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ABSTRACT 

 

The aim of this paper is to develop a connection between Legendre and Hermite matrix polynomials recently 

introduced in [8, 25] is derived. We also obtain various new generalized forms of the Legendre matrix polynomials by 
using the integral representation method. An expansion of Legendre matrix polynomials in a series of Laguerre matrix 

polynomials is established.  
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1. INTRODUCTION 

 

It is well known that many of the ordinary special functions 

of mathematical physics [5, 15] can be derived from the 

theory of group representations. More recently, Laguerre, 

Hermite and Gegenbauer matrix polynomials recent 

appeared in connection with the study of differential 

equations in papers [1-4, 8, 11, 13, 16- 27]. The problem of 

the development of matrix functions in a series of 

Legendre’s matrix polynomials requires, which is not 

available in the literature, some new results about the 

matrix operational calculus. From this motivation, we 

prove some new properties for the Legendre matrix 

polynomials. The outline of this paper is as follows: 

Section 2 is to establish a connection between Legendre 

and Hermite matrix polynomials recently introduced in [8, 

25]. In particular, the two-index Legendre matrix 

polynomials of two variables are presented. We get an 

expansion of the Legendre matrix polynomials in a series 

of Laguerre matrix polynomials. Finally, we define and 

study of the generalized Legendre matrix polynomials by 

means of the hypergeometric matrix function.  
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1.1. Preliminaries 

 

In this section, we will give some known facts, definitions, notation, lemma, theorem and properties to be used throughout the 

development in the following section. 

 

Throughout the paper, we assume that A  is a matrix in 
NNC 

, its spectrum )(A  will denotes the set of all the 

eigenvalues of A . Furthermore the identity matrix of 
NNC 

 will be denoted by I .  

 

Fact 1.1 (Dunford and Schwartz [6]) If )(zf  and )(zg  are holomorphic functions of the complex variable z , which are 

defined in an open set   of the complex plane and if A  and B  are matrices in 
NNC 

 such that )(A , 

)(B  and BAAB = , then  

 ).()(=)()( AfBgBgAf  

  

If 0D  is the complex plane cut along the negative real axis and )(log z  denotes the principle logarithm of z , then z  

represents ))(log
2

1
(exp==2

1

zzz . If A  is a matrix in 
NNC 

 with 0)( DA  , then 

))(log
2

1
(exp==2

1

AAA  denotes the image by z  of the matrix functional calculus acting on the matrix A .  

 

Definition 1.1 (Jódar and Cortés [7]) If A  is a positive stable matrix in 
NNC 

, then the Gamma matrix function )(A  

has been defined as follows  

 ).ln)((exp=;=)(
0

tIAtdtteA IAIAt  


              (1.1) 

  

Definition 1.2 (Jódar and Defez [10]) If A  is a matrix in 
NNC 

 such that 

  

 0,integersallformatrixinvertibleanis  nnIA              (1.2) 

we have  

 

.=)(1;);()(=)1)()...((=)( 0

1 IAnAnIAInAIAAA n  
     (1.3) 

where nA)(  is the Pochhammer symbol (the shifted factorial).  

  

Notation 1.1 Relying on [18], from the relation (1.3), it is easy to obtain  

,0;])[()(1)(=)( 1 nknIAIAA kn

k

kn  

                         (1.4) 

 and  

.0;
!

)(
=

!

)(
=

)!(

1)(
nk

n

nI
I

n

n
I

kn

kk

k







                                 (1.5) 

  

Lemma 1.1 (Defez and Jódar [5]) If ),( nkA  and ),( nkB  are matrices in 
NNC 

 for 0n , 0k , the following 

relations are satisfied  

 

).,(=),(

),2,(=),(

0=0=0=0=

]
2

1
[

0=0=0=0=

knkBnkB

knkAnkA

n

knkn

n

knkn












                         (1.6) 
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 Similarly, we can write  

 

),,(=),(

),2,(=),(

0=0=0=0=

0=0=

]
2

1
[

0=0=

knkBnkB

knkAnkA

kn

n

kn

kn

n

kn












                         (1.7) 

 

where [.]  is the greatest integer symbol.  

 

Let us recall some important properties of the Hermite matrix polynomials.  

 

Definition 1.3 (Jódar and Company [8]) Let A  be a positive stable matrix in 
NNC 

 such that  

 

 ( ) > 0, for all eigenvalues ( ).Re z z A                     (1.8) 

 

Then the 
thn  Hermite matrix polynomials are defined by  

 

 0.,)2(
)!2(!

1)(
!=),( 2

]
2

1
[

0=




  nAx
knk

nAxH kn
k

n

k

n
                 (1.9) 

  

Definition 1.4 (Metwally et al. [14]) If A  is a positive stable matrix in 
NNC 

, actually it satisfies the condition (1.8), then the 

two-index Hermite matrix polynomials of two variables are defined by the series  

 

 0;)(
)!(!

1)(
!=),,(

][

0=

, 


  nmAx
mknk

y
nAyxH mkn

kkm

n

k

mn               (1.10) 

 

and the generating matrix function  

 

 ).(exp=),,(
!

,

0=

IytmAxtAyxH
n

t m

mn

n

n




                     (1.11) 

  

Theorem 1.1 (Metwally et al. [14]) The two-index Hermite matrix polynomials of two variables satisfy the following addition, 

multiplication theorems  

 

 ),,(=),,( ,, AyxHAyxH m

mnmn

n                              (1.12) 

 and  

, 1 ,

, 1

=0

1 1
, , , ,
2 2

( , , ) = !
!( )!

k m n k mn

n m

k

H x y A H x y A

H x x y A n
k n k

 

 


   
   
   


       (1.13) 

 

where   and   are constants, respectively.  

 

Nota that for 2=m , ),,(=),,(,2 AyxHAyxH nn  where ),,( AyxH n  is Hermite matrix polynomials of two 

variables.  
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Definition 1.5 (Jódar and Sastre [12]) Let A  be a matrix in 
NNC 

 such that  

 

 ( ) for every integer > 0,k A k                   (1.14) 

 

and   is a complex number with   0>Re . Then the Laguerre matrix polynomials are defined by  

 

 
  

        
 

.
!!

1
=

1

0=

,

knk

xIAIA
xL

k

kn

kn

k

A

n








       (1.15) 

  

There are numerous interesting relations connecting the Hermite matrix polynomials and the Legendre matrix polynomials [26]. 

We quote two simple integral representation relations. One of relation is  

 

 .),(
!

2
=),(

2

0
dtAxtHte

n
AxP n

nt

n







               (1.16) 

  

A real integral relation giving ),( AxH n  in terms of ),( AxPn  is  

21 2 1( , ) = 2 exp( ) , .n t n

n n
x

x
H x A x e t P A dt

t


    

 
 

                     (1.17) 

 

2. CONNECTIONS BETWEEN LEGENDRE, HERMITE AND LAGUERRE MATRIX POLYNOMIALS 

 

Let A  be a positive stable matrix in 
NNC 

. Then the Legendre matrix polynomials is defined by (Upadhyaya and Shehata 

[25])  

 
)!2()!(!2

)2()!2(21)(
=),(

22

2
]

2

1
[

0= knknk

Axkn
AxP

kn

knk
n

k

n







                (2.1) 

 

or by using the Hermite matrix polynomials of integral representation as follows  

 

 .),(
!

2
=),(

2

0
dtAxtHet

n
AxP n

tn

n







                   (2.2) 

By using the relation  

 

1

2( , , ) = , ,
n

n n

x
H x y A y H A

y

 
  
 

                       (2.3) 

 

we can give a new connection Legendre matrix polynomials and Hermite matrix polynomials of two variables 

  

 
2 2

20

2 1
( , ) = , , .

!

t n

n nP x A e t H x A dt
tn 


  

 
 

                    (2.4) 

or  

 .),,(
!

2
=),( 222

0
dtAtxtHe

n
AxP n

t

n







                    (2.5) 

 

Thus, the following result has been established.  

 

Theorem 2.1 Let A  be a positive stable matrix in 
NNC 

. Then the integral expressions (2.4) and (2.5) hold true.  
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Multiplying (2.5) by 
nu  and then summing up over n , we find  

 

.
!

),,(
2

=),( 22

0=

2

0
0=

dt
n

u
AtxtHeuAxP

n

n

n

tn

n

n








                 (2.6) 

 

Using the generating matrix function of Hermite matrix polynomials of two variables, we get the following desired generating 

matrix function of the Legendre matrix polynomials:  

 
1

2 22

=0

( , ) = 2 ; 2 <1.n

n

n

P x A u I xu A u I xu A u I
 

    

 

Thus the result has been established.  

 

Theorem 2.2 If A  is a positive stable matrix in 
NNC 

, then the Legendre matrix polynomials have the following generating 

matrix function:  

 
1

2 22

=0

( , ) = 2 ; 2 <1.n

n

n

P x A u I xu A u I xu A u I
 

                (2.7) 

  

Let us now introduce the two-index Legendre matrix polynomials of two variables of two matrices through the integral 

representation  

2 2 2

, 2 20

2 1 1
( , , , ) = , , , , .

! !

t m n

m n m nP x y A B e t H x A H y B dt
t tm n 


     

   
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        (2.8) 

 where A  and B  are two positive stable matrices in 
NNC 

. From (1.10) and (2.8), we obtain  

.
)!()!2()!2(!!2

)2()2()!222(21)(
=),,,(

2222

22
]
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[
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]
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[
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lkmn
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n

l

m

k
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






      (2.9) 

 

From (1.12), the integral representation (2.12) becomes 

  

 .),,(),,(
!!

2
=),,,( 22222

0
, dtBtytHAtxtHe

nm
BAyxP nm

t

nm







        (2.10) 

 

It is worthy to mention that, on taking 0=m  or 0=n , (2.8), (2.9) and (2.10) of the two-index Legendre matrix 

polynomials of two variables reduce to (2.1), (2.4) and (2.5) of the Legendre matrix polynomials, respectively. 

 

By (2.4), we have  

 
2 2

20

2 1
( , ) = ( ), , .

!

t n

n nP x z A e t H x z A dt
tn 


  

  
 

                  (2.11) 

 

 Applying (1.13) in (2.11), we obtain 

  

2 2

2 20
=0

2 1 1 1
( , ) = , , , , .

!( )! 2 2

n
t n

n n k k

k

P x z A e t H x A H z A dt
k n k t t






   
    
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   (2.12) 

 

 From (1.12), one gets  
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1
2 2 2

2 20
=0

2 1 1 1
( , ) = 2 , , 2 , , .

!( )!

n

n
t n

n n k k

k

P x z A e t H x A H z A dt
k n k t t








   
    

    
  (2.13) 

 

These results are summarized below.  

 

Theorem 2.3 If A  is a positive stable matrix in 
NNC 

, then the Legendre matrix polynomials satisfy the addition formula as 

follow:  

  2
,

=0

( , ) = 2 2 , 2 , , .
n n

n n k k

k

P x z A P x z A A


                  (2.14) 

More generally, we can also the generalized Legendre-type matrix polynomials by using their integral representation. 

 

Let A  and B  be positive stable matrices in 
NNC 

, and BAAB = . We say generalized Legendre-type matrix 

polynomials, the new matrix polynomials defined by the following relation:  
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BAxP
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kn
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 or  

 .),(
!

2
=),,(

2

0
dtAxtHte

n
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nBt

n







                      (2.16) 

In a similar way, we define the generalized Legendre-type matrix polynomials of two variables by using Hermite matrix 

polynomials as follows:  
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1
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 or  
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!

2
=),,,(

2

0
dtAyxtHte

n
BAyxP n

nBt

n







                      (2.18) 

 

 According to (1.12), the integral representation (2.18) becomes  

 

 .),,(
!

2
=),,,( 222

0
dtAytxtHe

n
BAyxP n

Bt

n







                    (2.19) 

 Also, we give the relation  

2( , , , ) = , , .
n

n n

x
P x y A B y P A B

y

 
  
 

                                  (2.20) 

 

The generalized Legendre-type matrix polynomials of two variables involving Hermite matrix polynomials can be define in the 

following form  

 

 .),,(
)(!

2
=),,,( 12

0
dtAyxtHte

n
BAyxP n

nBt

n










             (2.21) 

 

From (1.10) and (2.21), we find that the generalized Legendre-type matrix polynomials are defined by the following series  
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1 ( 1) (2 2 1) ( 2 )
( , , , ) = ,

1( )
2 !( 2 )! ( 1)

2

n k n
k k n k

n
n kk

B n k y x A
P x y A B

k n k n k












 


 

    

  
     

 
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 where 0>)(Re . 

 

Here, we give an expansion of the Legendre matrix polynomials in a series of Laguerre matrix polynomials relevant to the 

present investigation is summarized in the following theorem.  

 

Theorem 2.4 Let A  be a positive stable matrix in 
NNC 

. An expansion of Legendre matrix polynomials in a series of 

Laguerre matrix polynomials is given by  
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where )(),( xL A

n


 stands for Laguerre matrix polynomials [12].  

  

Proof. In [12], we recall the relation 
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From (2.1) and (2.24), we get  
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Using (1.7), we obtain  
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From (1.6), we have  
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Substituting the well-known identities  
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Therefore, we have  

 

 

1
[ ]

2 12

=0 =0 =0 =0

1 2

1 1 2 ( )

2 3

=0 =0

( 1) ( 2 ) [( ) ]
( , ) =

!( 2 )!

1 1
( 1) [ ] 2 ( )

2 2

1 1
[ ( 1) ] [( ( ( ) )) ] ( )

2 2

1
= ,

2

n
k s n s k

n s
n

n n s k

k k

n s

n s k

n s k A n s

k s

k

n s

A A I
P x A t

k n k

n s A I

A n s I A n s I L x t

F nI



     

 





     

 

 



   
      

   

 
       

 

 

 



2

1

1 ( , )

1
( 1)

2

1 1 1
;( ) , ( ( ) ), ( ( 1) ); ( )

2 2 2 2 2

1
( 1) ( 2 )

2
( ) [( ) ] ( ) .

!

s n s

n s A n sn s
n s s s

n I

n s I A n s I A n s I A

A

A I A I L x t
n











   







 
              

 
  

 
 

 

 

From (1.6), we get  
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On comparing the coefficients of 
nt , we obtain (2.23). Thus the proof is completed. Finally, it is now interesting to extend the 

above results to new generalized forms of generalized Legendre matrix polynomials of two variables can be defined in the form:  
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where A  and B  are commutative matrices in 
NNC 

 such that A  satisfies the condition (1.8) and B  satisfies the 

condition (1.2). 

 

If B  is the zero matrix, then the Legendre matrix polynomials of two variables reduce to  
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From (2.26), we can write in the following integral representation  
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Theorem 2.5 Let A  and B  be commutative matrices in 
NNC 

 such that A  satisfy the condition (1.8) and B  satisfy 

the condition (1.2). Then the generalized Legendre matrix polynomials of two variables have the following integral 

representation:  

 

1 ( )

0 0

1
( , , ) = ( ) , (1 ), .

!

B t u n B I

n n

yu
P x y A B e t u P x y A dtdu

n t

 
     

  
 

          (2.29) 

   

Proof. Using (2.25) and (2.28), we obtain (2.29). Thus the result is completed.  

 

In this paper, several new families of Legendre matrix polynomials are introduced using the integral representation. The 

possibility of combining these results to study new families of Legendre matrix polynomials is a problem for further work.  
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