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ABSTRACT 

 

The goal of credibility theory is to estimate the future claim of a given risk. The most accurate estimator is 
predictive mean. If the conditional mean of losses given the risk parameter and the prior distribution of the risk 
parameter are known, true predictive mean can be easily obtained. However, risk parameter cannot be observed 
practically and it can be difficult to estimate its distribution. In this study, the structure function is estimated by 
using kernel density estimation with several bandwidth selection methods. For comparing the efficiences of 
these methods, a simulation study performed by using the data from a mixture of a lognormal conditional over a 
lognormal prior. The results shows that the adaptive bandwidth selection method performs better evidently for 
low claim severities. 
 
Keywords: Kernel density, Adaptive bandwidth, Loss distribution, Bayesian estimation. 

1. INTRODUCTION 

 

In an insurance system, risks have different 
distributions, that is, the losses of  each risks have 
different loss distributions. If the exact loss distribution 
of a risk is known, the appropriate net premium is 
determined as the expectation of that loss distribution. 
On the other hand, if there is no information about a 
specific policyholder, the net premium is the 
expectation over the all risks. In  order to use Bayesian 
analysis in insurance system, suppose the insurer has 
prior claim data for the risk, then the conditional 
expectation of future claims given the prior claims will 
be net premium. The insurer usually chooses a 
parametric conditional loss distribution for each risk 
and a parametric prior distribution to describe how the 
conditional distributions vary across the risks. A 
drawback of this method is that the prior distribution 
can be difficult to choose and the prior data cannot be 
observed practically, so the resulting model may not 

represent the loss data very well. In Bayesian approach 
in insurance, the prior distribution means the 
distribution of the parameters for each risk. For 
example, if a risk is a group policyholder, then xij (i: 
risk and j: policy period) may be the average of wij 
claims. So Xij have probability distributions with 

parameters . As a result of this, we get risk 

parameter  which has a probability distribution and 
its density is called structure function, density of risk 

parameter. So we cannot observe the values of  
easily in real life to determine the distribution of risk 
parameter. 
 
Young [1] used a semiparametric mixture model to 
represent the insurance losses of a portfolio of risks. 
She chose a flexible parametric conditional loss 
distribution for each risk with unknown conditional 
mean that varies across the risks. She also applied 
techniques from nonparametric density estimation, 
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Epanechnikov kernel with fixed bandwidth, to estimate 
the distribution of conditional means. Young simulated 
from a mixture of a lognormal conditional over a 
lognormal prior. Young’s simulation study showed that 
this procedure could lead to good credibility formulas 
even when she used a gamma conditional instead of a 
lognormal conditional. Later, Young [2] suggested a 
penalized square-error loss function to smooth the 
estimated predictive mean from a semiparametric 
model. Finally, Huang et al. [3] used a piecewise linear 
prior and showed their credibility estimator performed 
better than the estimator of Young [2].  
 
In this study, the focus point is to use nonparametric 
kernel density estimation with  adaptive bandwidths 
against using fixed bandwidth as in Young [1]. 
Therefore, it is proposed to use kernel estimations with 
different bandwidths in credibility formula.   
 
2. SEMIPARAMETRIC MIXTURE MODEL 

 

It is assumed that underlying claim of risk i per unit of 
exposure is a conditional random variable Y |θ i , 
i=1,2,...,r, with probability density function f (y |θ i) . For 
each of the r risks, one observes the average claims per 
unit of exposure xi=(xi1, xi2,...,xini) with an associated 
exposure vector wi=(wi1, wi2,..., wini), i=1,2,...,r. Thus, 
the observed average claim xij is the arithmetic average 
of wij claims, each of which is an independent 
realization of the conditional random variable Y |θ i . 

Assume that the parameter θ  is the conditional mean, 
E[Y |θ ]=θ. Assume that parameters, other than 
conditional mean, are fixed across the risks. The loss 
distribution of a given risk is, therefore, characterized 
by its conditional mean, although that mean is generally 

unknown. Denote the probability density function of θ  

by )(θπ , also called the structure function (Young 

[1], Young [2]). The structure function characterizes 
how the conditional mean θ  varies from risk to risk. 
 
The goal of credibility theory is to estimate the 
conditional mean E[Y |θ ] of a risk, given that risk’s 
claim experience is x and exposure is w. As in Young 
[1], set the credibility formula equal to the predictive 

mean E[ xY ] given the weighted sample average x  

weighted by the exposure w. Also restrict attention to 

parametric conditional distributions for which E[ θY

]=θ  (Thus, the predictive means equals the posterior 

mean; that is, E[ xY ]=E[ xθ ]), the sample mean is a 

sufficient statistic for θ , and the functional form of 

)( θyf  is closed under averaging. That is, if X  is 

an average of w claims that follow the distribution 

given by )( θyf , then the density of X  has the 

same functional forms as )( θyf . Many of families 

of densities satisfy these properties (Young, [1]). 
 
In the Bayesian spirit, for a given loss function L=L(y, 

d( x )) of the future claim y and the claim predictor d, it 
is proposed that the credibility estimator d is the 

function that minimizes the expected loss E[L(y, d( x
))]. This expectation is with respect to the joint density 
of the sample mean and future claim. In the mixture 

model, joint density is ∫ θθπθθ dxfyf )()()( . 

 
3. ADAPTIVE KERNEL DENSITY 

ESTIMATION 

 

Kernel density estimation is a nonparametric method for 
estimating densities. Young [1] proposed kernel 
estimation method for π(θ). Kernel estimation of  
structure function π(θ) was proposed by: 
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density estimation is based on kernel function K(u) and 
bandwidth hi. Kernel functions are symmetric around 0 
and to integrate 1. Gaussian and Epanechnikov are the 
popular kernel functions. Young [1] used Epanechnikov 
kernel function because its domain is bounded. The 
Epanechnikov kernel function can be given as follows: 
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Epanechnikov kernel function is also used in this study. 
The bandwidth selection is crucial importance in kernel 
estimation. There are various methods for selecting the 
bandwidth; see for example, Hardle [4] and Silverman 
[5]. Young [1] used a fixed bandwidth selected by 
reference to a standard distribution by modifying it. 

Young set the bandwidth hi equal to 5ix  to 

guarantee that the support of estimated density of be 
contained in the nonnegative real numbers. 
 
The “adaptive kernel density estimation” is used for 
π(θ). Adaptive kernel estimation for π(θ) can be written 
by 
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The adaptive kernel estimation uses varying bandwidths 

)( ixh . It was first considered by Breiman et al. [6] 

and Abramson [7]. Usefullness of varying (or local) 
bandwidths is widely acknowledged to estimate long-
tailed or multi-modal density functions with kernel 
methods. The basic idea of the adaptive kernel 
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estimation is to use a broader bandwidth in the regions 
of low density to smooth the tail part of the function 
(Silverman [5]). For details, see Terrell and Scott [8] 
and Sain [9].  
 
Silverman [5] used a general strategy to obtain the 
adaptive estimation in (3). The varying bandwidth for 

each ix  is defined as ii hxh λ=)( . And then the 

local bandwidth factors λi is defined as 
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where g is the geometric mean of  the pilot estimation  

)(~
ixπ  over all ix  and ψ  is the sensitivity 

parameter, a number satisfying 0 ≤ ψ  ≤ 1. Abramson 

[7] states that ψ =0.5 gives good results. The pilot 

estimation )(~
ixπ  can be obtain by using any density  

estimation method with initial fixed bandwidth h. After 
obtaining each λi, varying bandwidths are computed as 

ii hxh λ=)( . Then the adaptive kernel estimation is 

obtained by replacing )( ixh  in (3).  

 
The kernel density estimation method is used for 

estimating the pilot estimation )(~
ixπ  in (4). For 

selecting the initial fixed bandwidth h, the “reference to 
a standard distribution” is used as bandwidth selection 
method as in Young [1]. Alternatively, “the least square 
cross-validation (LSCV)” bandwidth selection method 
is also used. The LSCV method is an automatic method 
based on data. In LSCV method, the optimal bandwidth 
is  the bandwidth which minimizes the following cross-
validation function CV(h) 
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where )(ˆ ii xπ  is a leave-one-out kernel estimation. 

The leave-one-out kernel estimation )(ˆ ii xπ  is 

constructed from all the data points except ix  (Hardle 

[4], Silverman [5]).  
 
4. CREDIBILITY USING SQUARED-ERROR 

LOSS 

The squared-error loss function is used to determine a 
credibility estimator as given in Young [1]. The 

squared-error loss function has the form L(y, d( x ))2. It 
is straightforward to show that the minimizer of the 
expected loss is the predictive mean, which in this case 

is the posterior mean of θ  given the sample mean x  
which is estimates by 

( ) ( ) ( )∫ == xEdxYEx θθθπθµ ˆˆ)(ˆ . 

 

In this study, the fixed bandwidth reference to a 

standard distribution is defined as h1
 and the fixed 

bandwidth using LSCV bandwidth selection method is 

defined as h2
. The adaptive bandwidth obtained using 

h2
as the initial fixed bandwidth is called as h3

 and 

the adaptive bandwidth obtained using h1
as the initial 

fixed bandwidth is also called as h4
. As a result, four 

different estimations of posterior mean of  θ  are 

obtained for a general kernel K and bandwidths i
k h  

(k=1, 2, 3, 4). The posterior mean can be written as 
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Recall that x  is an average of w iid claims, each of 

which follows the density ( )θyf . If the estimator d is 

linear, it is well known that the least-squares linear 

estimator of ( ) ( )xExYE θ=  is d( x )=(1-Z)E(Y)+Z

x , in which Z=w/(w+v) with v=

( )( ) )(râV/YVarÊ θθ  and E(Y)= x  average of 

sample means ix , i=1, 2, ...,r (Bühlmann [10]). 

 

It is shown that as w approaches infinity, )(ˆ xµ  

approaches the true expected value 0θ , for the given 

risk. Thus, if an actuary gets more claim information for 
a given policyholder (that’s w becomes large), the 
estimated expected claim approaches the true expected 
claim with probability 1 (Young [1]). 
 
5. SIMULATION 

 

In this section, it is assumed that having individual 
claim data, that is, wij=1, for all risks i and policy 
periods j. Therefore, X=Y. The lognormal-lognormal 
mixture is modelled as follows: 
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in which 0>σ  is known parameter, and 
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in which 0>µ  and 0>τ  are known parameters. 

That is, ( )θXln ~N(ln
2,σθ ), and θln ~N(lnµ , 
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2τ ). The marginal distribution of X is lognormal; 

lnX~N(
22,ln τσµ + ). 

 
Given claim data for a specific policyholder, X=x=<x1, 

x2, . . . , xn> [ ]n,0 ∞∈ , the posterior distribution of 

xθ  is lognormal; ( ) xθln ~N ( )2** ,ln τµ  in which 
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Thus, the predictive distribution of xX n 1+  is 

lognormal; ( )xX n 1ln + ~N ( )2*2* ,ln τσµ + . It 

follows that the true predictive mean is a function of the 
statistic υ  
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Two hundred simulations of a lognormal-lognormal 
mixture of claims are performed. For the simulations, it 

is assumed that 25.02 =σ , 50.02 =τ  and 
25.0e2000 −=µ . For each simulation run, claim 

data from this lognormal-lognormal mixture are 

simulated for r=100 risks (values of θ ). For each of the 
100 risks, ni=wi=5 claims are simulated. To estimate the 
distribution of the conditional means, the kernel density 
estimation with Epanechnikov kernel is used as given 
by (2).  The fixed bandwidths which are the bandwidth 
reference to a standart normal distribution and LSCV 
bandwidth are also used. Then the adaptive bandwidths 
by using these fixed bandwidths are obtained as 

described in Section 2. The bandwidths hk
 (k=1,2,3,4) 

are modified, for a given risk if, by otherwise using it, 
the prior density would have a negative support. 

Specifically, if 5/i
k xh>  then the bandwidths 

i
k h  are taken as being equal to 5/ix  to guarantee 

that the support of the estimated density of θ  be 
contained in the nonnegative real numbers. 
 
As Young (1997), instead of assuming that the 
conditional is lognormal, it is assumed that the 
coefficient of variation is constant from risk to risk and, 
therefore, fit a gamma conditional with mean 

βαθ /=  and fixed shape parameter α  to each risk. 

The parameter α  is estimated by the median of the 

sample statistic ( ) 
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The estimated mixture model is used to estimate the 
predictive mean of Xn+1 given claim data x and the 

estimators )(ˆ xkµ are obtained. Also, for each risk, the 

linear Bühlmann credibility estimator lin(x), defined as 
below, is computed.  
 

   (Bühlmann, [10]). 
 

Here, Z is credibility factor and  is overall mean. We 
get these values from the equations below (Bühlmann, 
[10]). 
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Therefore, the expected process variance is estimated 
by 
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 (Young, [1]). 

 
For the simulation study, the computer programs were 
written in Delphi and the estimated predictive means 

)(ˆ xkµ  and the linear Bühlmann credibility estimator 

lin(x) are compared to the true predictive mean )(xµ . 

To compare these credibility estimators numerically for 
small claims which can be called as low claim 
severities, for each of the 200 simulation runs, the mean 
squared errors are calculated up to the 10th percentile of 
X. See Table 1 for the descriptive statistics of the mean 
squared errors of the credibility estimators for small 
claims.  
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Table 1. Descriptive Statistics of Mean Squared Errors for Low Claim Severities 
 

  Mean Median St.Dev. Q1 Q3 

MSEB 165565.783 145620.896 101139.856 93940.147 223475.060 

MSE1 15251.914 12825.675 10089.356 7602.218 22776.495 

MSE2 15860.229 13978.373 9919.903 8125.618 23392.517 

MSE3 12755.359 10666.630 9351.071 5325.465 19136.605 

MSE4 11168.086 7786.156 9314.397 3892.948 17783.491 

MSEB: mean squared error of lin(x), MSEk: mean squared error of )x(ˆ kµ , k=1,2,3,4 

 
Table 1 shows that estimated predictive means perform 
much better than the linear Bühlmann credibility 
estimator for small claims. In addition, the estimated 
predictive means obtained by using adaptive 

bandwidths, especially )x(ˆ 4µ , perform better than 

the other credibility estimators. This result can be seen  
 
 

 
graphically in Figure 1. An example graphic for one of 
the simulation samples is showed in Figure 1, compared 

)(ˆ1 xµ , )(ˆ4 xµ  and )(xµ . In this simulation run, 
1h=549, MSE1=8278,15, MSE4=2379,47 and 10th 
percentile of X is 700. 
 

 
Figure 1. Credibility estimators for low claim severities 
 

The estimated predictive means )(ˆ xkµ and the linear 

Bühlmann credibility estimator lin(x) are also compared 

to the true predictive mean )(xµ for medium values of 

X which can be called as medium claim severities. To 
compare these credibility estimators numerically for 

medium claims, for each of the 200 simulation runs, the 
mean squared errors are calculated between the 10th 
percentile of X and the 95th percentile of X. See Table 2 
for the descriptive statistics of the mean squared errors 
of the credibility estimators for medium claims. 
 

 
Table 2. Descriptive Statistics of Mean Squared Errors for Medium Claim Severities 

  Mean Median St.Dev. Q1 Q3 

MSEB 49680.569 45301.274 28875.875 25769.089 66553.026 

MSE1 23357.223 13479.231 42536.487 5280.421 27401.022 

MSE2 25939.005 15646.002 44189.330 6123.811 31441.819 

MSE3 27304.428 16770.205 44375.150 7283.329 32252.554 

MSE4 27176.974 15707.343 44547.945 6699.398 30506.988 

MSEB: mean squared error of lin(x), MSEk: mean squared error of )x(ˆ kµ ,  k=1,2,3,4 

 
Table 2 shows that the estimated predictive means, on 
average, perform much better than the linear Bühlmann 

credibility estimator for medium claim severities. In 
addition, the estimated predictive means obtained by 
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using fixed bandwidths, especially )(ˆ1 xµ , perform 

better than the other credibility estimators. However, 
the mean squared errors of the linear Bühlmann 
estimator have smaller standard deviation than the other 
estimators. Despite having smaller average of mean 
squared errors, the estimated predictive means show 
more variations than the linear Bühlmann credibility 
estimator. 
 

Lastly, the estimated predictive means )(ˆ xkµ  
and the 

linear Bühlmann credibility estimator lin(x) are 

compared to the true predictive mean )(xµ  for large 

values of X which  can be called as high claim 
severities. To compare these credibility estimators 
numerically for large claims, for each of the 200 
simulation runs, the mean squared errors are calculated 
for the values of X which is higher than 95th percentile 
of X. See Table 3 for the descriptive statistics of the 
mean squared errors of the credibility estimators for 
large claims. 
 

 
Table 3: Descriptive Statistics of Mean Squared Errors for High Claim Severities 

  Mean Median St.Dev. Q1 Q3 

MSEB 849970.760 219901.934 3125017.155 90891.435 543060.670 

MSE1 3340718.926 519094.110 10293101.362 93636.087 2020368.320 

MSE2 3296257.094 509038.702 10251891.506 91894.688 2013041.923 

MSE3 3390720.507 854543.107 9603905.624 186230.414 2628670.382 

MSE4 3321895.984 776052.502 9957207.598 178585.155 2532854.997 

MSEB: mean squared error of lin(x), MSEk: mean squared error of )x(ˆ kµ , k=1,2,3,4 

 
Table 3 shows that the linear Bühlmann credibility 
estimator performs much better than the estimated 
predictive means for high claim severities. In addition, 
the mean squared errors of the estimated predictive 
means get higher for large values of X. From the 
simulation results, it can be seen that the estimated 
predictive means diverge upward for claims larger than 
the 95th percentile of X. So, the mean squared errors of 
the estimated predictive means become higher values 
for large claims. Young [1] used a constancy penalty 
which prevents the estimated predictive mean from 
diverging too greatly from the true predictive mean.  
 
6. CONCLUSION 

 

In this paper, the adaptive bandwidth selection method 
applied to semiparametric credibility and compared 
credibility estimators in different classes of claims. 
Simulation results show that the estimators obtained by 
using adaptive bandwidths give better results evidently 
in low claim severities. For medium claim severities, 
the estimators obtained by using fixed bandwidths 
performs well. For high claim severities, Bühlmann 
credibility estimator have the best performance.  
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