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ABSTRACT 
 

In the present article, the radial and peripheral velocity components are determined for mono-metal rod extrusion 

through conical dies and then they are extended to extrusion process of initially bonded bimetal rods. By optimizing 
the total power with respect to the shape of the inlet shear boundary, the amount of extrusion force is obtained. The 

obtained solutions are tested with other ones found in the literature about  this theme and with the results produced 

by the finite element method. It is found that all of the predicted results are in good agreement with the values 
computed by the finite element method and experimental results. 
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1. INTRODUCION 

 

The first step in modeling of a metal forming process by 

the upper bound method is to choose a velocity field for 

the material undergoing plastic deformation. The 

accuracy of predictions, load and metal flow, strongly 

depends on the kinematically admissible velocity field 

chosen. It is always desirable to utilize a velocity field, 

which is as close to reality as possible. Even though the 

velocity field may not match the flow behavior of the 

workpiece exactly, if it is chosen with care, valuable 

insight about the process can be obtained.  

Extrusion process has been studied by means of 

different researchers in recent years because of its great 

importance in the industrial sector. Among different 

forming processes which are applicable for producing a 

bimetal rod, extrusion has some unique advantages over 

other processes such as rolling and drawing. The 

compressive state of stress and the possibility of 

producing metallurgical bonds between the two metals 

in extrusion makes this process a suitable choice for 

producing bimetal rods [1,2]. One of the most widely 

used bimetal materials is bimetal rods consisting of Al 

and Cu. In comparison with a Cu rod, the bimetallic rod 

is 40–60% lighter and 30–40% cheaper [1]. Some 

studies concerning the extrusion of bimetal rods have 

been presented. For example, Avitzur et al. [3] used the 

upper bound method to analyze fracture of the core, 

whilst Osakada et al. [4] used the energy method to 

discuss the occurrence of necking in the hard core layer. 

Tokuno and Ikeda [5] verified the deformation in 

extrusion of composite rods by experimental and upper 

bound methods. Yang et al. [6] studied the extrusion of 

composite rods through curved dies by experimental 

and upper bound methods. Sliwa [7] proposed a 

velocity field for the extrusion of composite rods, but 

his model is restricted to extrusion with a large angle of 

the die. Chitkara and Aleem studied the mechanics of 

extrusion of bimetallic tubes from solid circular billets 

using fixed mandrel with application of generalized 

upper bound analyses [8]. They investigated the effect 

of different parameters such as extrusion ratio, frictional 

conditions, and shape of the dies and that of the 

mandrels on the extrusion pressures. Kang et al. [10] 

designed the die for hot forward and backward 

extrusion process of Al/Cu clad composite by 
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experimental investigations and FEM simulations. 

Hwang [11] studied the plastic deformation behaviour 

within a conical die during composite rod extrusion by 

experimental and upper bound methods. They assumed 

the interface as a line segment. Kazanowski et al. [12] 

discussed the influence of initial bi-material billet 

geometry on the final product dimensions. The flat 

faced die used for all experiments and the proposed 

bimaterial billet design modifications evaluated 

experimentally and by finite element modelling using 

the Deform 3D system. Nowotynska and Smykla [13] 

studied the influence of die geometric parameters on 

plastic flow of layer composites during extrusion 

process by experimental method. Khosravifard and 

Ebrahimi [14] analyzed the extrusion of Al/Cu bimetal 

rods through conical dies by FEM and studied the 

effects of the extrusion parameters in creation of 

interfacial bonds. FEM needs more calculation 

resources and a good code knowledge by the users. 

Haghighat and Asgari [15] proposed a generalized 

spherical velocity field for bimetal tube extrusion 

process through dies of any shape. They assumed the 

boundaries at the entrance and the exit of the 

deformation zone as two concentric spherical surfaces 

with their centres at the intersection of the die surface 

with mandrel surface.  

Most of mentioned analyses were based on fixed 

velocity fields, which cannot incorporate the effects of 

lubrication conditions, reduction in area and the die 

angle. These analyses for bimetal rod extrusion, 

however, were incapable of predicting the final 

thicknesses of the constituent materials with sufficient 

accuracy.  

Experimental observations [5,6] and computational 

results by the finite element method [7] reveal that  

1- The velocity field and the deformation region vary 

according to the die angle, reduction in area and 

lubrication conditions.  

2-The interface surface between two metals in the 

deformation zone is a curve segment. 

3-The particles in deformation zone move in the curved 

paths. 

These facts show a particle, in deformation zone, has 

both radial and circumferential velocity components. In 

order to cover these drawbacks in upper bound analysis, 

in the present article, we begin in the next section with 

the derivation of the velocity field for mono-metal rod 

by assuming the boundary at the entrance into the 

deformation zone as an arbitrarily curved surface and 

the boundary at the exit as a spherical surface. Then, by 

minimizing the extrusion power formulated from the 

derived velocity field the optimized plastic boundary 

are determined. A further discussion and comparison 

with FEM simulation results for the extrusion of 

bimetal rods composed of copper and aluminum are 

presented.  

 

 

 

 

2. MONO-METAL ROD EXTRUSION ANALYSIS 

 

Fig. 1 shows a schema of the mono-metal rod extrusion 

process through a conical die. The billet considered for 

analysis is a rod with the initial and final radial of Ri and 

R0, respectively.  

 

2.1. Velocity Fields in Deformation Zones 

 

The first step in modeling a metal forming operation by 

the upper bound method is to choose a velocity field for 

the material undergoing plastic deformation. As shown 

in Fig. 1, the material is divided into three zones in 

which the velocity field is continuous. In zones I and III 

the materials are rigid and move as rigid bodies with the 

velocity
iV in the extrusion direction; after extrusion, 

the rod moves with the velocity
fV in the axial 

direction. 

 

 
Fig. 1. Deformation zones for mono-metal rod extrusion 

process. 

 

Zone II is the deformation region. From the volume 

flow balance, we have 

 
2

2

f
i f

i

R
V V

R


                                                            (1)   

 

The shear boundary at the outlet of the deformation 

zone is assumed to be spherical surface with its center 

at the virtual apex of cone of the die and in the spherical   

coordinate system , ,r   is given by equation  

 

sin

f
f f

R
r 


 

                                                         (2)                                             

Shear boundary of 1S is assumed to be portion of 

exponential surface and it is represented mathematically 

by equation 

( )
( , ) exp[ ]

i i

b
r

 
  






                                  (3)                                                           

Quantity b is geometric parameter of the shape of the 

boundary at the inlet of the deformation zone II. 

Quantityb can assume negative, zero or positive 

values. When b is negative, the inlet boundary moves 

away from the origin O, when b  is positive the 

boundary move towards the apex of the die, when b is 

equal to zero, the inlet shear boundary is a spherical 

surface and in this case, (i.e. 1g  ), Eq. (3) reduces 

to the shear surface proposed by Avitzur for flow 

through a conical die [7]. 
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The function of the boundary for equal axial 

components of velocity in the deformation zone II may 

be expressed as 

 

( )
( , ) exp[ ] ( , )f

i f

b
r g
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     
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
 
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   (4)                                                          

where   is the radius at arbitrary equal axial 

components of velocity and 
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For simplicity ( , )g   and ( , )r    will be 

abbreviated to g and r , respectively. In zone II, 

because volume does not change, the component of the 

radial velocity becomes (see Fig. 1) 
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The full velocity field for the flow of the material in 

deformation zone II is obtained by invoking volume 

constancy. Volume constancy in spherical coordinate 

system is defined as 
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The strain rates in spherical coordinates are defined as 
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For the rod extrusion, 0U  and a full velocity field 

is obtained by placing
rU , from Eq. (6) into Eqs. (7)-

(8), solving forU and applying boundary conditions 

for die axis and for the die surface we have  
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Where 
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Therefore the velocity components in deformation zone 

II are given as  
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Where 
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Based on the established velocity field, the strain rates 

in the deformation zone can be given in usual matter. 

The six relationships to determine the strain rates 

components in deformation zone IIs are; 
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2.3. Upper Bound Analysis          

   

The total deforming power required for the process can 

be split up into three parts: 

(a)  Internal power of deformation; 

(b)  The power loss due to shear at surfaces of the 

velocity discontinuities; and 

(c)  The power loss due to friction along the die-

material interface. 

Thus, with reference to Fig. 1, the total power equals 

the sum of internal power of deformation for zone II, 

power loss at the velocity discontinuities 1S  and 2S

and the power loss due to friction on die surface 3S . 

The internal power of deformation can be calculated as 

follows 
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where 0 is the mean flow stress of the material and 

dV is a differential volume in the deformation zone.  
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Thus, the equation to calculate the internal power of 

deformation in zone II is  
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where 0 is the mean flow stress of the material. In 

upper bound method (which includes surfaces of 

velocity discontinuity), the integration of the shear 

strength of the material times the tangential velocity 

difference along the specified surface yields a finite 

quantity of power. This power loss is given by 
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The magnitude of the velocity discontinuity across 

surface 1S can be written as 
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An element of the surface area for 1S  is 
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Substituting equation (21) for dS, inserting the amount 

of the velocity discontinuity of equation (20) into 

equation (19) and simplifying, it follows 
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For shear surface 2S , the amount of the velocity 

discontinuity is 
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Assuming the friction stress to be a constant proportion 

of the flow stress of the material, it can be written 

 

0

3
f

f
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W m v dS
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                                      (24)                                                                         

Where m is the constant friction factor. Frictional 

power is dissipated along the conical surface of the die, 

surface 
3S
 

in Fig. 1, the magnitude of the velocity 

discontinuity becomes 
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Thus 
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The effect of friction in the container is neglected in this 

study. Therefore, the frictional power loss along the 

container surface is vanished. The externally supplied 

power is given by 

 

1 2ext e i i S f SW FV W W W W             (27) 

where eF is the required extrusion force. In accordance 

with the usual practice of the upper bound method, the 

external power 
extW can be equated to the sum of all 

the powers consumed. Therefore, the total upper bound 

solution for extrusion force is given by 

 

1 2i S S f
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i

W W W W
F

V

  
                          (28) 

 

Consideration equation (31) reveals that the extrusion 

force required for rod extrusion becomes a function of 

the process parameters (radii of initial billet and final 

rod, friction factor and semi die angle) and the 

parameter associated with the velocity field, quantity b
which determine the shape of the inlet boundary of 

deformation zone. Therefore, minimization of equation 

(31) with respect to b
 
will yield a lower upper bound 

solution for the extrusion force. Thus, the lowest upper 

bound value of the relative extrusion force is obtained 

among its family of boundary shapes. A computer 

program was used to perform the minimization process.  

 

3. BIMETAL ROD EXTRUSION PROCESS 

ANALYSIS 

 

Fig. 2 shows a schema of the extrusion process of an 

initially bonded bimetal rod through a conical die. The 

billet considered for analysis is a bimetal rod made up 

of a rod and an annular tube of two different ductile 

materials with the mean flow stresses, 0c and 0s . 

The subscripts c and s denote core and sleeve, 

respectively. The initial outer and the interface of the 

initial billet radii of are
iR and

icR , respectively. The 

outer radius of the extruded bimetal rod is
1 fR and the 

interface radius of the final extruded rod  

is
2 fR . 

 

 
Fig. 2. Deformation zones for bonded bimetal rod 

extrusion process. 

 

It is assumed that before and after the commencement 

of the extrusion, bond exists between two metals. 

Hence, there is not a relative motion between the metals 

whilst they are deforming. It then follows from material 

continuity that the materials must deform at different 

rates and therefore each material suffers a different 

strain.  

 

3.1. Velocity Fields in Deformation Zones 

 

The kinematically admissible velocity field which 

explained in Section 2, is applied to the case of 

extrusion of a bimetal rod as shown in Fig. 2. Each 

layer of the bimetal rod is divided into three zones in 

which the velocity field is continuous. In zones Is, Ic, 

IIIs and IIIc the materials are rigid and move as rigid 

bodies. Before entering the die, each constituent 

material of the bimetal rod moves as a rigid body with 

the same velocity iV in the extrusion direction; after 

extrusion, the bimetal rod moves with the velocity 
fV

in the axial direction. It then follows that each metal 

deforms to a different reduction.  Zones IIs and IIc are 

the deformation regions. The shear boundary at the 

outlet of the deformation zone 2S , is assumed to be 

spherical surface with its centers at the virtual apex of 

cone of the die and in the spherical coordinate system

( , , )r   is given by equation  

2

2
sin sin

f f
f

R R


 
                                          (29)  

                                                        

In deformation zone IIs, the velocity field can be given 

by Eq. (12).  
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The angle
1 of the interface at the inlet shear boundary, 

shown in Fig. 2, is given by solving the following 

equation   

 

1
1

tan
( )

exp[ ]

ci

i

R

b


 
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


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                         (30)                                                            

From continuity of material, the angle 2 , shown in 

Fig. 2, is given by    

 

2
sin sinci

i

R

R
 

                                               (31) 

  

3.2.1. Calculation of the power terms  

 

Referring to Fig. 2, the total power equals the sum of 

internal power of deformation for zones IIs and IIc, 

power loss at the velocity discontinuity surfaces
1S and 

2S and the power loss due to friction on die surface
3S

.The equation to calculate the internal power of 

deformation in zone IIs is  
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where ( )  is the angular position of the each point 

on the interface and 0s is the mean flow stress of the 

sleeve material and is given by 
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The equation to calculate the internal power of 

deformation in zone IIc is  
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where 0c is the mean flow stress of the core material 

and is given by 
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The shear power consumed along shear boundary 1S

can be split up into two parts and 
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The shear power consumed along shear boundary 2S is 
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W V d

r






    


 


 (39) 

 

The frictional power losses along the die surface is 

calculated by Eq. (29) by placing 0s  instead of 0 . 
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Therefore, the total upper bound solution for extrusion 

force is given by 

 

1 2 1 2is ic S s S s S c S c f
e

i

W W W W W W W
F

V

     


(40) 

 

As mentioned earlier, each constituent layer may not 

deform homogeneously owing to dissimilar mechanical 

properties. Thus, the exit radius ratio of the core/sleeve 

differs from those of the assembled billet. Herein, 

parameter b is introduced to account for this non-

homogeneous deformation. Therefore, minimization of 

above equation with respect to b will yield a lower 

upper bound solution for the extrusion force and predict 

the final thickness of each material.  

 

4. RESULTS AND DISCUSSION 

 

To make a comparison with the developed analytical 

model, initially bonded bimetal rods composed of 

aluminium as core and copper as sleeve, were used. The 

configuration of the sleeve and core layers is shown in 

Fig. 3.  

 
Fig. 3. Configuration of the bimetal rod before 

extrusion (dimensions are in mm). 

 

The flow stresses for copper and aluminium in room 

temperature obtained as [11] 

 
239.02.189  Al MPa                                      (41)                                                               

0.113335.2
Cu

  MPa                                       (42)  

                                                       

The relative extrusion pressure as a function of b for 

=10 and =30 and RA=25 are plotted in Fig. 4. The 

value of b at which the relative extrusion pressure is 

minimum. In the present research, FEM analysis is 

performed by ABAQUS software package. 

 

Considering the symmetry in geometry, two 

dimensional axi-symmetric models are used for FEM 

analyses. The die is assumed as a rigid model. Since the 

analytical rigid option is used for the rigid bodies, they 

are not meshed.The bimetal rod has been meshed with 

the CGAX4R element. This type of elements belongs to 

the ABAQUS element library. The die model is fixed in 

other directions by applying displacement constraint on 

its nodes while the punch model is loaded by specifying 

displacement in the axial direction. The most common 

means of comparing upper bound and FEM results is 

through extrusion force. Values for the extrusion forces 

 

Fig. 4. Variation of extrusion force with b for =10

and  =30 . 

 

are evaluated from the FEM results.  

 

Fig. 5a illustrates the mesh used to analyze the 

deformation in extrusion of bi-metallic rod for conical 

die shape and the extrusion conditions iR = 15mm, 

icR = 9mm, reduction in area 15% and the m = 0.2. 

Fig. 5b shows uniform deformation. 

 
               (a)                                     (b)  

 

Fig. 5. (a) The finite element mesh, (b) The deformed 

mesh ( iR = 15 mm, icR  = 9 mm, reduction in area = 

15%). 

 

In Fig. 6, the extrusion forces obtained from the upper 

bound solution are compared with the experimental 

results obtained from Ref. [11] for conical die with

15  . The extrusion conditions are iR = 15mm, 

icR = 9mm, 0.2m  and three different reductions in 
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areas, RA=25, 50 and 66.7% are adopted during the 

analytical solution and the FEM simulation. 

The results show good agreement between the analysis 

and experiment. In that figure, it is possible to see that 

analytical solutions are bigger than FEM ones. 

Obviously, the extrusion force increases with increasing 

area reduction. 

  

 
Fig. 6. Comparison of analytical, FEM and 

experimental of  [11] for  =15 . 

 

Die angle has a great influence on the deformation 

mode as well as on extrusion force as shown in Fig. 7. 

Figure 7 shows the optimal die geometry and plastic 

boundaries for different friction factors at two 

reductions of area (RA = 40 and 60). For the given 

reduction in area the optimal die angle becomes greater 

with increasing friction factor and the deformation zone 

flushes upstream.    

 

 
Fig. 7. Variation of optimal die geometry with m for 

RA = 40 and 60. 

 

The theoretically predicted values of the final thickness 

of each layer can also be assessed, considering the 

variation of area reduction of core and sleeve with that 

of the composite. For example, in Fig. 8, the area 

reductions of the aluminum core and copper sleeve are 

plotted against the total reduction for the semi die angle 

of 25°. This figure also reveals the close agreement 

existing between the two sets of results. 

 

 

 
Fig. 8. Variation the area reductions of the aluminum 

core and copper sleeve against the total reduction. 

 

The effect of semi-angle of die upon extrusion force in 

reduction in area 25% and 50% is shown in Fig. 9. The 

results show that for each reduction in area, there is an 

optimum angle, and   optimum semi-angle of die 

increases with increasing reduction in area, see Fig. 9. It 

is observed that, for each case there is an optimal die 

angle, which minimizes the extrusion force. It is seen 

that the optimal die angle becomes shorter with 

decreasing reduction in area. 

 

 

 
Fig. 9. Effect of semi-angle of die upon the extrusion 

force. 
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The effect of die angle on the extrusion force for 

different values of friction factor is shown in Fig. 10. 

As it is expected, for a given value of friction factor, 

there is an optimum die angle in which the extrusion 

force is minimized. It is also observed that the optimum 

die angle increasing when shearing friction factor 

increases. From this figure, it is also seen that an 

increase in the friction factor tends to increase the 

extrusion force. 

 

 
Fig. 10. The effect of die angle on the extrusion force 

for different values of friction factor. 

 

 

5. CONCLUSIONS 

 

This paper presented a generalized expression for the 

flow field generated by the plastic flow of metal in 

extrusion process through a conical die. It has 

advantageous for finding a better upper bound value of 

the extrusion force and corresponding optimal die 

angle. The analytical results by the present method 

show a good coincidence with the results by the finite 

element method. 

 

1-According to this subject that, the value of b at which 

the relative extrusion pressure is a minimum, represents 

the assumed inlet boundary of the plastic zone during 

actual flow. 

2- It can be inferred the optimal die angle becomes 

greater with increasing friction factor and the 

deformation zone flushes upstream.    

3- The results show that for each reduction in area, there 

is an optimum die angle, and   optimum semi-angle of 

die increases with increasing reduction in area. 

4-The optimum die angle decreases when shearing 

friction factor increases and increase in the friction 

factor tends to increase the extrusion force. 
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