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Abstract  
 

In this paper we prove coincidence and common fixed point theorems for two pairs of weakly compatible self maps 
in fuzzy metric space using a fuzzy analogue of the Meir-Keeler type contractive condition. Our results substantially 

extend, generalize, and improve a multitude of well known results of the form existing in the literature for metric as 

well as fuzzy metric spaces.  
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1. INTRODUCTION 
 

The introduction of the notion of a fuzzy set, is a new way 

to represent the vagueness in everyday life, by Zadeh [41], 

proved a turning point in the development of fuzzy 

mathematics. However, it appears that Kramosil and 

Michhlek’s study of fuzzy metric spaces paves the way 

for very soothing machinery to develop fixed point 

theorems especially for contractive type and nonexpansive 

type maps [20]. Later on, Grabiec [14] followed 

Kramosil-Michklek [20] and obtained the fuzzy version of 

the Banach contraction principle. George and Veeramani 

[10, 11] modified the concept of fuzzy metric spaces 

introduced by Kramosil and Michalek [20] and defined a 

Hausdorff topology for metric spaces, which later proved 

to be metrizable. They also showed that every metric 

induces a fuzzy metric. For a good bibliography on 

fundamentals and the development of fuzzy mathematics, 

refer to A.P. Shostak [39].  Fuzzy mathematics has very 

fruitful applications in quantum physics [9], nonlinear 

dynamical systems [16], population dynamics [4] and 

computer programming [12]. The theory of a fuzzy set is 

of fundamental importance in computerized Medical 

diagnosis, effect of drugs, and diagnosis processes [3]. 

 

The existence of a common fixed point of maps satisfying 

contractive type conditions has been a very active area of 

research. Common fixed point theorems for four maps, 

say A, B, S and T either use  

 

(A). a Banach type contractive condition: 

 

   d(Ax, Ty) ≤ k max{d(Sx, Ty), d(Ax, Sx), d(By, Ty)},  

where 0 ≤ k < 1, or 
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(B). a Meir-Keeler type contractive condition:   

       given 0ε > there exists a 0δ >  such that 

     ε ≤ max{d(Sx, Ty), d(Ax, Sx), d(By, Ty) }< ε δ+   

implies d(Ax, Ty) < ε, or 

 

(C). slightly weaker Meir-Keeler type contractive 

condition:  given 0ε > there exists a 0δ > such that 

    ε < max{d(Sx, Ty), d(Ax, Sx), d(By, Ty) }< ε δ+  

implies d(Ax, Ty) ≤ ε, or 

 

(D). a φ- contractive condition:  

 

 d(Ax, By) ≤ φ (max {d(Sx, Ty), d(Ax, Sx), d(By, Ty)}) 

where φ :R+ →R+ is such that φ (t) < t for each t > 0.  

 

Jachymski [18] has shown that contractive condition (B) 

implies (C) but the reverse implication is not true. 

Moreover φ- contractive conditions do not guarantee the 

existence of a fixed point unless some additional 

condition is assumed on φ. Also φ- contractive conditions, 

in general, do not imply Meir Keeler type contractive 

conditions. Hence fixed point theory, for the class of Meir 

Keeler type contractive conditions, is much wider than the 

class of Banach or the class of φ - contractive conditions.  

 

In the literature many results have been proved using 

different contractive conditions in fuzzy metric spaces; 

see for instance [5],[17],[21],[22],[27],[38],[40] and 

references therein. The aim of this paper is to prove 

coincidence and common fixed point theorems for two 

pairs of maps in a fuzzy metric space using a fuzzy 

analogue of the Meir-Keeler type contractive condition 

(B). Our results extend, generalize, and improve multitude 

of well known results of the same form in a metric space, 

as well as fuzzy metric spaces, including Meir-Keeler 

[25], Boyd and Wong [6], J. Matkowski [24], Maiti and 

Pal [23], Park-Rhoades[33], Rao-Rao[35], Jungck [19], 

Pant [31], Pathak et al. [34], Cho et al [8]. 

 

2. PRELIMINARIES 

 

Definition 2.1 [41]: Let X be any set. A fuzzy set in X is a 

function with domain X and values in [0, 1]. The concept 

of triangular norms (t-norms) was originally introduced by 

Menger [26] in study of statistical metric spaces. 

 

Definition 2.2 [37]  A binary operation * : [0,1]×[0,1] 

→  [0,1] is continuous in the t-norm if  *  satisfies  the 

following conditions: 

 

(i) * is commutative and associative; 

(ii) * is continuous; 

(iii) a * 1 = a for all [0,1]a∈ ; 

(iv) a * b ≤ c * d whenever a ≤ c and b ≤ d for all 

, , , [0,1]a b c d ∈ . 

 

Examples of t-norms are: a*b = min{a,b}, a*b = ab and 

a*b = max{a+b-1,0} for all , [0,1]a b∈ .  

 

Definition 2.3 [10] A 3-tuple ( , ,*)X M  is a fuzzy 

metric space if X is an arbitrary set, * is a continuous t-

norm and M is a fuzzy set on X2× [0, ∞) satisfying the 

following conditions for all , ,x y z X∈  and s, t > 0 

 

 (i) M(x, y, t) > 0; 

(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y; 

(iii) M(x, y, t) = M(y, x, t); 

(iv) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s); 

(v) M(x, y,.): [0, ∞) → [0, 1] is continuous. 

 

The function M(x, y, t) denotes the degree of nearness 

between x and y with respect to t .  

We identify x = y with M(x, y, t) = 1 for all t >0 and M(x, 

y, t) = 0 with d(x, y) = . 

In what follows ( , ,*)X M is a fuzzy metric space with 

the following property: 

(vi)  lim ( , , ) 1
t

M x y t
→∞

=  for all ,x y X∈ and t > 0.  

 

Remark 2.4.[10]. In a fuzzy metric space ( , ,*)X M , 

M(x, y, *) is non-decreasing for all ,x y X∈ . 

 

Definition 2.5.[10]. A sequence {xn} in a fuzzy metric 

space ( , ,*)X M  is  

(i) convergent to a point x∈X if  

lim ( , , ) 1n
n

M x x t
→∞

= for all t > 0, 

 (ii) a Cauchy sequence if lim ( , , ) 1n p n
n

M x x t+→∞
=  for     

      all t > 0 and p > 0, 

(ii)  complete if every Cauchy sequence in X is convergent   

to  a some point in X. 

 

Example 2.6 [10]. Let X = {1/n: n N∈  } ∪ {0} and   

let * be the continuous t-norm defined by  a * b = ab            

(or a * b = min{a, b}) respectively, for all , [0,1]a b∈ . 

For each t > 0 and ,x y X∈ , let  

( , , )
,   0,

-

0 0

M x y t

t
t

t x y

t




= 



>
+

=

      

Clearly ( , ,*)X M is a complete fuzzy metric space. 

 

 

Definition 2.7. A pair of self maps (f, g) of a fuzzy metric 

space ( , ,*)X M is 
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 (i) compatible [19]  if lim ( , , ) 1n n
n

M fgx gfx t
→∞

=  for 

all t > 0,  whenever { }nx  is a sequence in X such that 

lim limn n
n n

fx gx z
→∞ →∞

= =  for some z X∈ . 

(ii) non-compatible if there exists at least one sequence 

{ }nx  in X such that lim limn n
n n

fx gx z
→∞ →∞

= =  for 

some z X∈  but either lim ( , , ) 1n n
n

M fgx gfx t
→∞

≠  

or is nonexistent. 

(iii) weakly compatible [13] if f and g commute at 

coincidence points; that is,  fgx = gfx whenever fx = gx. 

(iv) satisfy property (E.A) [2]  if there exists a sequence 

{xn} in X such that  lim limn n
n n

fx z gx
→∞ →∞

= =  for some 

z X∈ .  

 

Note that the class maps of satisfying property (E.A.) 

contains the class of compatible as well as non- 

compatible maps.  

 

Definition 2.8[1] The Pairs (A, S) and (B, T) on a fuzzy 

metric space ( , ,*)X M  satisfy common property (E.A) 

if there exist two sequences {xn} and {yn} in X such that  

lim lim lim limn n n n
n n n n

Ax Sx Ty By z
→∞ →∞ →∞ →∞

= = = =  for 

some z X∈ .  

 
Example 2.9 Define self maps A, B, S and T on X = [1, 

15) by  

 

{ } ( )
( ]

1 1 3,15

14 1,3

x
Ax

x

∈ ∪
= 

∈

, { } ( )
( ]

1 1 3,15

5 1,3

x
Bx

x

∈ ∪=  ∈

 , 

( ]

( )

3 1

6 1,3

1
3,15

4

x

Sx x

x
x


 =


= ∈
 +
 ∈


 and   
( ]
( )

2 1

11 1,3

2 3,15

x

Tx x

x x

=
= ∈
 − ∈

.  

 

Take 
1

3nx
n

 = + 
 

 and 
1

3ny
n

 = + 
 

, clearly 

  

lim lim lim lim 1n n n n
n n n n

Ax Sx By Ty
→∞ →∞ →∞ →∞

= = = =  X∈ .  

 

⇒A, B, S and T satisfy common property (E.A.). 

 

Definition 2.10[7]. Pairs (A, S) and (B, T) on a fuzzy 

metric space ( , ,*)X M  satisfy the JCLRST property if 

there exist two sequences {xn} and {yn} in X such that  

lim lim lim limn n n n
n n n n

Ax Sx Ty By Sz Tz
→∞ →∞ →∞ →∞

= = = = =

 for some .z X∈   

 

Example 2.11.  Let ( , ,*)X M  be a fuzzy metric space 

with X = [ -1, 1] and for all ,x y X∈  

                                                              

x-y

( , , ) , t > 0,

0, t =0

teM x y t

−


= 


  

Define self maps A, B, S and T on X by Ax = x/3, Bx = -

x/3, Sx = x, Tx = -x for all .x X∈  Then with sequences 

{xn = 1/n} and {yn = -1/n} in X, one can easily verify that  

 

lim lim lim lim 0 0n n n n
n n n n

Ax Sx Ty By S T
→∞ →∞ →∞ →∞

= = = = =

. This shows that the pairs (A, S) and (B, T) satisfy the 

JCLRST property. 

 

3. MAIN RESULT 

  

Theorem 3.1. Let A, B, S and T be four self maps in a 

fuzzy metric space ( , , )X M ∗  such that  

 

(3.1) AX TX⊆  and ( ) ( )B X S X⊆   

(3.2)  given an 0ε > , there exists a (0, )δ ε∈  such 

that     

 ( , , ) ( , , )m x y t M Ax By tε δ ε ε− < < ⇒ ≥  

where 

( , , ), ( , , ), ( , , ),
( , , ) min

( , , ), ( , , 2 )

M Sx Ty t M Ax Sx t M By Ty t
m x y t

M Ax By t M By Sx t

 
=  

 
 

(3.3) one of AX, BX, SX or TX is a complete subspace of 

X. 

Then 

 

(I) A and S have a coincidence point, 

(II) B and T have a coincidence point. 

 

Moreover, if the pairs (A, S) and (B, T) are weakly 

compatible, then the self maps A, B, S and T have a unique 

common fixed point in X. 

 

Proof: Let 
0x  be an arbitrary point in X. Define 

sequences { }nx and{ }ny in X by  

2 1 2 1 2 2n n ny Tx Ax− − −= =  and 

2 2 2 1n n ny Sx Bx −= = . This can be done by virtue of 

(3.1). 

We claim that { }ny is a Cauchy sequence. 
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Let 1( , , )n n nM M y y t+= where t > 0. Two cases 

arise.  

Suppose that 1nM =  for some n = 2k-1. Then 

2 1 2( , , ) 1k kM y y t− =  ⇒ 2 1 2k ky y− = ; 

i.e., 2 1 2 2 2 2 1k k k kTx Ax Sx Bx− − −= = = . Hence the 

maps B and T have a coincidence point. 

Further, if 1nM =  for some n = 2k. 

Then 2 2 1( , , ) 1k kM y y t+ = ⇒ 2 2 1k ky y += ; 

i.e., 2 1 2 2 2 1k k k kTx Ax Sx Bx+ −= = = . Hence the 

maps A and S have a coincidence point. 

Now suppose  that 1nM ≠  for all n.  

If, for some ,x y X∈ , ( , , ) 1m x y t =  then  Ax = Sx 

and By = Ty. This proves (I) and (II). 

If ( , , ) 1m x y t <  for all ,x y X∈ , then, by (3.2), we 

have 

( , , ) ( , , )m x y t M Ax By tε δ ε ε− < < ⇒ ≥  

⇒ ( , , )M Ax By t > ( , , )m x y t ….(1) 

 

 

 

 

Hence 

 

2 1 2 1 2 2 2 2 1

2 2 2 1

2 2 2 1 2 2 2 2 2 1 2 1

2 2 2 1 2 1 2 2

2 2 2 1 2 1 2 2

( , , ) ( , , )

( , , )

( , , ), ( , , ), ( , , ),
min

( , , ), ( , , 2 )

( , , ), ( , , ),
min

n n n n n

n n

n n n n n n

n n n n

n n n n

M M y y t M Ax Bx t

m x x t

M Sx Tx t M Ax Sx t M Bx Tx t

M Ax Bx t M Bx Sx t

M y y t M y y t M

− − − −

− −

− − − − − −

− − − −

− − − −

= =

>

 
=  

 

=

{ }

2 2 1

2 1 2 2 2 2

2 2 2 1 2 2 1

2 2 1 2 1 2 2

2 2 2 1 2 2

( , , ),

( , , , ( , , 2 ))

( , , ), ( , , ),
min

( , , ), ( , , )

min , ....(2)

n n

n n n n

n n n n

n n n n

n n n

y y t

M y y t M y y t

M y y t M y y t

M y y t M y y t

M M M

−

− −

− − −

− − −

− − −

 
 
 

 
≥  

 
= =

 

 

Therefore, 
2 1 2 2n nM M− −> . Similarly we can show 

that 
2 2 1n nM M −> .Thus  

1n nM M −>  for all n; i.e., 

{ }nM  is a strictly increasing sequence of positive real 

numbers in [0, 1]. Hence it converges to [ ]0,1p∈ , 

which is the l.u.b. of { }nM .  

Next we claim that p = 1. If not, there exists a 0δ >  and 

a natural number m such that, for each n m≥ , 

1( , , )n n np M y y t M pδ +− < = ≤ …..(3) 

In particular, as 

{ }2 2 1 2 2 1 2 1( , , ) min ,n n n n nm x x t M M M− − −= = , 

we get 
2 1np M pδ −− < < .  Therefore, by using 

(3.2),  

 

2 2 1 2 1 2 2( , , ) ( , , )n n n n nM Ax Bx t M y y t M p− += = >
,  

 

a contradiction. Thus  p = 1; 

i.e.,
1lim lim ( , , ) 1.n n n

n n
M M y y t+→∞ →∞

= =  

We now show that { }ny  is a Cauchy sequence in X. If 

not, then there exists an  0ε >  and a subsequence 

{ }
iny of { }ny  such that  

1
( , , )

i i in n nM y y t M p
+

= ≤ . 

Since, 
1lim lim ( , , ) 1n n n

n n
M M y y t+→∞ →∞

= = ,  

We claim that there exist integers ,i im n satisfying 

1i i in m n +< <  such that  
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for each t > 0, 
( )1

( , , )
2i in m

p
M y y t

+
< …..(4) 

 

 

Suppose not. Then 
1 1 1 11 1( , , ) , , , , .

2 2i i i i i in n n n n n

t t
M y y t M y y M y y

+ + + +− −
   ≥ ∗   
   

 

 

 

Taking n → ∞ , we have 
1

(1 ) (1 )
lim ( , , ) 1 ,

2 2i in n
n

p p
M y y t p

+→∞

+ +
≥ ∗ = >    

a contradiction. 

 

 

Hence we choose the smallest positive integer im satisfying 1i i in m n +< <  such that, 

for each t > 0, 
( )1

( , , )
2i in m

p
M y y t

+
< . 

Therefore, 
( )

1

1
( , , )

2i in m

p
M y y t−

+
≥ . 

This gives  
1 1 1 1( , , ) , , , , .

2 2i i i i i in m n n n m

t t
M y y t M y y M y y− − − −

   ≥ ∗   
   

  

Taking in → ∞ , we have 

1 1

(1 ) (1 )
lim ( , , ) lim ( , , ) 1

2 2i i i i
i i

n m n m
n n

p p
M y y t M y y t− −→∞ →∞

+ +
≥ ≥ ∗ = , 

 

 

which is a contradiction to (4). Therefore our supposition is wrong. Hence { }ny  is a Cauchy sequence in X.  

Now suppose that SX is a complete subspace of X. Then the subsequence { 2 }ny , being contained in SX, must converge to a 

point z SX∈ , so there exists a 
1v S z−∈ , and hence Sv = z. Note that the subsequence{ }2 1ny −  also converges to z. As 

{ }ny is a Cauchy sequence containing a convergent subsequence, the sequence { }ny also converges to z.  

First we claim that Av = z. Suppose not. Then, on setting x = v and y = x2n-1 in (1), one gets, for      t  > 0, 

 

2 1 2 1 2 1

2 1 2 1

2 1 2 1

( , , ), ( , , ), ( , , )
( , , ) ( , , ) min .

( , , ), ( , , 2 )

n n n

n n

n n

M Sv Tx t M Sv Av t M Bx Tx t
M Av Bx t m v x t

M Av Bx t M Bx Sv t

− − −
− −

− −

 
> =  

 
 

Taking the limit as n →∞ , we have 

 

( , , ), ( , , ), ( , , ),
( , , ) min

( , , ), ( , , 2 )

( , , ),

M z z t M z Av t M z z t
M Av z t

M Av z t M z z t

M z Av t

 
>  

 
=

 

 

a contradiction. Therefore, Av = z = Sv. Hence maps A and S have a point of coincidence. 

As AX TX⊆ ,  Av = z z TX⇒ ∈ . Let
1w T z−∈ , then Tw = z.  

Next we claim that Bw = z. Suppose not. Again by using (1), we get 
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2 2

2 2 2

2 2

( , , ) ( , , )

( , , ), ( , , ), ( , , )
min .

( , , ), ( , , 2 )

n n

n n n

n n

M Ay Bw t m y w t

M Sy Tw t M Sy Ay t M Bw Tw t

M Ay Bw t M Bw Sy t

>

 
=  

 

 

Taking the limit as n →∞ , we have 

{ }
{ }

( , , ) min ( , , ), ( , , ), ( , , ), ( , , ), ( , , 2 )

min 1, ( , , ), ( , , ), ( , , )

( , , ),

M z Bw t M z z t M z z t M Bw z t M z Bw t M Bw z t

M Bw z t M Bw z t M z z t

M Bw z t

>

≥

=

 

 

a contradiction. Therefore, Bw = z = Tw. Thus the pair (B, T) has a point of coincidence. Hence we have shown that z = Sv = Av 

= Bw = Tw. The same result is obtained if we assume TX to be complete. Indeed, if AX is complete, then z AX TX∈ ⊆  

and, if BX is complete, then  z BX SX∈ ⊆  and hence the same result is obtained. As the pairs (A, S) and (B, T) are weakly 

compatible, then 

 

Az = ASv = SAv = Sz and Bz = BTw = TBw = Tz. 

 

Next we claim that Az = z. If not, then by (1), we have 

 

{ }
{ }

( , , ) ( , , )

( , , )

( , , ), ( , , ), ( , , ),
min

( , , ), ( , , 2 )

min ( , , ), ( , , ), ( , , ), ( , , ), ( , , 2 )

min ( , , ),1,1, ( , , ), ( , , ), ( , , )

(

M Az z t M Az Bw t

m z w t

M Sz Tw t M Sz Az t M Bw Tw t

M Az Bw t M Bw Sz t

M Az z t M Az Az t M z z t M Az z t M z Az t

M Az z t M Az z t M z Az t M Az Az t

M A

=

>

 
=  

 
=

≥

= , , )z z t

 

 

a contradiction. Therefore, Az = z. Similarly one can 

easily show that Bz = z. Thus z is the unique common 

fixed point of A, B, S and T. The uniqueness of fixed point 

is an easy consequence of inequality (3.2). Hence the 

result. 

We now give an example to illustrate the above theorem. 

 

Example 3.2. Let X = [2, 20] and for each t > 0 

and ,x y X∈ , and define ( , ,*)X M by 

( , , )
,   0,

-

0 0

M x y t

t
t

t x y

t




= 



>
+

=

  . 

Define self maps A, B, S and T on X by 

Ax = 2 if  x = 2 or  > 5,  Ax = x + 1  if  2 < x ≤ 5, 

Bx = 2 if  x = 2 or  > 5,   Bx = x + 2  if  2 < x ≤  5, 

S2 = 2, Sx = 8 if   2 < x ≤  5, Sx = 
1

3

x +
 if  x > 5, 

Tx = 2 if  x = 2 or  > 5,   Tx = x + 1 if  2 < x ≤  5. 

 

Then self maps A, B, S and T satisfy all of the conditions 

of the above theorem and have a unique common fixed 

point at x = 2. Moreover, maps neither satisfy the φ-

contractive condition nor the Banach type contractive 

condition. Also one may verify that the self maps A, B, S 

and T are discontinuous at the common fixed point x = 2 

and only S(X) is a complete subspace of X. Now we shall 

improve the above theorem using the common property 

(E.A.), as it relaxes the containment of the range of one 

map into the range of another, which is utilized to 

construct the sequence of joint iterates in common fixed 

point considerations. As a consequence, a multitude of 

recent common fixed point theorems of the form existing 

in the literature are sharpened and enriched. Also we are 

replacing completeness of subspaces by a more natural 

condition of closedness of subspace. Recall that a 

subspace SX is closed if, for a sequence {xn} in SX and a 

point x ∊ X,  

limn→∞ d (xn, x) = 0 ⇒x ∊ SX.  
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Theorem 3.3: Let A, B, S and T be four self maps in fuzzy 

metric space ( , , )X M ∗  satisfying condition (3.2) such 

that 

 (3.4) the pairs (A, S) and (B, T) satisfy common property 

(E.A.), 

 (3.5) SX and TX are closed subspaces of X. 

Then 

(I) A and S have a coincidence point, 

(II) B and T have a coincidence point. 

Moreover, if the pairs (A, S) and (B, T) are weakly 

compatible then the maps A, B, S and T have a unique 

common fixed point in X. 

 

Proof: This theorem easily proved along the same lines as 

Theorem 3.1 

We now give an example to illustrate the above theorem. 

 
Example 3.4. Let X = [2, 20] and for each t > 0 and 

,x y X∈ , define ( , ,*)X M by 

( , , )
,   0,

-

0 0

M x y t

t
t

t x y

t




= 



>
+

=

    . 

Define self maps A, B, S and T on X by 

Ax = 2 if  x = 2 or  > 5,  Ax = x + 1  if  2 < x ≤ 5, 

Bx = 2 if  x = 2 or  > 5,   Bx = x + 2  if  2 < x ≤  5, 

Sx = 2 if  x = 2 or  x > 5, Sx = 8  if   2 < x ≤  5,  

Tx = 2 if  x = 2 or  > 5,   Tx = 9 if  2 < x ≤  5, 

 

Take 
1

5nx
n

 = + 
 

 and 
1

5ny
n

 = + 
 

.  

 

Then limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn 

= 2 X∈ . Thus the pairs (A, S) and (B, T) satisfy 

common property (E.A.). One can easily verify that self 

maps A, B, S and T satisfy all the conditions of the above 

theorem and have a unique common fixed point x = 2. 

Here SX and TX are closed subspaces of X where as 

neither AX nor BX is closed subspace of X. Also none of 

the four self maps is complete.  

 

Moreover maps satisfy neither a φ-contractive condition 

nor a Banach type contractive condition. Also one may 

note that neither BX SX⊄ nor AX TX⊄ and, at the 

common fixed point x = 2, the self maps A, B, S and T are 

discontinuous.   Moreover it is observed that common 

property (E.A) require completeness / closedness of 

subspaces for the existence of  common fixed point, so 

attempt has been made to drop closedness of subspaces 

from theorem 3.3 using JCLRST property. 

 

Theorem 3.5: Let A, B, S and T be four self maps in fuzzy 

metric space ( , , )X M ∗  satisfying condition (3.2) such 

that 

(3.6) (A, S) and (B, T) satisfy the JCLRST property.  

 

Then the pairs (A, S) and (B, T) have a coincidence point. 

Further, if the pairs (A, S) and (B, T) are weakly 

compatible then A, B, S and T have a unique common 

fixed point in X.        

 

Proof: As the pairs (A, S) and (B, T) satisfy the JCLRST 

property, there exists two sequences {xn} and {yn} in X 

such that  

lim lim lim limn n n n
n n n n

Ax Sx Ty By Su Tu
→∞ →∞ →∞ →∞

= = = = =

 for some u X∈ . 

We assert that Au = Su. From (3.2), taking x = u, y = yn ,  

 

 

 

( , , ), ( , , ), ( , , ),
( , , ) ( , , ) min ,

( , , ), ( , , 2 )

n n n

n n

n n

M Su Ty t M Su Au t M By Ty t
M Au By t m u y t

M Au By t M By Su t

 
> =  

 
 

and, taking the limit as n →∞ , we have 

( , , ), ( , , ), ( , , ),
( , , ) min

( , , ), ( , , 2 )

( , , ),

M Sz Su t M Su Au t M Su Su t
M Au Su t

M Au Su t M Su Su t

M Su Au t

 
>  

 
=

 

 

 

 

a contradiction. Therefore, Au = Su, which shows that u is a coincidence point of the pair (A, S). 

Now we assert that Bu = Tu.  From (3.2), taking x = u, y = u, we get 
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( , , ), ( , , ), ( , , ),
( , , ) ( , , ) min

( , , ), ( , , 2 )

M Su Tu t M Su Au t M Bu Tu t
M Au Bu t m u u t

M Au Bu t M Bu Su t

 
> =  

 
 

{ }min ( , , ), ( , , ), ( , , ), ( , , ), ( , , 2 )

( , , ),

M Su Su t M Tu Tu t M Bu Tu t M Tu Bu t M Bu Tu t

M Tu Bu t

=

=
 

 

 

a contradiction. Hence Bu = Tu, which shows that u is a coincidence point of the maps B and T. 

Thus Tu = Bu = Au = Su. Now we assume that z = Tu = Bu = Au = Su. Since the pairs (A, S) and (B, T) are weakly 

compatible, Az = ASu = SAu = Sz,   Bz = BTu = TBu = Tz. 

If   Az ≠ z, then, by using inequality (3.2) and taking x = z, y = u, we have 

 

 

( , , ), ( , , ), ( , , ),
( , , ) ( , , ) min

( , , ), ( , , 2 )

M Sz Tu t M Sz Az t M Bu Tu t
M Az Bu t m z u t

M Az Bu t M Bu Sz t

 
> =  

 
 

{ }min ( , , ), ( , , ), ( , , ), ( , , ), ( , , 2 )

( , , ),

M Az z t M Az Az t M z z t M Az z t M z Az t

M Az z t

=

=
 

 

 

a contradiction. Therefore, Az = z = Sz. 

Similarly, one can prove that Bz = Tz = z. Hence Az = Bz 

= Sz = Tz, and z is common fixed point of A, B, S and T. 

The uniqueness of the fixed point is an easy consequence 

of inequality (3.2).  Hence the result. 

We now give an example to illustrate the above theorem. 

 

Example3.6. Let X = [2, 20] and for each t > 0 and 

,x y X∈ , define ( , ,*)X M by 

( , , )
,   0,

-

0 0

M x y t

t
t

t x y

t




= 



>
+

=
    . 

Define self maps A, B, S and T on X by 

Ax = 2 if  x = 2 or  > 5,  Ax = x + 1  if  2 < x ≤  5, 

Bx = 2 if  x = 2 or  > 5,   Bx = x + 2  if  2 < x ≤  5, 

Sx = 2 if  x = 2 or  x > 5, Sx = x + 1 if   2 < x ≤  5, 

Tx = 2 if  x = 2 or  > 5,   Tx = x +9 if  2 < x ≤  5, 

Take 
1

5nx
n

 = + 
 

 and 
1

5ny
n

 = + 
 

.  

 

Then limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = 

2 2 2S T= = . Thus the pairs (A, S) and (B, T) satisfy 

the JCLRST property. Also self maps A, B, S and T satisfy 

all of the conditions of the above theorem and have a 

unique common fixed point at x = 2. Notice that none of 

AX, BX, SX and TX is a closed or complete subspace of X. 

Also at the common fixed point x = 2 all of the self maps 

A, B, S and T are discontinuous. Moreover, maps satisfy 

neither a φ-contractive condition nor a Banach type 

contractive condition. Also neither ( ) ( )B X S X⊄  nor 

( ) ( ).A X T X⊄  

 

Remark 3.7: 1. Note that none of the self maps A, B, S 

and T is continuous at their common fixed point in all of 

the examples. Thus we have not only generalized the fixed 

point theorems of the form, but have also provided an 

answer to the problem of Rhoades [36] on the existence of 

a contractive condition, which is strong enough to 

generate a fixed point but does not force the map to be 

continuous at the common fixed point.  

2. It is well known that the Meir-Keeler type contractive 

condition does not ensure the existence of a fixed point 

unless some additional condition is imposed on δ or a φ-

contractive type condition is also used. However, in the 

present paper, we have neither imposed any additional 

condition on δ nor used a φ-contractive condition together 

with in any theorem. So we have improved the known 

results existing in literature.   

3. In theorem 3.5 we have neither used completeness 

/closedness of subspaces nor containment of range of 

maps which is known to be essential to prove a common 

fixed point theorem.  We have illustrated our argument 

with the help of examples. 
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