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ABSTRACT 

In this paper, we study the first passage time of a diffusion process to a moving boundary. Under some special 
conditions we apply a transformation to diffusion process and to the boundary function and then in each case 
obtain the first passage time distribution of the original process by the first passage time distribution of 
transformed process to transformed boundary. In addition, by applying these transformations to the Ornstein-
Uhlenbeck and Wiener processes the first passage time distributions for the new boundaries are presented as 
examples. 
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1. INTRODUCTION

The first passage time for moving boundary has a wide 
application area in the literature such as modeling neuron 
cells [12, 20], animal movements [16], mathematical 
finance [10], in obtaining estimators [7], and chemical 
physics Szabo et al.[22], Hänggi et al. [23]. Despite its 
importance in the literature, the exact forms of first 
passage time distributions are not known except some 
special cases whereas the exact forms known it is often 
encountered some challenges such as being enormous 
difficulties with the calculation. 

Dominé [8] obtained the moments of first passage times 
for Brownian motions with a drift through an elastic 
boundary. These results are generalized by Wang and Yin 
[21] to time homogeneous diffusion processes and they 
also obtained a recurrence relation among the moments of 
first passage times. 

Giorno et al. [13], studied the asymptotic properties of 
first passage times for some special boundaries, also 
including the periodic ones. In addition, they applied 
these results to a new diffusion process which is obtained 
by the spatial transformation of Ornstein-Uhlenbeck 
process. Durbin [9], presented a general theorem for the 
first passage time to a continuous boundary of the 
Gaussian processes who have positive definite covariance 
functions and have first order continuous partial 
derivatives, and have a finite limit for the rate of the 
variance of their increments to the elapsed time. Using 
this result, Salminen [19] obtained the distribution of first 
passage time of a linear and quadratic boundary 
functional for the Brownian process. In addition, in [19] 
it is also mentioned the last passage time probabilities to 
linear and square root boundaries for the Brownian 
motion. First passage times to quadratic boundaries for 
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the Brownian process are also investigated by Martin-Löf 
[15]. 

In the investigation of first passage time distributions, 
Fortet [11] and Buonocore et al. [4] proposed the integral 
equations for the probabilities of the first passage times. 

In his study Kolmogorov [14] showed that the new 
processes obtained by the transformations applied on the 
diffusion processes are again diffusion processes and 
obtained their drift and diffusion coefficients. 

Using this result Cherkasov [6] and Ricciardi [17] 
examined the transformation of diffusion processes to 
Brownian process whereas Capocelli and Ricciardi [5] 
used the same transformations to convert the diffusion 
processes to a Feller process. Ricciardi and Sato [18] 
studied the distributions of first passage time by these 
transformations. However, they confined themselves only 
to the diffusion processes which can be transformed into 
Wiener processes. In this study, applications of similar 
transformations to a wider family of diffusion processes 
are discussed. 

2. PRELIMINARY DISCUSSIONS 

Let �� be a diffusion process with a diffusion ���, �� and 
a drift 	��, ��. Let 
:ℝ → ℝ be a continuous function 
and denote the first passage time of the process �� to the 
boundary 
 with ���; that is, 

��� = inf�� > 0:�� = 
���; �� = ���. 
By the following transformation of the process ��, let us 
define a new stochastic process ��, 

� ′ = ����,			� ′ = Ψ��, �� (1) 

where the continuous functions �:ℝ → ℝ and Ψ: ℝ� →ℝ satisfy the following features: 

1. Let the derivative �′��� and the partial 
derivatives 

Ψ ��, �� ≔ ""�Ψ��, ��
Ψ���, �� ≔ ""�Ψ��, ��

Ψ  ��, �� ≔ "�"�� Ψ��, ��
 

be definite for all � and �, and 

2. �′��� > 0	 for all �, 
3. Ψ ��, �� ≠ 0 for all � and �, 
4. Ψ$Ψ%&��, ��, �' = Ψ%&�Ψ��, ��, �� = � for all �. 

Moreover let denote the diffusion and drift coefficient of 
this new process with �(��, �� and 	(��, ��. Then, we get 
the following relations: 

�(��, �� = ���, ���′���
Ψ ���, ��  

(2) 

	(��, �� = )	��, ���′��� − ���, ���′���
Ψ ���, �� Ψ  ��, ��	 

																				−Ψ���, ��+	 Ψ ��, ��⁄  

(3) 

The relations (2) and (3) are obtained by Kolmogorov 
[14]. Cherkasov [6], Capocelli and Ricciardi [5], and 
Ricciardi [17] also studied on the transformation of the 
original process into a Wiener or Feller process by these 
transformations. 

If the first passage time of the process �� to the boundary ℎ��� ≡ Ψ%&$
$����', �' is denoted by 

�/0 = inf�� > 0: �� = ℎ���; �� = ℎ�0�� 
and its distribution is known, then the distribution 
properties for ��� can be derived from that of �/0, since 

���	1=	�/0. 

Above mentioned method is proposed by Ricciardi and 
Sato [18], but they investigated only the first passage 
time of diffusion processes which can be transformed into 
a Wiener process. Unlike Ricciardi and Sato [18], in 
place of the transformations into a Wiener process, in this 
study it is considered the transformations on the 
processes whose first passage time distributions are 
known. 

According to some specific forms of ���, �� and 	��, ��, 
the following propositions show how the functions � and 
Ψ can be selected. These propostions and corollaries are 
from Aksop [2].  

Proposition 1. (Aksop [2]) The transformations Ψ and � 
which provide the independence of (2) from �, and 
defined as above also satisfy the following equation 

2 ""� lnΨ ��, �� = ""� ln ���, �� + 11� ln�′��� (4) 

Corollary 1. (Aksop [2]) If ���, �� is independent of �, 
then the transformations Ψ and � which are defined 
above and make (2) independent from � satisfy the 
following equations: 

Ψ��, �� = 5&�6�′��� + 5�
Ψ���, �� = 5& ��′′���26�′���
Ψ ��, �� = 5&6�′���

Ψ  ��, �� = 0
 

where 5& > 0 and 5� ∈ ℝ. In this case, the diffusion and 
drift coefficients of the new process are given by 

�(��, �� = 15&� ���, ��
	(��, �� = 15& 	��, ��6�′��� − � �′′����′���

 

Example 1. (Brownian motion and square root 
boundary) Let 9� be a standard Brownian motion and for 
a function 
 which will be defined later, let us look at the 
first passage time � = inf�� > 0: 9� = 
���; 9� = 0�. So 
we have the diffusion coefficient ���, �� = 1/2 and drift 
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coefficient 	��, �� = 0 for the process. Hence Corollary 1 
gives 

�(��, �� = 125&� ,
	(��, �� = −� �′′���2�′��� .

 

Since we want 	(��, �� to be independent of �, then the 
part �′′��� $2�′���'⁄  must be a constant. Therefore we 
have 

���� = 5<25= >�?@� + 5A (6) 

where 5= ≠ 0, 5< > 0 and 5A ∈ ℝ. Using Corollary 1 
once again we obtain 

Ψ��, �� = 5&�>?@� + 5�,				Ψ%&��, ��
= >%?@�5& �� − 5��. (7) 

Let � be a constant and choose the function 
 such that 
Ψ%&$
$����', �' = �. Then we get, 


��� = Ψ$�, �%&���' 
Since �%&��� = )ln B�?@?C �� − 5A�DE /�25=� this gives 


��� = Ψ$�, �%&���' = 5&�F25=5< �� − 5A� + 5�. (8) 

Therefore, the first passage time of a diffusion process 
obtained by applying the transformations in (1) to 
standard Brownian motion has the same distribution with 
the first passage time of Brownian motion through a 
square root boundary in (8). Moreover, the process 
defined by �� = Ψ%&$9G���, �' satisfies the following 
stochastic differential equation 

1�� = −5=��1� + 15& 19� 
which is an Ornstein-Uhlenbeck process. If we 
particularly choose 5& = 1, 5� = 0, 5= = 1, 5< = 2, 5A = −1 and � = 1, then we obtain the first passage time 
of Brownian motion through the boundary √� + 1 and the 
transformation �� = >%�9IJK%&. This transformation is the 
Doob's transformation which is also used in Breiman [3]. 

Proposition 2. (Aksop [2]) The transformation Ψ which 
provides the independence of (2) from �, and defined as 
above also satisfy the following equation 

Ψ��, �� = 5&L6���, ��1� + 5� 

where 5& and 5� are constants. 

3. ORNSTEIN-UHLENBECK PROCESS AND 

LINEAR BOUNDARY 

Let �� be an Ornstein-Uhlenbeck process defined by the 
stochastic differential equation 

1�� = −��1� + 19� ,				�� = 0. 
So we have diffusion and drift coefficients ���, �� = 1/2 
and 	��, �� = −� and 

�(��, �� = �′���2Ψ ���, ��, (9) 

	(��, ��
= )−��′��� − �′���

2Ψ ���, ��Ψ  ��, �� − Ψ���, ��E Ψ ��, ��M  
(10) 

Let N ≠ 0 and O ∈ ℝ be constants and ℎ be a function 
which will be defined later, and take 

�(��, �� = Nℎ���,	(��, �� = Oℎ���.  
In this case, for any function P��� ≠ 0, we should have 
Ψ ��, �� = P���. Thus we get 

Ψ��, �� = �P��� + Q��� + 5&,
Ψ���, �� = �P′��� + Q′���,

Ψ  ��, �� = 0,  

where 5& ∈ ℝ and Q:ℝ → ℝ is a continuous function. 
Substituting these equations in (10) we obtain 

−� B�′��� + P′���P��� D − Q���P��� = O�′���2NP����. 
Since the right-hand side of this equation is independent 
of �, then the equation �′��� = −P′��� must be satisfied. 
Therefore it is true that 

ℎ��� = − P′���2P���� 
On the other hand, for any 5� ∈ ℝ we have 

Q��� = O2N ln P��� + 5� − 5&. 
Therefore 

Ψ��, �� = �P��� + O2N ln P��� + 5�,
Ψ%&��, �� = R� − O2N lnP��� − 5�S /P���,���� = P��� + 5=,				5= ∈ ℝ

 

Hence the following are true for any constant � ∈ ℝ 


��� = Ψ$�, �%&���'= Ψ$�, P%&�� − 5=�'
= �P$P%&�� − 5=�' + O2N ln P$P%&�� − 5=�' + 5�
= ��� − 5=� + O2N ln�� − 5=� + 5�
= �� + O2N ln�� − 5=� + 5<,				5< = 5� − �5=.

 

In this case in which the function P��� can be properly 
selected, the distribution of the first passage time through 
the boundary � of the diffusion process �� defined by 

1�� = −O P′���2P���� 1� − NFP′���P���� 19� ,				��
= Ψ%& T�G���, ��0�U 

will be the same that of the first passage time through the 

boundary �� + V�W ln�� − 5=� + 5< of the Ornstein-

Uhlenbeck process. 
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If we particularly take O = 0, then we can obtain the 
distributional information of the first passage time 

� = inf�� > 0: �� = �� + 5<; �� = 0� 
from that of the first passage time through the boundary � 
of the process 

1�� = Nℎ���19�. 
Particularly, choose ℎ��� = 1/N. Thus, for any constant 5A < 0, 

P��� = N�−� + 5A 

transforms the process into the standard Brownian 
motion. 

4. ORNSTEIN-UHLENBECK PROCESS AND 

LAMBERT BOUNDARY 

Consider the equalities (9) and (10). Unlike the previous 
section, for this time the diffusion and drift coefficients of 
the transformed process will be determined independent 
of �. By the Corollary 1 we have the following diffusion 
and drift coefficients, respectively 

�(��� = 125&� ,
	(��� = −� B15&6�′��� + �′′���2�′���D ,

 

and the following equalities for the transformations � and 
Ψ 

Ψ ��, �� = 5&6�′���  

Ψ��, �� = 5&�6�′��� + 5� (11) 

Ψ  ��, �� = 0  

Ψ���, �� = 5&��′′���26�′���  
 

Since 	( depends only on �, for a constant 5= > 0, the 
following 

15&6�′��� + �′′���2�′��� = 5= 
(12) 

should be satisfied. Consequently by the equation 

1�� = −5=��1� + 15& 19�, (13) 

it is concluded that the process �� = Ψ%&$�G���, �' is 
again an Ornstein-Uhlenbeck process. The solution of 
(12) is given as follows: 

���� = 5&�5=�5A5<>?@� + 5=5A + 5&�5= ln�5<>?@� + 5=5A� + 5Y,				5Y∈ ℝ 

Substituting this result in (11) gives 

Ψ��, �� = 5&�5<�>?@�5<5= >?@� + 5A + 5�. (14) 

On the other hand, since we want the following equality 
to be satisfied 

Ψ%&$
$����', �' = �, 
where � is a constant, then 


��� = � 5&�5< exp�5=�%&����5<5= exp�5=�%&���� + 5A + 5� 

will be implied. Let ]^�∙� be the Lambert ` function. 
Then we have (necessary calculations are done with 
MATLAB ©) 

�%&���
= 15= ln

ab
bb
bc− 5=5A d1 + ]^ R−5=5A exp e− � − 5Y5&�5= fSg

5<]^ R−5=5A exp e− � − 5Y5&�5= fS hi
ii
ij
 

and 


��� = �5&�5= )1 + ]^ B−5=5A exp k− � − 5Y5&�5= lDE + 5�. 
Particularly, letting 5& = 5= = 5A = � = 1 and 5� = 5Y =0 we have 


��� = 1 + ]^�−>%��. 
Thus, the distribution of first passage time of the 
Ornstein-Uhlenbeck process defined by 

1�� = −��1� + 19�,				�� = 0 

through the boundary 
��� = 1 + ]^�−>%�� is the same 
of the Ornstein-Uhlenbeck process �� = Ψ%&$�G���, �' 
through the level � (see (13)), where 

Ψ��, �� = >�>� + 1�,���� = �>� + 1�%& + ln�>� + 1� . 
5. ORNSTEIN-UHLENBECK PROCESS AND THE 

HYPERBOLIC BOUNDARY 

For ℎ��� = m�, m ∈ ℝ Salminen [19] showed that the 
probability density function of �/ = inf�� > 0: 9� =ℎ���� is 

n ��/ ∈ 1�� = exp em� − 12m��f |�|√2p�= exp k−��2�l 1�. 
Using this information, for the constants q, r > 0 and the 
Ornstein-Uhlenbeck process �� defined by 

1�� = −q��1� + r19�,				�� = 0, 
the probability density function of first passage time 
through the boundary 


��� = −msr>t� + sr>%t�,				s ∈ ℝ 

can be determined as follows: 
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Since it is known that �� = Ψ%&$9G���, �' constitutes an 
Ornstein-Uhlenbeck process for the transformations � 
and Ψ defined by (6) and (7), and  

Ψ%&$ℎ$����', �' = m 5<25&5= >?@� + 5A − 5�5& >%?@� , 
the particular choices of 5& = 1/r, 5� = 0, 5= = q, 

5< = −2qs, 5A = s result in �� 	1=	�/  for �� =inf�� > 0: �� = 
����. The first passage times of an 
Ornstein-Uhlenbeck process through a hyperbolic 
boundary is investigated by Buonocore et al. [4] under 
integral transformations. A special case of this result is 
also given in Aksop [2]. 

Furthermore, for ℎ��� = 	 + �� − �J� , Martin-Löf [15] 

showed that the probability density function of �/ =inf�� > 0: 9� = ℎ���� is 

nu��/ ∈ dt�
= exp k− �� − ��= + �=6
− �	lL >�y 9�z�{�z − 	� − {�z�9�z − 	�p${��z� + 9��z�' 1z∞

%|  

where {�z� = {}$2&/=z', 9�z� = 9}$2&/=z' and {}, 9} 
are Airy functions (see, [1]). 

If we define 
��� = Ψ%&$ℎ$����', �' similar to the 
operations as done above, we obtain the probability 
density function of first passage time of the Ornstein-
Uhlenbeck process �� = Ψ%&$9G���, �' through the 
boundary 


��� = r>%~� + �>~� − �>=~� , 
where 

r = B	 + 5< − 5<�2 D exp e− 5& + 5=2 f ,
� = 5�,
� = � + 5<25� exp �− 5&2 � ,
� = 185�� exp e−

5& − 35=2 f .
 

6. ORNSTEIN-UHLENBECK PROCESS AND THE 

MIXED BOUNDARY 

From Section 5, for the Ornstein-Uhlenbeck process 
defined by 

1�� = −��1� + 19�,				�� = 0 

we know the probability density function of first passage 
time through the boundary 
��� = m>� + s>%�, m, s ∈ ℝ. 
In addition, by means of the following transformations 
given in Section 4 

���� = 5&�5= ln�>?@� + 5=5A� + 5&�5 − 95A>?@� + 5=5A + 5Y,
Ψ��, �� = � 5&�5=>?@�>?@� + 5=5A + 5�,

 

we showed that the process �� defined as �� =
Ψ%&$�G���, �' is again an Ornstein-Uhlenbeck process 
since it can be written as 

1�� = −5=��1� + 15& 19�. 
With this in mind, let us define a new boundary as 
follows: 

ℎ��� = Ψ%&$
$����', �'
= 5<>?@� + 5=5A5&�5=5<>?@� )m exp k5&�5=�5AQ��� + 5&�5= ln$Q���' + 5Yl

+s exp k− 5&�5=�5AQ��� − 5&�5= ln$Q���' − 5Yl − 5�E ,
 

where Q��� = 5< exp�5=�� + 5=5A. 

Then it is true that ���	1=	�/0, where ��� = inf�� > 0: �� =
���� and �/0 = inf�� > 0: �� = ℎ����. 
7. CONCLUSION 

In this study, for the examination of the first passage time 
through a moving boundary some transformations are 
applied to the diffusion processes and the distribution of 
first passage time of the original process obtained by that 
of first passage time of the transformed process. Unlike 
the study of Ricciardi and Sato [18], not only the 
processes that can be transformed into the Wiener process 
considered, but all of the transformations to diffusion 
processes whose first passage time distributions are 
known are discussed. By these transformations known 
results in the literature are more easily obtained, and the 
distributions of first passage time of the Ornstein-
Uhlenbeck process through a linear boundary are also 
presented. 
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