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ABSTRACT

In recent years, the topic of classification which is advantageous in terms of time and cost is of great interest in
various fields. In particularly, when a large number of series should be analyzed, it is much more practical to
classify the series into similar groups, and to make an estimation for each corresponding group rather than to make
prediction for every given series individually. For this reason, some studies have been carried out in order to
develop classification and clustering methods using characteristics of the time series. In this study, model based
approaches: Maharaj’s p-value based distance, Piccolo’s AR distance, Cepstral based distance and free model based
methods: Autocorrelation based distance, Chouakria-Douzal dissimilarity measure, Minkowski distance are
compared in terms of clustering performances of time series. The performances of the clustering methods are also
investigated for different ordered sets of the processes, and correlation structures among the series. In the result of
the study, it is obtained that Maharaj’s p-value based distance is the best method regarding to clustering
performance, and Piccolo’s AR distance based clustering is the least affected method by the different order of the
processes.

Keywords: Autocorrelation based distance; AR distance; p-value based distance; Chouakria-Douzal dissimilarity

measure; Cepstral based distance; Minkowski distance

1. INTRODUCTION

The purpose of the classification is to divide unlabeled
data sets into homogeneous groups in such a way to
ensure maximum similarity within groups and maximum
dissimilarity between groups [1]. In recent years, time
series classification has attracted much attention and has
applications in many areas such as economics, business,
demography, geology, medicine and climatology.
Especially, when a large number of series should be
analyzed much more practical to classify the series into
similar groups and to make an estimate for each
corresponding group rather than to make prediction for
every given series individually.This is accompained by
advantages in terms of time and cost. For this reason,
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determining similarities of the time series to constitute
classes has been very popular in recent years.

There are many studies in the literature on time series
classification and clustering. In general, clustering
methods are studied in two main categories: model free-
based methods (non-parametric methods), and model-
based methods (parametric methods) [21]. Distance-based
methods are often used for the classification of time
series. Piccolo (1990) defined a metric based on
autoregressive expansion for ARIMA models to be used
for time series classification and clustering, and applied
this parametric measure to determine the similarities
between industrial production series. Tong and Dabas
(1990) investigated some of the similarities between linear
and non-linear models by applying the classical clustering
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techniques. Shaw and King (1992) used cluster analysis
and principal component analysis to classify time series.
Maharaj (1996) proposed a hypothesis test to classify
ARMA models. Kakizawa et al. (1998) used Kullback-
Leibler discrimination information and the Chernoff
information measure to discriminate multivariate time
series. Maharaj (2000) expanded a hypothesis test and
proposed to classify two time series with an algorithm
based on the p value and demonstrated the performance of
the algorithm with a simulation study and an application.
To measure the distance between time series, Galeano and
Pena (2000) developed a metric based on autocorrelation
function (ACF). Distances based on partial autocorrelation
(PACF) and the inverse autocorrelation function (IACF)
introduced by Cleveland (1972) has not yet been applied
to the problem of clustering. Alonso et al. (2006)
proposed a distance measure based on the full probability
density of the forecasts. Corduas and Piccolo (2007)
classified time series using the AR distance. Chouakria
and Nagabhushan (2007) proposed a classification metric
that takes into account the behavior of the growth time
series. Vilar et.al. (2010) studied a time series clustering
method using full forecast densities of time series, and this
method  showed good performance for nonlinear
autoregressive models. Additionally, Liu et. al. (2014)
developed an approach to time series classification based
on a polarization measure of forecast densities of time
series.

Many measurements have been described to measure the
distances and similarities of the series in the process of
clustering. In this study, first, the clustering methods
discussed have been briefly introduced, then the clustering
method which uses autocorrelation functions of series as a
measure of similarity, Piccolo's clustering method based
on AR distance, Maharaj's p-value algorithm, Chouakria-
Douzal dissimilarity measure, Minkowski measure and
cepstral based distance have been compared in terms of
clustering performance.

2. MODEL-BASED APPROACHES

2.1. Maharaj’s p value-based distance

Let Zt be a zero mean stochastic process and ¢ be a
Gaussian white noise process with zero mean and constant
variance. Zt is assumed a member of the family of

stationary and invertible  ARMA models. Using the
standart notation of Box and Jenkins (1994) ARMA(p,q)
model is expressed as

#(B)Z, =0(B)a, )

where B is a backward shift operator and ¢(B) and
6(B) are polynomials of degree p and q in B.

#(B) =1-$B - $B° —..— §,BP @)

0(B)=1-6,B-0,B* —...— 9,BY @3)

#(B) and O(B) satisfy the constraints of stationarity
and invertibility. Zt is a weighted sum of past values of

Z’s plus and added shock @, that is,

Z, :ZﬂjZH— +a, )
=

where  the AR() operator is defined by
7z(B) =p(B)9"(B) =1-7,B—7,B* —...,and
7j’s are the coefficients of the AR(c0) operators.

See, for instance [2,20].

Let Xt and Yt, t=12,..,T be two stationary time

series. For modelling autoregressive structures, using a
definite criterion such as Akaike’s Information Criterion
(AIC) or Schwartz’s Bayesian Information Criterion

(BIC) truncated AR(c0) models of order k; and kK,
can be fitted to Xt and Yt , respectively. The parameter
vectors of X, and Y, processes for AR(K;) and
AR(k,) models are

7Z'X=|_7Z'1X oy oo 7Z'k1XJ,

7Z'y'=l72'1y Tyy e 7Z'k1yJ (5)

Zix§=12,..ky, and 7jy, j=12,..ky represent the
parameter estimates of AR(K;) and AR(k,),

respectively. Let k = max(k,,k,)- In constructing the test

statistic, the maximum determined order k will be fitted to
both series. The models with T —k observations fitted

to X, and Y, can be expressed as

X=Wz +a, Y=W,z +a, (6)
Where
Xk Xk—l Xl
W, = @
X-2 X%-3 - XTk-1
XT-1 Xr-2 - X7k
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X'= %41 xr ¥,
ﬂx :[ﬂ'lx 71'2)( ﬂ-k]y
ax =[ak+1,x ar1,x aT,><] ®)

Y', W, , 7, and @, can also be written in a similar
way. Additionally

E[ax]zo‘ E[axaxl]=o_f|T—k ©)

Ela,|=0.E[a,a, =021, (10)

where |7, is the identity matrix with the dimension

(T —K)x (T k).
It will be assumed that the disturbances of two models are

correlated at the same points in time but uncorrelated
across observations,

Elayay )= oyl « (11)

Then, the combined model of the two equations in (6)
becomes

Z=Wr+a (12

Where

X W, 0 Ty ay (13)
Z{Y}W: 0 W, T Ty s ay

E(a)=0,E(aa’)=V =) @I,

Oy O-xy
2= X (14)
Xy GY

The parameter =m is estimated by generalized least
squares given by

A=Wvw]wy iz (15)

In the p-value algorithm, the null hypothesis is defined as

Hy:z, =7, o HyiRz=0. where

R=[I, —1.] and I, isa identity matrix with the
size of KXK .

The recommended statistics
D= (R;%)'(RQN'\? W )R')(R;%) for this test is
asymptotically chi-square distributed with K degree of
freedom. The clustering procedure begins with performing
the test of hypotheses for every pair of series and
determining the p-value associated with the test D. Then
groups of series are determined by comparing p-values.
The steps of algorithm are shown in Figure 1 [13,14,15],
in detail.
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Figure 1. Maharaj’s Clustering Algorithm

2.2. Piccolo’s AR distance

In the proposition by Piccolo (1990), ARIMA models are
fitted to all given time series, and then clustering the fitted
series is performed by utilising a distance measure based

on the coefficients of the corresponding AR(o0)
operators [13]. The sequence of these coefficients
7' =(m,7y,...), which specifies completely the
distribution of the process Zt, fully characterize any
stationary and invertible process as in equation (1). A

measure of structural diversity between X, and Y, can
be obtained by comparing the respective 7z sequences as

follows:

d(X,Y)=

d(X,Y), satisfies the classical properties of a distance

properties:
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i.  Non-negativity d(X,Y)>0

ii.  Symmetry d(X,Y)=d(Y, X)

iii. Triangularity d(X,Y)<d(X,h)+d(h,Y)
Distance matrix is constituted with the elements given in

(16). Then, time series are grouped using a hierarchical
clustering method [6,13,15,16].

2.3. Cepstral-based distance
In this approach, a distance measure based on the linear

predicting coding (LPC) cepstrum is proposed. Cepstrum
analysis is a kind of signal processing analysis.

The LPC coefficients for AR(P) autoregressive time
series are defined by;

-¢ n=1
n-1 m
Ch=9—¢n —Z(l—;jamcnm l<n<p 17
m=1

p

m
_Z(l__j¢mcn—m p<n
n
m=1

where @,’s are , 1 =12,..., P are the autoregression

coefficients. Note that for every ARIMA model there
exists an equivalent AR model.

Euclidean distance between cepstral coefficients given in
(17)

T ) y2
Aegps = {Z(Ctx _CZ ) } (18)

t=1

Y

with ¢* and ¢’ the cepstral coefficients of the series

X, and Y,, respectively [8,1316]. Following the

determination of the distance matrix by distances defined
in (18), the time series are clustered using a hierarchical
clustering method.

3. FREE MODEL APPROACHES
3.1. Autocorrelation based distance

Cluster analysis is a statistical analysis that groups units,
combining units with similar characteristics. In the
literature, hierarchical and non-hierarchical clustering
techniques have been used in the classification of time
series and various distance measures have been proposed.

Galeano and Pena (2000) proposed a metric based on the
estimated autocorrelation function (ACF) to take into
account the dependence structure of the time series.

Let px =(Px1Pxr) and Ay =(Ay1PR)
be the estimated autocorrelation vectors of the series X
and Y, respectively, for some R such that py; ~0and

A =0for i >R.

Euclidean distance between estimated autocorrelation
functions

R

dyy = Z(Ier _Ibvr)2 (19)

r=1

wherer =1,...,R refersto lags of X and Y series [7,8].

Time series are divided into groups with a hierarchical
clustering method after the distance matrix whose
elements are given in (19).

3.2. Chouakria-Douzal dissimilarity measure

Chouakria and Nagabhushan  (2007), suggested
dissimilarity measure that takes into account the dynamic
behaviour of the time series. The first order temporal
correlation coefficient used as a measure of the first
proximity between the dynamic behaviour of the series

T-1
Z(an — % NYes1 — Yt
CORRT (Xt,Y;) = =1
T-1 ) T-1 )
Z(Xul—xt) Z(yHl_yt)
t=1 t=1

(20)

Temporal correlation coefficient belongs to the interval
[—1, 1]. If CORRT(Xy,Y;)=1, then the two series

have the same dynamic structure, and change in the same
direction whereas if CORRT(X,Y;)=—1 two series
have the same dynamic structure, and change in the
opposite direction and if CORRT (X4, Y;) =0 then series
are statistically linearly independent.

Chouakria-Douzal defines a dissimilarity index D as
follows:

Deorrr (Xt Ye) = f(CORRT (X, Yt ) deonv(X. Ye)
(21)

where, f(.) isan adaptive tuning function to modulate
a given raw data distance 5conv(xt ,Yt) according to the
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temporal correlation. Exponentially adaptive function is
chosen as an adaptive tuning function

fu)=— 2

—— k> (22)
1+exp(ku)

For K =0, Deomer equals & (Xy,Y;) [4,15].

Then, a hierarchical clustering method using the distances
given in (21) is employed to cluster the time series.

3.3. Minkowski distance

Minkowsky distance is given by:

T a
Dk (X, Y) =| D (% = ¢ )° (23)
t=1
with  ( a positive integer [15]. Following the
determination of the distance matrix consists of the

distances defined in (23), time series are clustered using a
hierarchical clustering method.

4. SIMULATION STUDY

To compare the clustering performances of the methods,
five different time series processes were considered, and
the experimental study is performed through the
followings.

AR(D) 4, =05

MA(L) 6,=0.7

AR(2) $=06 ¢, =02
MA(2) 6,=08 6,=-04
ARMA(LY) 4,=08 6, =02

To consider the potential influence of order that the series
put into clustering processes, three different ordered sets

of time series models were described: [AR(1),
AR(2), MAQD), MAQ)I; [AR(D),
ARMA(LD), MA®L), MA(2) 1 and [AR(D),
AR(2), ARMA(LL), MA(1)]. For each sets of

models, four series of length 200 were generated for each
models. Throughout the generating procedure of four
series of any considered model within the set, the
correlations between the disturbances of each pair of
series 0, 0.5, 0.75 ve 0.9 were used. The same correlation
values were employed for each model within the set.
Implementing Maharaj’s p-value based distance, the
simulated series were fitted with truncated AR(k) models,
where the order k (up to 10) was selected by Bayesian
Information Criterion, BIC. After this initial step, p-values
for each pair of series were computed, and then hypothesis
testing was conducted using these values at alpha=0.05
significance level. For AR distance  method,
autocorrelation coefficient was calculated from the whole
series, instead of one quarter lenght of the series. The h
values were determined as 1,2 and 5 for Chouakria-
Douzal dissimilarity measure.

The clustering procedure was simulated 500 times. For
each of the simulations, number of exactly correct
clusters was counted for each method. By subtracting this
number from the true number of correct clusters, measure
of discrepancy was computed, that is,

MD=4-number of exactly correct clusters. Since series
were generated from four different processes, then the true
number of correct is four. Percentages of MD in 500
simulations are given in Table 1-3. To clarify the ouput of
calculations given in tables, it would be good to explain
one cell of table. In Table 1, for h=1 ve Correlation=0 ,
the percentage of only one misclustering is 41.2 %. The
distribution of MD for each set of models is given in
Figures 2(a)-4(d). Since Choukaria-Douzal dissimilarity
measure shows the best performance at this value of h,
figures are given for h=>5.
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Figure 2(a). Distribution of the measure of discrepancy for the set [ AR(1), AR(2), MA(L), MA(2)] when the
Correlation is 0

100 _ _
% percentage
80
70 M Maharaj
60 % ACF
50 = Autoregressive
40 ) % Chouakria-Douzal
30 % # Minkowski
20 Z Cepstral-based
10 Z
0 |~E =
0 1 2 3 4 MD

Figure 2(b). Distribution of the measure of discrepancy for the set [ AR(1) , AR(2), MA(L), MA(2)] when the
Correlation is 0.5
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Figure 2(c). Distribution of the measure of discrepancy for the set [ AR(1), AR(2), MA(D),

MA(2) ] when the Correlation is 0.75

100 percentage
90

80
70
60
50

40

30
20
10

Autoregressive
zz Chouakria-Douzal

# Minkowski

: Cepstral-based

MD

4

Figure 2(d). Distribution of the measure of discrepancy for the set [ AR(1), AR(2), MA(), MA(2)] when the
Correlation is 0.9

Looking at Tablel and Figures 2(a)-2(d), which cover the
results for the set of [AR(1), AR(2), MA(Q),
MA(2)], it is observed that the performances of all

methods are better as the correlation between disturbances
of series in same process increases. It is more obvious for
Mabharaj’s p value algoritm. Maharaj’s p-value algorithm

outperforms the other methods with the highest percentage
for MD of zero and one. In terms of performance, this is
followed by the AR distance and ACF method, while
Cepstral based distance method shows low performance
for all correlation structures.
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Figure 3(a). Distribution of the measure of discrepancy for the set [ AR(1), ARMA(L1), MA(L) , MA(2) ] when the

Correlation is 0
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Figure 3(b). Distribution of the measure of discrepancy for the setf AR(1), ARMA(L1), MA(L), MA(2) ] when the

Correlation is 0.5
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Figure 3(c). Distribution of the measure of discrepancy for the set [ AR(1) , ARMA(LL), MA(L) , MA(2)] when the

Correlation is 0.75
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Figure 3(d). Distribution of the measure of discrepancy for the set [ AR(1), ARMA(L1), MA(L), MA(2) ] when the

Correlation is 0.9

Table 2 and Figures 3(a)-3(d) show the MD percentages
of methods for the set of [ AR(1), ARMA(LD),

MA(L), MA(2)]1. Comparing this set with the set of
[AR@D), AR(2), MA@Q), MA(2)], it is seen the

performances of the all methods declined. In particularly,

the performance of the ACF method dramatically
decreases for high correlations. It is observed that the
clustering methods have difficulties in distinguishing
ARMA(1,1) from AR(1) and MA(1) processes. Maharaj’s
p- value algorithm is the one having the best performance
in clustering.
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Figure 4(a). Distribution of the measure of discrepancy for the set [ AR(L), AR(2), ARMA(L1), MA(Q) ] when the
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Figure 4(b). Distribution of the measure of discrepancy for the set [ AR(1), AR(2), ARMA(LL), MA(Q)] when the
Correlation is 0.5
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Figure 4(d). Distribution of the measure of discrepancy for the set [ AR(1) , AR(2), ARMA(L1), MA(1) ] when the

Correlation is 0.9

Table 3 and Figures 4(a)-4(d) are about the percentages of
MD for the set [AR(1), AR(2), ARMA(LD),
MA(]_) ]. The most striking result here is that Maharaj’s

p-value algorithm has 95% zero misclustering. The
performances of AR distance and Choukria-Douzal
dissimilarity methods follow Maharaj’s p-value algorithm.

All methods except for ACF are resulted in having the
highest performance in this set among all sets of the

processes. This can be interpreted as ACF has difficulties
in distinguishing AR parameters. In particularly, the
results for Chouakria-Douzal method for the set of

[AR(). AR(2), ARMA(LL), MA®D)] is
atractive since the percentage for MD of zero and one
increased dramatically. On the other hand, the ACF and
Cepstral based distance method have the worst clustering
performance for this set of processes.
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Tablel. Measure of discrepancy for the set [ AR(1) , AR(2)

. MAQ). MA(2)

343

Correlation=0

Correlation =0.5

Correlation =0.75

Correlation =0.9

h 1 2 5 1 2 5 1 2 5 1 2 5
0 04 02 02 [14 2 12 [214 192 258 [50 598 564
1 412 42 458 |73 694 744 |758 786 718 |482 394 424
2 576 568 536 |252 284 242 |28 22 24 |18 08 12
g |3 08 1 04 |04 02 02 |- - - - - -
0 - - - - - - 04 08 04 [118 11 9
1 04 - 04 |24 38 34 [232 244 244 |624 638 636
2 566 546 582 |614 662 628 |586 566 574 |252 248 2638
3 43 454 414 |362 30 338 |178 182 178 (06 04 06
0 34 26 28 |66 58 64 |[176 196 214 |[466 522 50
. |1 88 82 102 |12 12 98 |126 92 114 |88 78 84
% 2 838 842 834 |798 814 824 |696 712 672 |446 40 416
g 3 4 5 36 1.6 0.8 1.4 0.2 - - - - -
0 - - - - - - - - - - - 0.8
S 1 - - - - 12 14 |04 18 114 |02 1 7
|2 02 02 04 |92 846 738 |994 98 878 |998 99 92.2
Eﬁ 3 994 86 854 |8 142 248 |02 02 - - - -
3
5 |4 04 138 142 |- - - - - - - - -
0 - - - - - - - - - - - -
1 - - - - - - - - - - 02 -
> |2 - - - 796 798 79 99.6 996 996 |100  99.8 100
é 3 100 100 100 |204 202 21 04 04 04 |- - -
0 - - - - - 02 [02 04 04 [26 14 16
1 - 02 - 04 08 10 18 06 06 |26 18 24
2 64 62 72 |102 112 898 |188 162 144 |176 182 164
3 936 936 928 |[894 8 - 792 828 846 |77.2 786 796
4

Cepstral
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Table 2. Measure of discrepancy for the set [ AR(1), ARMA(LL1), MA(L), MA(2) ]
Correlation =0.75
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Correlation =0

Correlation =0.5

Correlation =0.9

h 1 2 5 1 2 5 1 2 5 1 2 5
0 - 0.2 0.2 0.2 0.6 0.6 14 16 146 [564 502 596
1 31.8 398 368 |61 602 612 |776 766 77 42 48 39.4
2 676 592 626 |384 384 376 |78 7.4 8.2 1.6 1.6 1
g 3 0.6 0.8 0.4 0.4 0.8 0.6 0.6 - 0.2 - 0.2 -
0 - - - - - - - - - - 0.2 -
1 0.2 0.2 0.2 0.2 0.8 0.6 1.2 1.2 1 2.8 1.4 2.2
2 544 52 584 | 8.8 858 842 |986 966 976 |972 984 978
3 454 478 414 |13 134 152 |2 2.2 1.4 - - -
0 0.4 0.6 - 2.4 2.2 2 122 106 128 |[484 428 482
. 1 2.4 3.6 3.6 6.2 5 5.2 128 122 122 |76 142 94
% 2 252 254 25 376 37 354 | 542 538 52 43 418 416
g 3 72 704 714 |538 558 574 |208 234 23 1 1.2 0.8
0 - - - - - - - - 0.2 - 0.4 1.6
E" 1 - - - - 0.6 - 0.8 3.2 7.8 1.4 2.4 11
é 2 - 0.2 0.4 49 414 326 |882 782 632 |986 972 87
% 3 96 924 876 |51 58 672 | 11 186 288 |- - 0.4
§ 4 4 7.4 12 - - 0.2 - - - - - -
0 - - - - - - - - - - - -
1 - - - - - 0.2 - - 0.4 0.6 0.4 1
> 2 - 998 - 644 66 646 | 932 928 93 99.4 994 9838
é 3 100 0.2 100 | 356 34 352 |68 7.2 6.6 - 0.2 0.2
0 - - - - - - - - - 1.4 3 1.4
1 - 0.2 - 0.2 - - 0.8 0.4 1.2 1.4 2 1.4
2 1 0.4 0.4 1.8 99 2 2.2 5.6 4.2 106 126 116
'_é 3 99 99.4 996 |98 - 98 97 94 946 |8.6 824 856
& |4 - - ; - - ; - - ; - - -
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Table 3. Measure of discrepancy for the set [ AR(1), AR(2), ARMA(L1), MA@ ]

345

Correlation =0

Correlation =0.5

Correlation =0.75

Correlation =0.9

h 1 2 5 1 2 5 1 2 5 1 2 5
0 4.4 3.8 34 122 138 13 622 636 622 |958 962 954
1 39.4 40 41 632 664 634 |36 34 36 3.4 3.8 4
2 556 556 548 |244 192 23 1.8 2.4 1.8 0.8 - 0.6
g 3 0.6 0.6 0.8 0.2 0.6 0.6 - - - - - -
0 - - - - - - 0.2 0.8 0.2 168 17 15.4
1 - - - 0.2 - - 1.4 - 1.4 3.4 5.4 5
2 272 224 238 |524 524 554 |88 886 86 798 772 798
3 728 776 762 | 474 476 446 | 126 106 124 |- 0.4 -
0 3 4 2.2 9.4 8 102 [ 334 36 334 |88 864 874
. 1 5.2 4.8 3.8 6 7.6 4.4 6.2 4.4 6.4 0.6 1.6 0.4
% 2 888 862 902 (836 832 834 |[602 596 60 106 12 12.2
o 3 3 5 3.8 1 1.2 1.6 0.2 - 0.2 - - -
0 - - - - - - 5.8 7 9.4 836 866  89.6
'_g 1 - - - 1 1.4 2.4 26 274 278 |11 8.4 8.8
Dé; 2 - - 1.6 942 846 738 |68 656 60 5.4 5 1.6
% 3 99.8 97 832 |48 14 236 |02 - 2.8 - - -
§ 4 0.2 3 152 | - - 0.2 - - - - - -
0 - - - - - - 2.8 1.4 2.8 756 744 762
1 - - - - 0.2 0.4 158 154 158 |13 122 136
> 2 - - - 752 726 714 |81 832 81 114 134 102
é 3 100 100 998 | 248 272 282 |04 - 0.4 - - -
'§ 4 - - 0.2 - - - - - - - - -
0 - - - - - - 0.4 0.4 0.4 6 3.2 4.6
1 - - - 0.2 - 0.2 0.2 0.4 0.2 0.2 0.8 0.4
2 6.8 4.2 6.4 132 112 122 | 214 152 22 214 174 168
3 932 958 936 |[866 888 876 |78 84 782 | 724 786 782
4

Cepstral
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8. CONCLUSION

In time series clustering, the idea is to investigate
similarities of the time series in the identified clusters. It is
important to note that clusters that are identified when
carrying out clustering methods are not unique since they
depend on the distance measure used, the clustering
technique and the analyst. A wide variety of algorithms
have been developed to classify different types of time-
series data. In this study, some of the model-based and
model free methods were compared in terms of their
classification performance. For this purpose, several well-
known model-based methods, Maharaj’s p-value,
Piccolo’s AR distance-based hierarchical clustering
method and Cepstral-based hierarchical clustering
method; and also, some model-free  methods,
autocorrelation-based hierarchical clustering method,
Choukria-Dousal dissimilarity method and Minkowski
distance were evaluated. The simulation study showed
that Maharaj’s p-value algorithm was found as a method
having the highest clustering performance for all
correlation structures and all set of processes. Choukaria-
Douzal dissimilarity method has displayed high
performance when setting the experiment as high value of
correlation coefficients and big value of h. Cepstral-based
and Minkowski methods are not affected much by the
increase of correlation between series. Regarding the
performance of these methods, they may not preferable to
other methods.

In order to examine the potantial influence of order that
the series put into clustering processes, three different
ordered sets of the processes were taken into consideration
in the comparison of the methods. The results of the
simulation study showed that all of the methods were
affected by the change of the order of the processes. It is
observed that all clustering methods have difficulties in
distinguishing  ARMA(1,1) from AR(1) and MA(1)
processes. All methods except for ACF are resulted in the
highest performance for the set of [ AR(1), AR(2),

ARMA(L1), MA(L)]. Itis also concluded that ACF

method has difficulty in distinguishing AR parameters.
Cepstral-based method was the least affected one by the
order of the processes. Finally, we obtained more
homogeneous clusters with the p-value algorithm.
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