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Abstract 
 
The aim of this study is to present some new travelling wave solutions of conformable time-
fractional Fitzhugh–Nagumo equation that model the transmission of nerve impulses.  For 
this purpose, the improved Bernoulli sub-equation function method has been used.  The 
obtained results are shown by way of the the 3D-2D graphs and contour surfaces for the 
suitable values. 
 
Keywords: Time-Fractional Fitzhugh–Nagumo equation, conformable fractional 
derivative, travelling wave solutions. 
 
 

Bir sinirsel iletişim modelinin yeni salınımlı dalga çözümleri 
üzerinde 

 
 
Özet 
 
Bu çalışmanın amacı, sinir uyarılarının iletişimini modelleyen uyumlu zaman-kesirli türevli 
Fitzhugh–Nagumo denkleminin bazı yeni salınımlı dalga çözümlerini sunmaktır.  Bu 
amaçla, geliştirilmiş Bernoulli alt denklem fonksiyon metodu kullanılmıştır.  Elde edilen 
çözümler uygun değerler için 2-3 boyutlu grafikler ve kontur yüzeyleri ile gösterilmiştir.  
 
Anahtar Kelimeler: Zaman-kesirli türevli Fitzhugh–Nagumo denklemi, uyumlu kesirli 
türev, salınımlı dalga çözümleri. 
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1. Introduction 
 
The reaction–diffusion equations have an important role to describe mathematical models.  
These equations are widely used in many branches such as ecology, spreading of 
biological populations, combustion theory, physiology, chemistry, geology, physics and 
engineering [1-6]. 
 
Neural communications have a significant role in mathematical biology.  Understanding of 
electrical connections in neural networks several cognitive brain activities as memory, 
attention, sleep, and in various pathologies as Parkinson’s disease, epilepsy, gives reliable 
information to make diagnosis and treatment in medicine and physiology.  In recent years, a 
considerable amount of models have appeared to chaotic neurons systems.  One of a good 
mathematical model is the Hodgkin-Huxley (HH) which describes the transmission of 
nerve impulses through an axon [7].  The FitzHugh–Nagumo (FHN) model which 
characterise neural network by nerve cells via electrical signalling is a simpler model of HH 
model [8,9].  This model has been studied extensively in mathematical biology and 
neurobiology [10-12].  In [13], a strongly connective model has been considered and its 
numerical simulations of neural networks with neurons have been shown.  The dynamical 
behaviours of the FitzHugh–Nagumo model with fractional order have been addressed [14].  
The author has concluded that the fractional order models can be used to control of 
abnormal stimulations.  The approximate solutions of the fractional-order multiple chaotic 
FitzHugh–Nagumo neurons model under external electrical stimulation have been 
submitted by the multistep generalized differential transform method [15]. 
 
The space-fractional FitzHugh–Nagumo model in two-dimensional space has investigated 
the effect of implementation performance and scalability under such factors in [16].  
Armanyos et. al. have discussed different order of fractional Fitzhugh-Nagumo and 
Izhikevich 
models and concluded that fractional orders enable broader scope understanding of  the 
neuron behaviors [17].  To receive further studies on the fractional-order Fitzhugh-Nagumo 
model, it can be seen in [18-22].  
 
Many scientists, especially in medicine, biology and engineering fields, have studied on 
mathematical models of real-life phenomena to present numerical simulation [23- 33].  
However, analytical solutions are crucial to test accuracy of approximate solutions.  Thus, 
so many analytical methods have been improved such as sine-Gordon expansion method 
[34, 35],the modified simple equation method [36], the extended sinh-Gordon equation 
expansion method [37-39] in recent years.  
 
In the last century, fractional-order derivatives have been approved because of their 
advantages both closer to real-life circumstance and have higher precision by numbers of 
researchers [40-46]. Many novels on definitions and theories of fractional calculus have 
been submitted to the literature.  As known Riemann Liouville and Caputo fractional 
derivatives have singularity resulting from the power kernel functions cause some 
computational difficulties.  Whereas, Caputo and Fabrizio have submitted a new fractional 
operator without singular kernel [47]. Another non-singular derivative operator with the 
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Mittag-Leffler kernel function is defined by Atangana and Baleanu [48].  The conformable 
fractional derivative operator which is compatible to many real-world problems and 
provides some properties of classical calculus such as derivative of the quotient of two 
functions, the chain rule, the product of two functions has been submitted to the literature 
by Khalila et.al [49].  In this study, the new travelling waves will be analysed of the time-
fractional Fitzhugh–Nagumo equation in conformable sense by the improved Bernoulli sub-
equation function method (IBSEFM). 
 
The rest of the paper is organized as follows; in the second section, the definition of 
conformable fractional derivative and some theorems corresponding to the definition are 
submitted.  In the third section, analysis of the mentioned method with four steps are given.  
The application of the method to the time-fractional Fitzhugh–Nagumo equation in 
conformable sense and the figures of the valid solutions under the suitable values are 
presented in section 4.  Some conclusions are given in the last section 5.  
 
 
2.  The facts of conformable derivative 
 

Definition: Let  : 0,f    be a function, the   -order conformable derivative of f  is 

defined as, 
 

      1

0
lim

f t t f t
T f t














 
  

 
for all 0t  , 0 1   [49]. 

Theorem: Suppose that T   is fractional derivative operator with order   and  0,1  , 

,f g  be -differentiable at point 0.t   Then [49,50], 

i.       , , .T af bg aT f bT g a b        

ii.   , .p pT t pt p


    

iii.      .T fg fT g gT f     

iv. 
   

2
.

gT f fT gf
T
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 



 
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 
 

v.   0,T    for all constant functions   .f t     

vi. If f  is differentiable then     1 .
df

T f t t t
dt




  

Theorem: Let  , : 0,f g    be differentiable functions, the following rule holds; 

        1o .T f g t t g t f g t


     

 
 
 



YEL G. 

669 

3. Analysis of the method 
 
The improved Bernoulli sub-equation function method has the following four steps. 
 
Step 1. Suppose the following partial differential equation; 
 

 , , , ,... 0,t x t xtG D u u u u                    (1) 

 
and take the wave transformation; 
 

( , ) ( ),    ,
t

u x t U x
  


  

                 
(2) 

 
where ,    are constants and can be determined later.  Substituting partial derivatives of 
Eq.(2) with respect to  and x t  into Eq.(1), we obtain the following nonlinear ordinary 
differential equation; 
 

 , , , , 0.N U U U U                      (3) 

 
Step 2. Assume that the following trial equation is solution of Eq.(3),  
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   




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             (4) 

 
Using the Bernoulli theory, we can write the general form of Bernoulli differential equation 
for B  as follows; 
 

 , 0, 0, 0,1, 2 ,MB wB dB w d M      
  

                        (5) 

 
where  B B   is Bernoulli differential polynomial.  Substituting above relations in 

Eq.(3), it yields us an equation of polynomial  B of B as follows; 

 
  1 0.s

sB B B                         (6) 

 
According to the homogenous balance principle, we can determine the relationship 
between ,n m   and M .  
 
Step 3. The coefficients of  B  all be zero will yield us an algebraic system of equations; 

 
0, 0, , .i i s                                              (7)  
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The solution of this system will give the values of 0 , , na a   and 0 , , mb b . 

 
Step 4. When we solve nonlinear Bernoulli differential equation Eq.(5), we obtain the 
following two situations according to w  and d ; 
 

   

1

1

1
, ,

M

w M

d E
B w d

w e 




     
                                    (8) 

        
  

1

11 1 tanh 1 2
, , .

1 tanh 1 2

ME E w M
B w d E

w M






    
   

   
              (9) 

 
Using a complete discrimination system for polynomial of  B  , we obtain the analytical 

solutions to the Eq.(3) with the help of computational program.  For a better explanation of 
the valid solutions in this way, the 2D-3D figures and contour surfaces can be plotted.  
 
 
4. Application 
 
This section presents the application of mention method to the time-fractional Fitzhugh–
Nagumo equation with conformable sense.  
The nonlinear time-fractional partial differential equation is expressed as [51-53] 
 

  1 0, 0 1, 0 1,t xxu u u u u                         (10) 

 
where   is order of conformable time-fractional derivative and   represents an arbitrary 
constant.   
 
When 1   , the Eq.(10) converts to the Newell–Whitehead equation. 
 
Consider the fractional travelling wave transformation as 
 

( , ) ( ),    ,
ct

u x t U kx


 


                   (11)
 

where ,k c  are nonzero arbitrary constants. Putting Eq.(11) into Eq.(10), we obtain the 
following nonlinear ordinary differential equation,  
 

 2 2 31 0.cU k U U U U                                  (12) 

 
According to homogeneous balance principle between U   and 3U , we get a relationship as  

1.M m n    
 
For the values 3, 3M n   and 1m  , we obtain the following travelling wave solutions. 
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Set 1: For w d  

3 0 3
0 0 1 2 1

( 2 )
, , , , ,

42 2
,

wa d b wa
a b a a b k c

d w d ww

   


 
                 (13) 

 
When the Eq.(8) and Eq.(4) are used for Eq.(13), we have 
 

 1 ( 2 )

22

, .
x t

Ew
u x t

de Ew

  



 




 

               (14) 

 

 
              (a)    (b)    (c) 
 

Figure 1. (a) and (b) are the 3D and contour surfaces of Eq.(14) with 0.8   respectively, 
and  2t    for the 2D graph (c). 

 
Set 2: For w d  

2
3 0 3

0 0 1 2 1

( 1 ) 1 1
, , , , , ,

( 1 ) ( 1 ) 42 2

w a d b wa
a b a a b k c

d w d ww

   
 

     
     

   
         (15) 

 
When the Eq.(8) and Eq.(4) are used for Eq.(15), we have 
 

 2 ( 1 )( 2 (1 ))

2

( 1 )
, .

x t

d
u x t

d e Ew
  



 
    

 
 

 
              (16) 

 

 
                      (a)    (b)           (c) 
 

Figure 2. (a) and (b) are the 3D and contour surfaces of Eq.(16) with 0.8   respectively, 
and 2t   for the 2D graph (c).  
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Set 3: For w d  
 

0 0 1 1 2 0 3 1 2

2 2 2 2
2 2 2 2 2 2 2 ,, , , ,

2
,

c c c c k
a b a b a dkb a dkb w

k k k k

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                
   

            (17) 

 
When the Eq.(8) and Eq.(4) are used for Eq.(17), we have 
 

 
 

2

2 2

( 2 )( )

2

3

2 4 2 2
.,

2 2

ct
c k kx

k

u x t
E c ck k

ckE k E de k




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 

  
  
    
  

  

              (18) 

 
              (a)    (b)    (c) 
 

Figure 3. (a) and (b) are the 3D and contour surfaces of Eq.(18) with 0.8   respectively, 
and 1t  for the 2D graph (c).  

 
Set 4: For w d  
 

0 2 0 1 3 1

1 (1 2 )
0, 2 2 0, 2 2 , ,

2 2
, ,

2

k
a a dkb a a dkb w c

k


                           (19) 

 
When the Eq.(8) and Eq.(4) are used for Eq.(19), we have 
 

 
( 1 2 )

2

4

2

,
2 2

.

2 2
x t

u x t

e

dk

E dk

 


 






               (20) 
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 (a)     (b)    (c) 
 

Figure 4. (a) and (b) are the 3D and contour surfaces of Eq.(20) with 0.8   respectively, 
and 2t  for the 2D graph (c).  

 
Set 5: For w d  
 

0 1
0 1 2 3

1 2 1
0, 0, , , , ,

4 2 2

db db
a a a a c k

w w w w

 
                 (21) 

 
When the Eq.(8) and Eq.(4) are used for Eq.(21), we have 
 

 
2

5 2 2
, .

t x t

d
u x t

d e Ew
  


 




                (22) 

 

 
            (a)    (b)    (c) 
 

Figure 5. (a) and (b) are the 3D and contour surfaces of Eq.(22) with 0.8   respectively, 
and 2t   for the 2D graph (c).  
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Set 6: For w d  
 

 

 
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0
0 0 1
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0 0
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,

8

2 1 2 1 4 1 2 1 4
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2
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a
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      

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    

   (23) 

 
When the Eq.(8) and Eq.(4) are used for Eq.(23), we have 
 

 
 

 


 

2
2 2

0 0

0
6

0

4 , 2 (1 8 1 4 ) ( 1 1 4 )

8 ,

1 2 1 4
              .

8 ,

,

ct w
xcdwb h x t e Ew cw cw d b e cw

cdwb h x t

cw cw

cdwb h x t

u x t



 


       


  


   (24) 

 

where  
2

2

1 2 1 4
, ,

ct w
xcw cw

w h x t de e Ew
w



  
    . 

 

 
                 (a)    (b)    (c) 

Figure 6. (a) and (b) are the 3D and contour surfaces of Eq.(24) with 0.8   respectively, 
and 2t   for the 2D graph (c).  

 
 
5. Conclusions  
 
In this study, we have presented some new travelling wave solutions of the conformable 
time-fractional Fitzhugh–Nagumo model via IBSEFM.  Figure 1-6 shows surfaces of the 
exponential function solutions of fractional-order with 0.8  . The Fitzhugh Nagumo 
model describes travel waves that can be used for electrical signaling through the lengths of 
the nerve axons.  The fractional cases are more useful than integer order in the diagnosis of 
psychological and physiological diseases that can be caused by instant electrical conduction 
between nerve cells. The fractional-order derivative may be using in brain wave oscillations 
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to control their dynamics has been shown in many numerical simulations.  Moreover, the 
conformable fractional derivative definition overcome the mentioned causes therefore the 
obtained exponential function solutions are more  appropriate to test accuracy of numerical 
simulations.  Assuming these facts, it is hoped that the above analytical wave solutions 
presented for the first time in the literature may be useful in areas such mathematical 
models such as clinical neurology, neuropsychology and so on.   
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