\lambda}(A)}\left(d_{A}\right)=\frac{1}{u_{\lambda, \lambda}}$, as desired.

Example 12. We consider the set $D_{(2,1)}=\left\{1, s_{2}, s_{1} s_{2}\right\}$ consisting of the distinguished coset representatives of reflection subgroup $W_{(2,1)}$ in W_{3}. The number of all reflection subgroups conjugate to $W_{(2,1)}$ in W_{3} is

$$
\left|\left[W_{(2,1)}\right]\right|=\left|D_{(2,1)}\right| \cdot u_{(2,1 ; \emptyset),(2,1 ; \emptyset)}=3 \cdot 1=3
$$

These are explicitly $W_{(2,1)}, W_{(1,2)}$ and ${ }^{s_{2}} W_{(2,1)}=\left\langle s_{2} s_{1} s_{2}, t_{1}, t_{2}\right\rangle$. We note that the reflection subgroup ${ }^{s_{2}} W_{(2,1)}$ does not coincide with any subgroup of W_{3} corresponding to any signed composition of 3 .
Remark 13. For $A, B \in \mathcal{S C}(n)$ such that $B \subset A$ and for any $x \in H B\left(W_{n}\right)$, by using the definition of s_{A} one can see that there exists the relation $s_{B}^{A}\left(\operatorname{res}_{W_{A}}^{W_{n}}(x)\right)=$ $s_{B}(x)$.

We can now give the following proposition.
Proposition 14. Let be $A, B \in \mathcal{S C}(n)$ and let $A_{1}, A_{2}, \cdots, A_{r}$ be representatives of the W_{A}-equivalent classes of subsets of A, which are W_{n}-equivalent to B. Then,

$$
r e s_{W_{A}}^{W_{n}} e_{B}=\sum_{i=1}^{r} e_{A_{i}}^{A}
$$

If B is not W_{n}-equivalent to any subset of A then $r e s_{W_{A}}^{W_{n}} e_{B}=0$.
Proof. Since $\operatorname{res}_{W_{A}}^{W_{n}} e_{B}$ is an element of $H B\left(W_{A}\right)$, then we have

$$
\operatorname{res}_{W_{A}}^{W_{n}} e_{B}=\sum_{A_{i} \subset A} s_{A_{i}}^{A}\left(\operatorname{res}_{W_{A}}^{W_{n}}\left(e_{B}\right)\right) e_{A_{i}}^{A}
$$

Then by using Remark 13 and the relation (2), we get

$$
\operatorname{res}_{W_{A}}^{W_{n}} e_{B}=\sum_{A_{i} \subset A} s_{A_{i}}\left(e_{B}\right) e_{A_{i}}^{A}
$$

$$
\begin{aligned}
& =\sum_{\substack{A_{i} \subset A \\
A_{i} \equiv A B}} e_{A_{i}}^{A} \\
& =\sum_{i=1}^{r} e_{A_{i}}^{A} .
\end{aligned}
$$

Proposition 15. Let $A, B \in \mathcal{S C}(n)$ and let $B \subset A$. Then we have

$$
\operatorname{Ind} W_{W_{A}}^{W_{n}} e_{B}^{A}=\frac{|\mathcal{W}(B)|}{\left|W_{A} \cap \mathcal{W}(B)\right|} \cdot e_{B}
$$

Proof. Firstly, we assume that $A=B$ and cox_{A} is a Coxeter element of W_{A}. Since the image of cox_{A} under permutation character of W_{n} on the cosets of W_{A} is $|\mathcal{W}(A)|$ then it follows from the fact that

$$
x^{-1} \operatorname{cox}_{A} x \in W_{A} \Leftrightarrow x \in N_{W_{n}}\left(W_{A}\right) .
$$

Thus we obtain

$$
\begin{aligned}
\operatorname{Ind}_{W_{A}}^{W_{n}} e_{A}^{A}\left(\operatorname{cox}_{A}\right) & =\left|D_{A} \cap N_{W_{n}}\left(W_{A}\right)\right| \\
& =|\mathcal{W}(A)|
\end{aligned}
$$

As $\operatorname{Ind}_{W_{A}}^{W_{n}} e_{A}^{A}$ takes value zero except for the elements conjugate to cox_{A} and so we get

$$
\operatorname{Ind}_{W_{A}}^{W_{n}} e_{A}^{A}=|\mathcal{W}(A)| e_{A}
$$

By transitivity of induced characters, we generally get

$$
\begin{aligned}
\operatorname{Ind}_{W_{A}}^{W_{n}} e_{B}^{A} & =\operatorname{Ind}_{W_{A}}^{W_{n}}\left(\frac{1}{\left|W_{A} \cap \mathcal{W}(B)\right|}\left|W_{A} \cap \mathcal{W}(B)\right| e_{B}^{A}\right) \\
& =\operatorname{Ind}_{W_{A}}^{W_{n}}\left(\frac{1}{\left|W_{A} \cap \mathcal{W}(B)\right|} \operatorname{ind}_{W_{B}}^{W_{A}} e_{B}^{B}\right) \\
& =\frac{|\mathcal{W}(B)|}{\left|W_{A} \cap \mathcal{W}(B)\right|} e_{B}
\end{aligned}
$$

Furthermore, there is also the equality $\operatorname{Ind}_{W_{A}}^{W_{n}} e_{B}^{A}=\left|N_{W_{n}}\left(W_{B}\right): N_{W_{A}}\left(W_{B}\right)\right| e_{B}$.
Theorem 16. Let $A, B \in \mathcal{S C}(n)$ be such that $\boldsymbol{\lambda}(B) \subset \boldsymbol{\lambda}(A)$. If $B_{1}, B_{2}, \cdots, B_{r}$ are the representatives of the W_{A}-equivalence classes of subsets of A which are W_{n}-equivalent to B, then for $\operatorname{cox}_{B} \in W_{n}$,

$$
\operatorname{In} d_{W_{A}}^{W_{n}} 1_{A}\left(\operatorname{cox}_{B}\right)=\sum_{i=1}^{r} \frac{|\mathcal{W}(B)|}{\left|W_{A} \cap \mathcal{W}\left(B_{i}\right)\right|}
$$

Proof. Let $A, B \in \mathcal{S C}(n)$. If $A \equiv_{n} B$ then it is easy to prove that $|\mathcal{W}(A)|=|\mathcal{W}(B)|$. We write $1_{A}=\sum_{E} e_{E}^{A}$, where $E \in \mathcal{S C}(n)$ runs over W_{A}-conjugacy classes of subsets of A. From Proposition 15, we have

$$
\operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}=\sum_{E} \operatorname{Ind}_{W_{A}}^{W_{n}} e_{E}^{A} \Rightarrow \operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}=\sum_{E} \frac{|\mathcal{W}(E)|}{\left|W_{A} \cap \mathcal{W}(E)\right|} \cdot e_{E}
$$

Since each B_{i} is W_{n}-equivalent to B, then $e_{E}\left(\operatorname{cox}_{B}\right)=1$ if and only if $E \equiv_{W_{A}} B_{i}$. Thus we obtain that

$$
\operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}\left(\operatorname{cox}_{B}\right)=\sum_{i=1}^{r} \frac{|\mathcal{W}(B)|}{\left|W_{A} \cap \mathcal{W}\left(B_{i}\right)\right|}
$$

Hence the theorem is proved.
Theorem 17 and Proposition 18 give us a useful computation to determine the coefficient of the sign character ε_{n} in the expression of the orthogonal primitive idempotent $e_{\lambda}, \lambda \in \mathcal{D} \mathcal{P}(n)$ in terms of irreducible characters of W_{n}.

Theorem 17. $u_{(n ; \emptyset),(\emptyset ; 1, \cdots, 1)}=\frac{(-1)^{n}}{2 n}$.
Proof. Let $\chi_{\text {reg }}: W_{n} \rightarrow \mathbb{Z}$ be the regular character of W_{n}. For $A=(-1, \cdots,-1)$ it is satisfied $\operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}=\chi_{\text {reg }}$. The character ε_{n} is contained in $\chi_{\text {reg }}$ with the property that its coefficient is just 1 , thus we have

$$
\left\langle\operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}, \varepsilon_{n}\right\rangle=1
$$

Now let $A \neq(-1, \cdots,-1)$. By using Frobenius Reciprocity and the formula $\operatorname{res}_{W_{A}}^{W_{n}} \varepsilon_{n}=\varepsilon_{A}$, it is obtained that $\left\langle\operatorname{Ind}_{W_{A}}^{W_{n}} 1_{A}, \varepsilon_{n}\right\rangle=0$. If w is conjugate to $\operatorname{cox}_{W_{n}}$ under W_{n}, then we have $e_{(n ; \emptyset)}(w)=1$ and $\varepsilon_{n}(w)=\varepsilon_{n}\left(\operatorname{cox}_{W_{n}}\right)=(-1)^{l(w)}=(-1)^{n}$. Let $\operatorname{ccl}_{W_{n}}\left(\operatorname{cox}_{W_{n}}\right)$ denote the conjugacy class of $\operatorname{cox}_{W_{n}}$ in W_{n}. By considering the formula $\left|\operatorname{ccl}_{W_{n}}\left(\operatorname{cox}_{W_{n}}\right)\right|=\frac{\left|W_{n}\right| \cdot n}{2 N}$ in [4], we obtain

$$
\left\langle e_{(n ; \emptyset)}, \varepsilon_{n}\right\rangle=\frac{(-1)^{n}}{2 n}
$$

On the other hand, $\left\langle e_{(n ; \emptyset)}, \varepsilon_{n}\right\rangle=\sum_{\mu \in \mathcal{D P}(n)} u_{(n ; \emptyset) \mu}\left\langle\varphi_{\mu}, \varepsilon_{n}\right\rangle=u_{(n ; \emptyset),(\emptyset ; 1, \cdots, 1)}$ and so the proof is completed.
Proposition 18. For $\lambda \in \mathcal{D} \mathcal{P}(n)$ and $\lambda \neq(n ; \emptyset)$, then we have

$$
u_{\lambda,(\emptyset ; 1, \cdots, 1)}=(-1)^{\left|S_{\hat{\lambda}}\right|} \cdot \frac{\left|\mathcal{K}_{\lambda}\right|}{\left|W_{n}\right|}
$$

Proof. Since the sign character is constant on the conjugacy classes, then we have

$$
\begin{aligned}
\left\langle e_{\lambda}, \varepsilon_{n}\right\rangle & =\frac{1}{\left|W_{n}\right|} \sum_{w \in \mathcal{K}_{\lambda}}(-1)^{l(w)}\left(\operatorname{rank} W_{\hat{\lambda}}=\left|S_{\hat{\lambda}}\right|\right) \\
& =(-1)^{\left|S_{\hat{\lambda}}\right|} \cdot \frac{\left|\mathcal{K}_{\lambda}\right|}{\left|W_{n}\right|}
\end{aligned}
$$

Note that $\left\langle\varphi_{\mu}, \varepsilon_{n}\right\rangle$ has value 1 for $\mu=(\emptyset ; 1, \cdots, 1)$ and zero for the others. Henceforth, we obtain $\left\langle e_{\lambda}, \varepsilon_{n}\right\rangle=\sum_{\mu \in \mathcal{D P}(n)} u_{\lambda \mu}\left\langle\varphi_{\mu}, \varepsilon_{n}\right\rangle=u_{\lambda,(\emptyset ; 1, \cdots, 1)}$. Eventually, we have $u_{\lambda,(\emptyset ; 1, \cdots, 1)}=(-1)^{\left|S_{\hat{\lambda}}\right|} \cdot \frac{\left|\mathcal{K}_{\lambda}\right|}{\left|W_{n}\right|}$.

Notice that calculation of the inner product $\left\langle e_{\lambda}, 1_{W_{n}}\right\rangle$ leads to the following corollary.
Corollary 19. Let $\lambda \in \mathcal{D} \mathcal{P}(n)$. Then

$$
\left|W_{n}\right| \sum_{\mu \in \mathcal{D P}(n)} u_{\lambda, \mu}=\left|\mathcal{K}_{\lambda}\right|
$$

By means of Corollary 19 and the matrix $\left(u_{\lambda \mu}\right)_{\lambda, \mu \in \mathcal{D P}(n)}$, one can readily determine the sizes of all the conjugacy classes of W_{n}.
Theorem 20. Let $A \in \mathcal{S C}(n)$ and $\lambda \in \mathcal{D P}(n)$. Then

$$
\sum_{\mu \in \mathcal{D P}(n)} u_{\lambda \mu} a_{\hat{\mu} A(-1, \cdots,-1)}=(-1)^{\left|S_{\hat{\lambda}}\right|} \frac{\left|\mathcal{K}_{\lambda} \cap W_{A}\right|}{\left|W_{A}\right|}
$$

where $a_{\hat{\mu} A(-1, \cdots,-1)}=\left|\left\{x \in D_{\hat{\mu} A}: x^{-1} \hat{\mu} \cap A=(-1, \cdots,-1)\right\}\right|$.
Proof. The term $d_{(-1, \cdots,-1)}$ in the multiplication $d_{\hat{\mu}} d_{A}$ lies in the summand
$\sum_{x \in D_{\hat{\mu} A}} d_{f_{\hat{\mu} A}(x)}$ from the structure of $\operatorname{Ker} \Phi_{n}$ and part (i) of Proposition 1 . If we write the coefficient of $d_{(-1, \cdots,-1)}$ in this summand as $a_{\hat{\mu} A(-1, \cdots,-1)}$, and so we get

$$
a_{\hat{\mu} A(-1, \cdots,-1)}=\left|\left\{x \in D_{\hat{\mu} A}: f_{\hat{\mu} A}(x)=(-1, \cdots,-1)\right\}\right|
$$

By using part (i) of Proposition 1 along with the fact $f_{\hat{\mu} A}(x) \equiv{ }_{A}{ }^{x^{-1}} \hat{\mu} \cap A$, it is seen that there is the equivalence ${ }^{x^{-1}} \hat{\mu} \cap A \equiv_{A}(-1, \cdots,-1)$. Since no element in $\mathcal{S C}(n)$ is congruent to $(-1, \cdots,-1)$ except for $(-1, \cdots,-1)$, it then follows that $x^{-1} \hat{\mu} \cap A=(-1, \cdots,-1)$. Hence we have deduced the equality $a_{\hat{\mu} A(-1, \cdots,-1)}=\mid\{x \in$ $\left.D_{\hat{\mu} A}:{ }^{x^{-1}} \hat{\mu} \cap A=(-1, \cdots,-1)\right\} \mid$ holds. Therefore, by Frobenius Reciprocity and Mackey Theorem, we have

$$
\begin{aligned}
\left\langle e_{\lambda}, \operatorname{ind}_{W_{A}}^{W_{n}} \varepsilon_{A}\right\rangle & =\sum_{\mu \in \mathcal{D P}(n)} u_{\lambda \mu} \sum_{x \in D_{\hat{\mu} A}}\left\langle\operatorname{ind}_{W_{x-1}{ }_{\hat{\mu} \cap A}}^{W_{A}} 1_{x^{-1} \hat{\mu} \cap A}, \varepsilon_{A}\right\rangle \\
& =\sum_{\mu \in \mathcal{D \mathcal { P } (n)}} u_{\lambda \mu} \sum_{x \in D_{\hat{\mu} A}} 1_{x^{-1} \hat{\mu} \cap A} \\
& =\sum_{\mu \in \mathcal{D P}(n)} u_{\lambda \mu} a_{\hat{\mu} A(-1, \cdots,-1)} .
\end{aligned}
$$

Also, $\varepsilon_{n}(w)$ is the same value for every $w \in \mathcal{K}_{\lambda}$ and so $\varepsilon_{n}(w)=\varepsilon_{n}\left(\operatorname{cox}_{\hat{\lambda}}\right)=(-1)^{\left|S_{\hat{\lambda}}\right|}$. Therefore, by Lemma 2, we have

$$
\left\langle e_{\lambda}, \operatorname{ind}_{W_{A}}^{W_{n}} \varepsilon_{A}\right\rangle=\frac{1}{\left|W_{A}\right|} \sum_{w \in \mathcal{K}_{\lambda} \cap W_{A}}(-1)^{l_{A}\left(w^{-1}\right)}
$$

$$
=\frac{1}{\left|W_{A}\right|} \sum_{w \in \mathcal{K}_{\lambda} \cap W_{A}}(-1)^{l(w)}=\frac{1}{\left|W_{A}\right|}(-1)^{\left|S_{\lambda}\right|}\left|\mathcal{K}_{\lambda} \cap W_{A}\right|
$$

Putting these two results together, we see that theorem is proved.

5. Example

We consider the Coxeter group W_{3}. For all $\lambda, \mu \in \mathcal{D} \mathcal{P}(3)$, by means of the character table of $\mathcal{M R}\left(W_{3}\right)$ in [3], we can write the values $\varphi_{\lambda}\left(\operatorname{cox}_{\hat{\mu}}\right)$ as in the following table:

	${ }^{c}(3 ; \emptyset)$	${ }^{c}(\emptyset ; 3)$	${ }^{c}(2,1 ; \emptyset)$	${ }^{c}(2 ; 1)$	${ }^{c}(1 ; 2)$	${ }^{c}(\emptyset ; 2,1)$	${ }^{c}(1,1,1 ; \emptyset)$	${ }^{c}(1,1 ; 1)$	${ }^{c}(1 ; 1,1)$	${ }^{c}(\emptyset ; 1,1,1)$
$\varphi(3 ; \emptyset)$	1	1	1	1	1	1	1	1	1	0
$\varphi(\emptyset ; 3)$	0	2	0	0	0	4	0	0	8	
$\varphi(2,1 ; \emptyset)$	0	0	1	1	1	1	3	3	3	3
$\varphi(2 ; 1)$	0	0	0	2	0	2	0	2	4	6
$\varphi(1 ; 2)$	0	0	0	0	2	2	0	0	4	12
$\varphi(\emptyset ; 2,1)$	0	0	0	0	0	4	0	0	0	24
$\varphi(1,1,1 ; \emptyset)$	0	0	0	0	0	0	6	6	6	6
$\varphi(1,1 ; 1)$	0	0	0	0	0	0	0	4	8	12
$\varphi(1 ; 1,1)$	0	0	0	0	0	0	0	0	8	24
$\varphi(\emptyset ; 1,1,1)$	0	0	0	0	0	0	0	0	0	0

The matrices $\left(u_{\lambda, \mu}\right)_{\lambda, \mu \in \mathcal{D P}(n)}$ is

$$
\left(\begin{array}{cccccccccc}
1 & -1 / 2 & -1 & 0 & 0 & 1 / 2 & 1 / 3 & 0 & 0 & -1 / 6 \\
0 & 1 / 2 & 0 & 0 & 0 & -1 / 2 & 0 & 0 & 0 & 1 / 6 \\
0 & 0 & 1 & -1 / 2 & -1 / 2 & 1 / 4 & -1 / 2 & 1 / 4 & 1 / 4 & -1 / 8 \\
0 & 0 & 0 & 1 / 2 & 0 & -1 / 4 & 0 & -1 / 4 & 0 & 1 / 8 \\
0 & 0 & 0 & 0 & 1 / 2 & -1 / 4 & 0 & 0 & -1 / 4 & 1 / 8 \\
0 & 0 & 0 & 0 & 0 & 1 / 4 & 0 & 0 & 0 & -1 / 8 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & -1 / 4 & 1 / 8 & -1 / 48 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 4 & -1 / 4 & 1 / 16 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 8 & -1 / 16 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 48
\end{array}\right) .
$$

For $\lambda=(3 ; \emptyset),(2,1 ; \emptyset),(1,1,1 ; \emptyset) \in \mathcal{D} \mathcal{P}(3)$, the size of \mathcal{K}_{λ} is calculated by means of Corollary 19 and matrix $\left(u_{\lambda, \mu}\right)_{\lambda, \mu \in \mathcal{D P}(n)}$ the above. Since $\left|\mathcal{K}_{(3 ; \varnothing)}\right|=8$, $\left|\mathcal{K}_{(2,1 ; \emptyset)}\right|=6$ and $\left|\mathcal{K}_{(1,1,1 ; \emptyset)}\right|=1$, then we have found that the number of elements of type S_{3} is $\left|\mathcal{C}\left(S_{3}\right)\right|=15$.

Acknowledgment. We would like to thank the referee for useful comments and corrections.

References

[1] Bergeron, F., Bergeron, N., Howlett, R.B., Taylor, D.E., A Decomposition of the Descent Algebra of a Finite Coxeter Group, Journal of Algebraic Combinatorics, 1(1) 1992, 23-44.
[2] Bonnafé, C., Hohlweg, C., Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups, Ann. Inst. Fourier (Grenoble) 56(1) 2006, 131-181.
[3] Bonnafé, C., Representation theory of Mantaci-Reutenauer algebras, Algebras and Representation Theory 11(4) (2008), 307-346.
[4] Carter, R.W., Conjugacy Classes in the Weyl Groups, Compositio Math., 25 1972, 1-59.
[5] Curtis, C.W., Reiner, I., Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. II, John Wiley and Sons, 1987.
[6] Douglass, J.M., Pfeiffer, G., Rohrle, G., On reflection subgroups of finite Coxeter groups, Comm. Algebra 41(7) 2013, 2574-2592.
[7] Fleischmann, P., On pointwise conjugacy of distinguished coset representatives in Coxeter groups, J. Group Theory, 5 (2002), 269-283.
[8] Geck, M., Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs, New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000.
[9] Humphreys, J.E., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math., vol. 29, Cambridge University Press, 1990.
[10] Mantaci, R., Reutenauer, C., A generalization of Solomon's algebra for hyperoctahedral groups and other wreath products, Comm. Algebra, 23(1) (1995), 27-56.
[11] Solomon, L., A Mackey formula in the group ring of a Coxeter group, J. Algebra, 41(2) (1976), 255-264.
Current address: Department of Mathematics, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey.

E-mail address: hasanarslan@erciyes.edu.tr
ORCID Address: http://orcid.org/0000-0002-0430-8737
Current address: Department of Mathematics, Faculty of Science, Erciyes University, 38039,
Kayseri, Turkey.
E-mail address: can@erciyes.edu.tr
ORCID Address: http://orcid.org/0000-0001-8485-6815

