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ABSTRACT 
 
In this work a crack identification method for beam type structures under moving vehicle is proposed. The basic 
of the method is to formulate damage detection as an inverse problem, and solve for damage locations and 
extents. To this end, an objective function is defined based on the difference of damaged beam dynamic 
response and the response calculated by the mathematical model of the beam. The optimization problem is 
solved through a popular evolutionary algorithm, i.e. the particle swarm optimization (PSO) with constriction 
factor, to obtain crack locations and depths. From the numerical simulations it was observed that cracks with 
depth ratio of 0.1 can be identified with reasonable error by the present method in spite of noise interference and 
distortive effect of road surface roughness.  
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1. INTRODUCTION 
 
Structures under moving load have many practical 
applications such as railway tracks, bridges, pipelines, 
roadways, etc. Since moving load yields larger 
deflections and higher stresses than equivalent static 
load conditions, dynamics of such structures has 
received considerable attention in the literature [1]. If 
the host structure has crack-like local defects, then the 
impact of moving load becomes more pronounced. In 
the earlier study on this issue Mahmoud [2] 
demonstrated that crack shifts the minimum point of 
deflection profile to the right-hand on the time axis. 
Bilello and Bergman [3] concluded that changes in the 
time-response of the beam due to damage are more 
perceptible in comparison to the changes in the natural 

frequencies. Law and Zhu [4] investigated the effects of 
open and breathing cracks on the response of concrete 
bridges. Ariaei et al. [5] performed a similar study for 
beams with breathing cracks subject to moving mass. 
On the other hand, various damage detection methods 
have been developed for beams subject to moving 
load/vehicle using the continuous wavelet transform 
(CWT) [6-10]. They are based on the fact that CWT 
coefficients of beam dynamic response demonstrate 
local peaks at crack locations, and magnitudes of these 
peaks are proportional to crack depths.  
 
In structural damage detection there are other methods 
based on model updating. The basic of these methods is 
to update mathematical or finite element model of the 
structure to match the calculated response to the one 
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measured from damaged structure. This is achieved 
through an optimization procedure. To solve the 
optimization problem evolutionary methods are 
generally preferred, as they do not require gradient 
calculation, and have less possibility of being trapped 
by local minima in comparison with the gradient based 
methods [11-14]. One of these algorithms is the particle 
swarm optimization (PSO). PSO, developed by 
Kennedy and Eberhart [15], is a stochastic optimization 
technique inspired by natural flocking and swarm 
behavior of birds and insects. It is known to have less 
parameters and rapid convergence compared with the 
genetic algorithms (GA) [16], and has been successfully 
employed in model updating based damage detection 
applications [12-14]. In model updating based damage 
detection, time dependent structural response is used, as 
well. Buezas et al. [11] formulated an optimization 
problem using time responses from several points on 
the beam, and determined crack size and depth by 
solving this problem.  
 
In the present work, motivated by the conclusion of 
Bilello and Bergman [3] mentioned above and the 
method of Buezas et al. [11], a model update based 
damage detection approach has been proposed for 

bridge type structures carrying moving vehicle. In this 
respect, time dependent deflections from several points 
on a cracked beam were obtained, and an objective 
function was defined by subtracting these from the ones 
calculated by the mathematical model of the structure. 
Then, the PSO is employed to minimize this objective 
function to determine crack locations and depths. To the 
best of the author’s knowledge, this is the first 
published study which deals with formulating damage 
detection in a beam with rough surface and subject to 
moving vehicle as an inverse problem and solving by 
the PSO algorithm for crack identification. 
 
2. MATERIAL AND METHOD 

2.1. Dynamic Response of the Beam 

Figure 1 illustrates the beam-vehicle system. The Euler-
Bernoulli model is considered for the beam, and half car 
model is adopted for the vehicle moving with the speed 
V. An open crack with depth 1h is located at 1z on the 

beam. Surface unevenness of the beam is regarded and 
tyres are assumed to be always in contact with the 
beam. Under these assumptions the equations of motion 
for the vehicle and beam can be derived as follows:

 

 
 

Figure 1. Beam-vehicle system. 
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where v v 1 2 1 2 1 2 3 1 2 3 4, , , , , , , , , , , ,I m m m L L k k k c c c c  are 

vehicle parameters shown in Fig.1, C is the damping of 
beam material. id , i=1:4, denote vehicle degrees of 

freedom, Iδ  and IIδ  are the Dirac delta functions 

defined as 1 2( ( ))I z Vt L Lδ δ= − − + , ( )II z Vtδ δ= − . 

IP  and IIP are the interaction forces acting on the beam 

through the contact points I and II, as follows: 
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where u is the vertical displacement at the tyre contact 
point, i.e. ( , )u y z t= , its derivative with respect to time 

is 

d( ( , ) d ( , ) ( , )u y z t t V y z t z y z t t= = ∂ ∂ + ∂ ∂& , and 

' /d dz= . Road surface roughness function in Eq. (3) is 
[17] 
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where 0( )dS f is the roughness coefficient in m3/cycles, 

0f  is the discontinuity frequency equal to 1/ 2π

(cycle/m), cL is twice the length of the beam, and kθ is 

the uniform random number between 0 and 2π. N=104 
is adopted in this study. The road classification 
according to the ISO standard is based on the value of 
roughness coefficient. Five classes representing 
different qualities of the road are A: very good, B: 
good, C: average, D:poor, E: very poor with the 

roughness coefficients equal to 1x10-6, 6x10-6, 16x10-6, 
64x10-6, 256x10-6, respectively. 
 

Assuming mode superposition, i.e. T( , ) ( ) ( )y z t z t= Y q , 

substituting into Eq.(2), multiplying by ( )zY  and 

integrating from 0 to L, and finally combining with 
Eq.(1) lead to the following coupled beam-vehicle 
equations: 
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modes used, ( )zY  is the vector of size mN x1 

containing vibration modes of the cracked beam, and 
( )tq  stands for the modal coordinates. Additionally, 
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Eq.(5) can be solved by any numerical integration 
method. In this study Newmark-β method (with β=1/6 
and γ=1/2 [18]) is employed for this purpose. Before 
solving the equation, vibration modes of the cracked 
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beam is required to obtain the coefficient matrices in 
Eq. (5). Assuming the beam is composed of two parts 
joined at the crack location through a rotational spring, 
we can write the following compatibility equations at 
the crack location [2]:  

 
 

1 1 2 1( ) ( )Y z Y z= , 1 1 1 1 2 1' ( ) '' ( ) ' ( )Y z Y z Y zθ+ = , 
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Here ( )iY z is the mode shape of the ith beam part 

defined as follows 
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where λ=(ρAω2/(EI))0.25. λ and ω are eigenvalue and 
natural frequency parameters, respectively, and ijC are 

the constants to be determined by solving the 
eigenvalue problem. The geometric factor of the crack, 
θ , is defined as follows [2,5] 
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The eigenvalue problem is formulated using Eq.(7) 
along with the boundary conditions for the simple 
supports. Note that in the case of multiple cracks the 
number of Eq. (8) is equal to the number of cracks. 
Natural frequencies and vibration modes of the cracked 
beam can be obtained by solving the eigenvalue 
problem (see [2,5,6,10] for details). Using these 
vibration modes Eq.(5) is solved. Fig. 2 illustrates the 
normalized midspan deflection of the beam. The 
following numerical data for the beam-vehicle system 
are employed to obtain the figure [4]: 210 GPaE = , 

-37860 kgmρ = , L=30m, b=0.4245m, h=1.4986m, 

v 17735m = kg, 1 1000m = kg, 2 1500m = kg, 
5

v 1.47x10I = kgm2, 6
1 4.23x10k = Nm-1, 6

2 2.47x10k =

Nm-1, 6
3 4.6x10k = Nm-1, 6

4 3.74x10k = Nm-1, 
4

1 4x10c = Nsm-1, 4
2 3x10c = Nsm-1, 3

3 4.3x10c = Nsm-

1, 3
4 3.9x10c = Nsm-1, 1 2.054L = m, 2 2.216L = m. 

Normalization is made by dividing to the midspan 
deflection of the simply-supported beam loaded by 
concentrated static force P acting on the midspan, i.e. 
PL3/(48EI) where P=9.81( v 1 2m m m+ + ). The first six 

vibration modes of the beam, for which the natural 
frequencies are  3.90, 15.61, 35.13, 62.44, 97.57 140.5 
Hz, are employed. Two percent modal damping is 
considered for each mode [4]. The moving load speed is 
V=10m/s. The sampling frequency of the simulation is 
500 Hz which can capture the response of the first six 
vibration modes of the beam. The roughness coefficient 

is 6
0( ) 6x10dS f −= and damage locations are 

1 1 0.33z z L= = , 2 2 0.67z z L= =  with equal crack 

depth 1 1 0.2h h h= = , 2 2 0.2h h h= = . From Fig. 2 it is 

seen that damage has significant impact on the 
maximum amplitude while roughness affects the 
variation of deflection with time. 
 
2.2. The Objective Function and the Constrains 

The aim is to correlate the response of the damaged 
beam to the one calculated by the mathematical model 
of the structure. To achieve this, it is proposed to adjust 

crack sizes and locations by solving an optimization 
problem. The objective function of the problem is 
introduced as follows. 
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where mpN  is the number of measurement points on the 

beam, nz  is the location of the nth measurement point 

on the beam, y denotes the reference displacements 

measured from damaged beam, y  stands for the 

corresponding displacements computed by the 
mathematical model of the structure. T is the total time 
for the vehicle to move across the beam. z is the vector 
containing crack location and size parameters, i.e. 
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where cN  denotes the number of cracks. As to the 

measurement points, it is better to chose them close to 
the midpoint, since maximum deflection occurs at the 
beam midspan. Thus, four points [11] on the beam were 
determined as {0.3 0.5 0.6 0.7}L, i.e. mp 4N =  in Eq. 

(10). If the number of cracks ( cN ) is more than one, 

then extra constraints other than lower and upper 
boundaries should be introduced for the optimization 
algorithm to make search in the feasible region. With 
these explanations in mind, the optimization problem 
can be formulated as follows 

1

min ( )
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Crack locations and depths can be determined by 
solving Eq.(12). In this work the PSO is employed for 
this purpose, and its details are given in the next 
section. 
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Figure 2. Normalized midspan deflections of the beam. I: damage (−), roughness (−), II: damage (+), roughness 
(−). III: damage (−), roughness (+), IV: damage (+), roughness (+). (−): not present, (+): present 

 
2.3. The particle swarm optimization algorithm 

PSO algorithm is initialized with a "swarm" composed 
of N particles. Particles refer to the candidate points in 
the search space of the optimization problem. To obtain 
the best solution each particle adjusts its trajectory 
toward its own previous best position and toward the 
previous best position of the swarm. By this way, each 
particle moves in the search space with an adaptive 
velocity, and stores the best position of the search 
space. Location (x) and velocity (v) of a particle are 
updated with the following equations [15,16]. 
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where k is the iteration counter, Kmax denotes the 
maximum number of iterations, m is the problem 

dimension, k
ijp   and k

gjp  are, respectively, the best 

positions of the ith particle and the swarm found until 
the kth iteration, R1 and R2 ∈ U(0,1), where U means  
uniform random distribution, 1c  and 2c  are positive 

weighting constants called cognitive and social 
coefficients, respectively. These two constants regulate 
the relative velocity toward the global and local best 
points. The algorithm using Eq.(13) is called standard 
PSO. Clerc and Kennedy [19], introducing the 
constriction factor (χ), developed another version 
known as contemporary PSO (CPSO) [16], in which the 
velocity of each particle is updated as follows.  
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study, this version of the PSO will be used since its 
stability and convergence speed are better than those of 
the classic PSO. The algorithm was executed in 
MATLAB environment. Initial values of particles and 
their velocities were obtained drawing random numbers 
within the range of each dimension [20], i.e. 
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3. NUMERICAL SOLUTION 

3.1. Case Studies 

Using the same beam and vehicle parameters, the 
damage scenarios in Table 1 are considered. Road 
surface roughness is excluded for now, since its effect 
will be dealt with in the next section. To simulate the 
real situation, certain amount of noise is added to the 
reference data as follows [6] 

noisy calc p( , ) ( , ) . .y z t y z t N Gσ= +     (17) 

where calc( , )y z t  is the calculated response of point z of 

the damaged beam (see Eq.(10)), pN  is the noise 

percentage, G is Gaussian distribution with zero mean 
and unit standard deviation, σ is the standard deviation 

of calc( , )y z t . Clearly, the first damage case in Table 1 is 

simpler than the second, since the dimension of the 
problem and the amount of noise are lower whereas 
crack size is bigger in the first case than those of the 
other case. Besides, the moving vehicle's speed is lower 
in the first case. This is significant, as the wavelet 

transform methods lose sensitivity to damage at higher 
moving load/vehicle speeds [6-8,10]. Thus, damage 
identification ability at higher speeds can be deemed as 
an advantage of the method. Swarm size (N) and 
maximum iteration number were determined by 
experience as N=20 and max 30K =  for Case 1. These 

are selected as N=30 and max 60K =  for Case 2, 

considering the dimension of the problem. Algorithm 
was run ten times for each case due to its stochasticity 
[13], and the mean values of results are given in Table 
2. Additionally, iterative variation of the objective 
function is given in Fig. 3 for the best runs, i.e. the run 
having minimum objective function value. From Table 
2 it is clear that the proposed method can successfully 
locate damage locations and estimate crack sizes for 
Case 1. Crack locations and depths are determined with 
the relative errors smaller than 1%. However, the error 
in the value of objective function is remarkable, which 
is because of the sensitivity of the objective function to 
the small changes in location and depth variables. On 
the other hand, although the errors in the results are 
higher for Case 2, it is seen most of the parameters are 
determined with the error smaller than 10%. 

  
 

Table 1. Damage scenarios. 

Case Crack Parameters 
PV  (m/s) 

pN (%) 

1 
1 10.5,  =0.3z h=  5 1 

2 
1 1

2 2

3 3

0.3,  =0.1

0.5,  =0.1

0.7,  =0.1

z h

z h

z h

=

=

=

 

20 3 

  

Table 2. Simulation results of the cases in Table 1.  

Case  1z  
2z  

3z  
1h  2h  3h  f * 

1 

Exact 0.5000 --- --- 0.3000 --- --- 0.0375 

Predicted 0.4995 --- --- 0.3002 --- --- 0.0418 

ε 0.1 --- --- 0.07   11.5 

2 

Exact 0.3000 0.5000 0.7000 0.1000 0.1000 0.1000 0.053 

Predicted 0.26 0.4949 0.7428 0.095 0.1183 0.0968 0.0536 

ε 11.9 1.1 6.1 5.01 18.3 3.15 0.56 

*: See Eq. (10),  ε:=100x E-Pr E , E: Exact, Pr: Predicted 
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Figure 3. Variation of objective function with iteration. 

 

3.2. Effect of Road Surface Roughness 

As indicated previously road surface roughness affects 
the variation of dynamic response (see Fig.2). Since 
roughness function is random, each measurement 
produces different deflection profile [17], i.e. y  in 

Eq.(10). To indicate this let's consider Case 2 in Table 
1. Fig. 4 illustrates five deflection time histories of the 

midspan with 6
0( ) 16x10dS f −= for this case. It is seen 

that each curve is different from the others due to 
stochasticity of the roughness function. Thus, the 
proposed method cannot be implemented with single 
deflection profile recorded from measurement point. 
Fortunately, the roughness function in Eq.(4) has 
Gaussian distribution, i.e. the stochastic process 
composed of many roughness functions has the 
probability density function which is well correlated 
with that of the Gaussian process [17]. Thus, if 
deflection time history of a point on the damaged beam 
is measured many times and averaged, then the mean 
value of the deflections becomes closer to the one 
obtained by ignoring the roughness and noise, i.e. the 

function y  in Eq.(10). This is demonstrated in Fig. 5 

for the same case. The figure implies that the more the 
number of averages, the better the correlation between 
the computed and average deflections, i.e. y  and y . It 

is obvious that not only the average curve is well 
correlated with the reference one but also noise is 
eliminated to a great extent by averaging. Employing 
the averages of measured displacements the results in 
Table 3 are obtained. The numbers in parentheses 
indicate the number of averages. That is, if the average 
of 50 deflection time histories from a measurement 
point is employed, then the value of objective function 
is 0.031 and the crack parameters are as shown in the 
relevant line of the table. It is clear that more average 
means better results. In the case of 50 average the 
number of variables with relative error bigger than 10% 
is 4 whereas it is 1 for the case of 100 average. In the 
case of 200 average the errors are lower than the 
previous. Hence, using the averages of many deflection 
profiles instead of one obtained by single measurement 
promotes the applicability of the method and enhances 
the accuracy of predicted results.  
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Table 3. Simulation results of Case 2 in Table 1 including road surface roughness. 

 1z  
2z  

3z  
1h  2h  3h  f * 

E 0.3000 0.5000 0.7000 0.1000 0.1000 0.1000 0.0288 

Pr (50Av.) 0.2655 0.5449 0.8025 0.0989 0.1200 0.0793 0.0310 

ε 11.5 8.9 14.6 1.08 20 20.1 7.34 

E 0.3000 0.5000 0.7000 0.1000 0.1000 0.1000 0.0205 

Pr 
(100Av.) 

0.3287 0.5471 0.8114 0.1062 0.1047 0.1061 0.0214 

ε 9.6 9.4 16 6.1 4.7 6.1 4.4 

E 0.3000 0.5000 0.7000 0.1000 0.1000 0.1000 0.0111 

Pr 
(200Av.) 

0.2739 0.5028 0.7262 0.1033 0.1104 0.1007 0.0080 

ε 8.7 0.6 3.7 3.3 10.4 0.7 27 

*: Eq. (10),  ε:=100x E-Pr E , E: Exact, Pr: Predicted. 

 

 

Figure 4. Midspan deflections of the beam corresponding to five different roughness profiles. 
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Figure 5. (a): Comparison of midspan deflections for Case 2 in Table 1 (I: No noise and roughness, II: Average of 20 
deflection curves including noise and roughness). 

 

4. CONCLUSĐONS 
 
In this study, a new crack identification method for 
beam type structures carrying moving vehicle is 
proposed. Damage detection was formulated as an 
optimization problem using difference of measured time 
dependent deflections of the damaged beam and those 
computed by the mathematical model of the structure. 
Then, this is solved by a robust evolutionary algorithm, 
i.e. the particle swarm optimization, for crack locations 
and depth. Both road surface roughness and 
measurement noise are considered. It was demonstrated 
that crack size of 0.1 can be determined by the proposed 
approach with relative error nearly 10%. The drawback 
of the method is that it is difficult to obtain by a single 
measurement the reference data well-correlated with the 
one computed by the mathematical model of the 
structure. This is because of the random nature of road 
surface roughness, which gives rise to different 
deflection profile at every measurement. However, 
average of multiple measurements is well-correlated 
with the one computed by the mathematical model. 
Thus, the proposed method can be implemented 
provided the average of multiple measurements is 
employed as reference. Future works are planned to 
consider the opening and closing of crack during the 
simulation, and test the method with real data.  
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