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ABSTRACT 

 

In recent years, the topic of classification which is advantageous in terms of time and cost is of great interest in 
various fields. In particularly, when a large number of  series should be analyzed, it is  much more practical to 

classify the series into similar groups, and  to make an estimation for each corresponding group rather than to make 

prediction  for every given series individually. For this reason, some studies have been carried out in order to 
develop classification and clustering methods using characteristics of the  time series. In this study,  model based 

approaches: Maharaj’s p-value based distance, Piccolo’s AR distance, Cepstral based distance and free model based 

methods: Autocorrelation based distance, Chouakria-Douzal dissimilarity measure, Minkowski distance are 
compared in terms of clustering performances of time series. The performances of the clustering methods are also 

investigated for different ordered sets of the processes, and correlation structures among the series. In the result of 

the study, it is obtained that Maharaj’s p-value based distance is the best method regarding to clustering 
performance, and Piccolo’s AR distance based clustering is the least affected method by the different order of the 

processes. 

 
Keywords: Autocorrelation based distance; AR distance; p-value based distance; Chouakria-Douzal dissimilarity 

measure; Cepstral based distance; Minkowski distance 

 

1.  INTRODUCTION 
 

The purpose of the classification is to divide unlabeled 

data sets into homogeneous groups in such a way to 

ensure maximum similarity within groups and maximum 

dissimilarity between groups [1]. In recent years, time 

series classification has attracted much attention and has 

applications in many areas such as economics, business, 

demography, geology, medicine and climatology. 

Especially, when a large number of  series should be 

analyzed much more practical to classify the series into 

similar groups and to make an estimate for each 

corresponding group rather than to make prediction  for 

every given series individually.This is accompained by 

advantages in terms of time and cost. For this reason, 

determining similarities of the time series to constitute 

classes has been very popular in recent years. 

 

There are many studies in the literature on time series 

classification and clustering. In general, clustering 

methods are studied in two main categories: model free-

based methods (non-parametric methods), and model-

based methods (parametric methods) [21]. Distance-based 

methods are often used for the classification of time 

series. Piccolo (1990) defined a metric based on 

autoregressive expansion for ARIMA models to be used 

for time series classification and clustering, and applied 

this parametric measure to determine the similarities 

between industrial production series. Tong and Dabas 

(1990) investigated some of the similarities between linear 

and non-linear models by applying the classical clustering 
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techniques. Shaw and King (1992) used cluster analysis 

and principal component analysis to classify time series. 

Maharaj (1996)  proposed a hypothesis test to classify 

ARMA models. Kakizawa et al. (1998) used Kullback-

Leibler discrimination information and the Chernoff 

information measure to discriminate multivariate time 

series. Maharaj (2000) expanded a hypothesis test and 

proposed to classify two time series with an algorithm 

based on the p value and demonstrated the performance of 

the algorithm with a simulation study and an application.  

To measure the distance between time series, Galeano and 

Pena (2000) developed a metric based on autocorrelation 

function (ACF). Distances based on partial autocorrelation 

(PACF) and the inverse autocorrelation function (IACF) 

introduced by Cleveland (1972) has not yet been applied 

to the problem of clustering. Alonso et al. (2006)  

proposed a distance measure based on the full probability 

density of the forecasts. Corduas and Piccolo (2007) 

classified  time series using the AR distance. Chouakria 

and Nagabhushan (2007) proposed a classification metric 

that takes  into account the behavior of the growth time 

series. Vilar et.al. (2010) studied a time series clustering 

method using full forecast densities of time series, and this 

method  showed good performance for nonlinear 

autoregressive models. Additionally, Liu et. al. (2014) 

developed an approach to time series classification based 

on a polarization measure of forecast densities of time 

series. 

 

Many  measurements have been described to measure the 

distances and similarities of the series in the process of 

clustering. In this study, first, the clustering methods 

discussed have been briefly introduced, then the clustering 

method which uses autocorrelation functions of series as a 

measure of similarity, Piccolo's clustering method based 

on AR distance, Maharaj's p-value algorithm, Chouakria-

Douzal dissimilarity measure, Minkowski measure and 

cepstral based distance have been compared in terms of 

clustering performance.  

 

2. MODEL-BASED APPROACHES 

 

2.1. Maharaj’s p value-based distance 

 

Let  tZ  be  a zero mean stochastic process and  be a 

Gaussian white noise process with zero mean and constant 

variance.  tZ  is assumed  a member of  the family of 

stationary and invertible ARMA  models. Using the 

standart notation of Box and Jenkins (1994) ARMA(p,q) 

model is expressed as  

 

tt aBZB )()(                                                        (1)                      

 

where B is a backward shift operator and )(B  and 

)(B  are polynomials of degree p and q in B. 

p
pBBBB   ...1)( 2

21                              (2) 

q
qBBBB   ...1)( 2

21                              (3) 

 

)(B  and )(B  satisfy the constraints of stationarity 

and invertibility. tZ  is a weighted sum of past values of 

Z’s plus and added shock  , that is,  

 






 
1j

tjtjt aZZ                                                (4) 

where the  )(AR  operator is defined by 

...1)()()( 2

21

1   BBBBB  , and 

j ’s  are the coefficients of the )(AR  operators. 

See, for instance [2,20]. 

 

Let tX  and tY , Tt ,...,2,1  be two stationary time 

series. For modelling autoregressive structures, using a 

definite criterion such as Akaike’s Information Criterion 

(AIC) or Schwartz’s Bayesian Information Criterion 

(BIC)  truncated )(AR  models of order 
1k  and 

2k  

can be fitted to tX  and tY , respectively.  The parameter 

vectors of tX  and tY  processes for )( 1kAR  and 

)( 2kAR  models are  

 

 xkxxx 1
...' 21   ,  

 ykyyy 1
...' 21                                     (5)   

                                                                                                                                      

1,...2,1,ˆ kjjx  , and 2,...2,1,ˆ kjjy   represent the 

parameter estimates of )( 1kAR  and )( 2kAR , 

respectively. Let ),max( 21 kkk  . In constructing the test 

statistic, the maximum determined order k will be fitted to 

both series. The models  with kT    observations fitted 

to tX  and tY  can be expressed as 

 

xxx aWX   ,  
yyy aWY                                    (6)               
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 TTk xxxX 11 ...'  , 

 kxxX  ...21
'  , 

 xTxTxkX aaaa ,,1,1
' ...                                

(8)  

   
 

'Y , 
yW  , 

y  and 'ya  can also be written in a similar 

way. Additionally 

 

  0xaE ,   kTxxx IaaE  2'                                (9) 

 

  0yaE ,   kTyyy IaaE  2'                            (10)
   

     

where kTI   is the identity matrix with the dimension  

 

)()( kTkT  .  

 

It will be assumed that the disturbances of two models are 

correlated at the same points in time but uncorrelated 

across observations,  

 

  kTxyyx IaaE                                                      (11) 

 

Then, the combined model of the two equations in (6)  

becomes 

                                                                                                           

(12) 

 

Where 

  0aE ,   kTIVaaE ' , 
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The parameter  π  is estimated by  generalized least 

squares given by  

 

  ZVWWVW 111 ''ˆ                                     (15)
 

 

In the p-value algorithm,  the null hypothesis is  defined as  

yxH  :0
 or 0:0 RH . where 

 kk IIR    and kI  is a  identity matrix with the 

size of kxk .  

 

The recommended statistics 

      ˆ'ˆ''ˆ 1 RRWVWRRD   for this test is 

asymptotically chi-square distributed with k  degree of 

freedom. The clustering procedure begins with performing 

the test of hypotheses for every pair of  series and 

determining the p-value associated with the test D. Then 

groups of series are determined by comparing  p-values. 

The steps of   algorithm are shown in Figure 1 [13,14,15], 

in detail. 
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Figure 1. Maharaj’s Clustering Algorithm 

 

 

2.2. Piccolo’s AR distance 

 

In the proposition by Piccolo (1990), ARIMA models are 

fitted to all given time series, and then clustering the fitted 

series is performed by utilising a distance measure based 

on the coefficients of the corresponding )(AR  

operators [13]. The sequence of these coefficients 

,...),( 21   , which specifies completely the 

distribution of the process tZ , fully characterize any 

stationary and invertible process as in equation (1). A 

measure of structural diversity between tX  and tY  can 

be obtained by comparing the respective   sequences as 

follows: 

 






1

2
),(

j

yjxjYXd                           (16) 

),( YXd , satisfies the classical properties of a distance 

properties: 
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i. Non-negativity 0),( YXd  

ii. Symmetry ),(),( XYdYXd   

iii. Triangularity ),(),(),( YhdhXdYXd   

 

Distance matrix is constituted with the elements given in 

(16).  Then, time series are grouped using a hierarchical 

clustering method [6,13,15,16]. 

 

2.3. Cepstral-based distance 

 

In this approach,  a distance measure  based on the linear 

predicting coding (LPC) cepstrum is proposed. Cepstrum 

analysis is a kind of signal processing analysis. 

 

The LPC coefficients for )( pAR  autoregressive time 

series are defined by; 
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where i ’s are  , pi ,...,2,1  are the autoregression 

coefficients. Note that for every ARIMA model there 

exists an equivalent AR model. 

 

Euclidean distance between cepstral coefficients given in 

(17) 
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with Xc  and  Yc the cepstral coefficients of the series 

tX  and tY , respectively [8,13,16]. Following the 

determination of the distance matrix by distances defined 

in (18), the time series are clustered using a hierarchical 

clustering method.   

 

3. FREE MODEL APPROACHES 

 

3.1. Autocorrelation based distance 

 

Cluster analysis is a statistical analysis that groups units, 

combining units with similar characteristics. In the 

literature, hierarchical and non-hierarchical clustering 

techniques have been used in the classification of time 

series and various distance measures have been proposed.  

 

Galeano and Pena (2000) proposed a metric based on the 

estimated autocorrelation  function (ACF) to take into 

account  the dependence structure of the time series.   

 

Let  XRXX  ˆ,...,ˆˆ 1    and     YRYY  ˆ,...,ˆˆ 1    

be the estimated autocorrelation vectors of the series X 

and Y, respectively, for some R such that 0ˆ Xi and 

0ˆ Yi for Ri  . 

 

Euclidean distance  between  estimated autocorrelation 

functions  
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R
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2
ˆˆ                  (19) 

 

where Rr ,...,1  refers to  lags of  X and Y   series [7,8]. 

  

Time series are divided into groups with a hierarchical 

clustering method after the distance matrix whose 

elements are given in (19). 

 

3.2. Chouakria-Douzal dissimilarity measure 

 

Chouakria and Nagabhushan (2007), suggested 

dissimilarity measure that takes into account the dynamic 

behaviour of the time series. The first order temporal 

correlation coefficient used as a measure of the first 

proximity between the dynamic behaviour of the series  
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Temporal correlation coefficient belongs to the interval 

 1,  1 . If  1),( tt YXCORRT ,  then the two series 

have the same dynamic structure, and change in the same 

direction whereas if 1),( tt YXCORRT  two series 

have the same dynamic structure, and change in the 

opposite direction and if 0),( tt YXCORRT then series 

are statistically linearly independent. 

 

Chouakria-Douzal defines a dissimilarity index D as 

follows: 

 

      ttconvttttCORRT YXYXCORRTfYXD ,,,           

(21) 

 

where, (.)f is an  adaptive tuning function to modulate 

a given raw data distance  ttconv YX ,   according to the 
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temporal correlation. Exponentially adaptive function is 

chosen as  an adaptive tuning  function 

)exp(1

2
)(

ku
uf


 , 0k                   (22) 

 

For 0k , CORRTD  equals  tt YX ,  [4,15]. 

 

Then, a hierarchical clustering method using the distances 

given in (21) is employed to cluster the time series. 

 

3.3. Minkowski distance 

 

 Minkowsky distance is given by: 
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q
ttMIK yxYXD

1

1

),(













 



              (23) 

with q  a positive integer [15]. Following the  

determination of the distance matrix consists of the 

distances defined in (23), time series are clustered using a 

hierarchical clustering method.  

 

4. SIMULATION STUDY 
 

To compare the clustering performances of the methods, 

five different time series processes were considered, and 

the experimental study is performed through the 

followings.  

 

)1(AR  5.01    

)1(MA  7.01    

)2(AR  6.01   2.02   

)2(MA  8.01   4.01   

)1,1(ARMA  8.01   2.01   

 

To consider the potential influence of order that the series 

put into clustering processes, three different ordered sets 

of time series models were described:  [ )1(AR , 

)2(AR , )1(MA , )2(MA ];   [ )1(AR , 

)1,1(ARMA , )1(MA , )2(MA  ] and [ )1(AR , 

)2(AR , )1,1(ARMA , )1(MA ].  For each sets of 

models, four series of length 200 were generated for each 

models. Throughout the generating procedure of four 

series of any considered model within the set, the 

correlations between the disturbances of each pair of 

series 0, 0.5, 0.75 ve 0.9 were used. The same correlation 

values were employed for each model within the set. 

Implementing Maharaj’s p-value based distance, the 

simulated series were fitted with truncated AR(k) models, 

where the order k (up to 10) was selected by Bayesian 

Information Criterion, BIC. After this initial step, p-values 

for each pair of series were computed, and then hypothesis 

testing was conducted using these values at alpha=0.05 

significance level. For AR distance method, 

autocorrelation coefficient was calculated from the whole 

series, instead of one quarter lenght of the series. The h 

values were determined as 1,2 and 5 for Chouakria-

Douzal dissimilarity measure.  

 

The clustering procedure was simulated 500 times. For 

each of the  simulations, number of exactly correct 

clusters was counted for each method. By subtracting this 

number from the true number of correct clusters, measure 

of discrepancy was computed, that is,  

 

MD=4-number of exactly correct clusters. Since series 

were generated from four different processes, then the true 

number of correct is four. Percentages of MD in 500 

simulations are given in Table 1-3. To clarify the ouput of 

calculations given in tables, it would be good to explain 

one cell of table. In Table 1, for h=1 ve Correlation=0 , 

the percentage of only one misclustering is 41.2 %. The 

distribution of MD for each set of models is given in 

Figures 2(a)-4(d). Since Choukaria-Douzal dissimilarity 

measure shows the best performance at this value of h, 

figures are given for h=5. 
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Figure 2(a). Distribution of the measure of discrepancy for the set  [ )1(AR , )2(AR , )1(MA , )2(MA ] when the  

Correlation is 0   

 

 

 
Figure 2(b). Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1(MA , )2(MA ] when the  

Correlation is 0.5 
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Figure 2(c). Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1(MA ,       

)2(MA ] when the Correlation is 0.75 

 

  
Figure 2(d). Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1(MA , )2(MA ]   when the 

Correlation is 0.9 

 

                                        

Looking at Table1 and Figures 2(a)-2(d), which cover the 

results for the set of   [ )1(AR , )2(AR , )1(MA , 

)2(MA ], it is observed that the performances of all 

methods are better as the correlation between disturbances 

of series in same process increases. It is more obvious for 

Maharaj’s p value algoritm. Maharaj’s p-value algorithm 

outperforms the other methods with the highest percentage 

for MD of zero and one. In terms of performance, this is 

followed by the AR distance and ACF method, while 

Cepstral based distance method shows low performance 

for all correlation structures.  
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Figure 3(a). Distribution of the measure of discrepancy for the set [ )1(AR , )1,1(ARMA , )1(MA , )2(MA  ] when the  

Correlation is 0 

 

 

 
Figure 3(b). Distribution of the measure of discrepancy for the set[  )1(AR , )1,1(ARMA , )1(MA , )2(MA ] when the  

Correlation is 0.5 
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Figure 3(c). Distribution of the measure of discrepancy for the set [ )1(AR , )1,1(ARMA , )1(MA , )2(MA ] when the 

Correlation is 0.75 

 

 

 
Figure 3(d). Distribution of the measure of discrepancy for  the set [ )1(AR , )1,1(ARMA , )1(MA , )2(MA ] when the  

Correlation is 0.9 

 

 

Table 2 and Figures 3(a)-3(d) show the MD percentages 

of  methods for the set of [ )1(AR , )1,1(ARMA , 

)1(MA , )2(MA ]. Comparing this set with the set of 

[ )1(AR , )2(AR , )1(MA , )2(MA ], it is seen the 

performances of the all methods declined.  In particularly,  

the performance of the ACF method dramatically 

decreases for high correlations.  It is observed that the 

clustering methods have difficulties in distinguishing 

ARMA(1,1) from AR(1) and MA(1) processes. Maharaj’s 

p- value algorithm is the one having the best performance 

in clustering. 
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Figure 4(a). Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1,1(ARMA , )1(MA ] when the 

Correlation is 0 

 

 

 
Figure 4(b). Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1,1(ARMA , )1(MA ] when the 

Correlation is 0.5 
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Figure 4(c).Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1,1(ARMA , )1(MA  ] when the 

Correlation is 0.75 

 

 
Figure 4(d). Distribution of the measure of discrepancy for the set [ )1(AR , )2(AR , )1,1(ARMA , )1(MA ] when the 

Correlation is 0.9 

 

 

Table 3 and Figures 4(a)-4(d) are about the percentages of 

MD for the set [ )1(AR , )2(AR , )1,1(ARMA , 

)1(MA ]. The most striking result here is that Maharaj’s 

p-value algorithm has 95% zero misclustering. The 

performances of  AR distance and Choukria-Douzal 

dissimilarity methods follow Maharaj’s p-value algorithm.  

 

All methods except for ACF are resulted in having the 

highest performance in this set among all sets of the 

processes. This can be interpreted as ACF has difficulties 

in distinguishing AR parameters.  In particularly, the 

results for  Chouakria-Douzal method for  the set of  

[ )1(AR , )2(AR , )1,1(ARMA , )1(MA ] is 

atractive since the percentage for MD of zero and one 

increased dramatically.  On the other hand, the ACF and 

Cepstral based distance method have the worst clustering 

performance for this set of processes. 

 



     GU J Sci, 28(2):331-347 (2015)/ Filiz KARDİYEN, Hilal GÜNEY         343 

 

Table1. Measure of discrepancy for the set [ )1(AR , )2(AR , )1(MA , )2(MA  ] 

  Correlation=0 Correlation =0.5 Correlation =0.75 Correlation =0.9 

 h 1 2 5 1 2 5 1 2 5 1 2 5 

M
ah

ar
aj

  

0 0.4 0.2 0.2 1.4 2 1.2 21.4 19.2 25.8 50 59.8 56.4 

1 41.2 42 45.8 73 69.4 74.4 75.8 78.6 71.8 48.2 39.4 42.4 

2 57.6 56.8 53.6 25.2 28.4 24.2 2.8 2.2 2.4 1.8 0.8 1.2 

3 0.8 1 0.4 0.4 0.2 0.2 - - - - - - 

4 - - - - - - - - - - - - 

A
C

F
 

0 - - - - - - 0.4 0.8 0.4 11.8 11 9 

1 0.4 - 0.4 2.4 3.8 3.4 23.2 24.4 24.4 62.4 63.8 63.6 

2 56.6 54.6 58.2 61.4 66.2 62.8 58.6 56.6 57.4 25.2 24.8 26.8 

3 43 45.4 41.4 36.2 30 33.8 17.8 18.2 17.8 0.6 0.4 0.6 

4 - - - - - - - - - - - - 

A
u

to
re

g
re

ss
iv

e 

0 3.4 2.6 2.8 6.6 5.8 6.4 17.6 19.6 21.4 46.6 52.2 50 

1 8.8 8.2 10.2 12 12 9.8 12.6 9.2 11.4 8.8 7.8 8.4 

2 83.8 84.2 83.4 79.8 81.4 82.4 69.6 71.2 67.2 44.6 40 41.6 

3 4 5 3.6 1.6 0.8 1.4 0.2 - - - - - 

4 - - - - - - - - - - - - 

C
h

o
u

ak
ri

a 
-D

o
u

za
l 

0 - - - - - - - - - - - 0.8 

1 - - - - 1.2 1.4 0.4 1.8 11.4 0.2 1 7 

2 0.2 0.2 0.4 92 84.6 73.8 99.4 98 87.8 99.8 99 92.2 

3 99.4 86 85.4 8 14.2 24.8 0.2 0.2 - - - - 

4 0.4 13.8 14.2 - - - - - - - - - 

M
in

k
o

w
sk

y
  

0 - - - - - - - - - - - - 

1 - - - - - - - - - - 0.2 - 

2 - - - 79.6 79.8 79 99.6 99.6 99.6 100 99.8 100 

3 100 100 100 20.4 20.2 21 0.4 0.4 0.4 - - - 

4 - - - - - - - - - - - - 

C
ep

st
ra

l 

0 - - - - - 0.2 0.2 0.4 0.4 2.6 1.4 1.6 

1 - 0.2 - 0.4 0.8 10 1.8 0.6 0.6 2.6 1.8 2.4 

2 6.4 6.2 7.2 10.2 11.2 89.8 18.8 16.2 14.4 17.6 18.2 16.4 

3 93.6 93.6 92.8 89.4 88 - 79.2 82.8 84.6 77.2 78.6 79.6 

4 - - - - - - - - - - - - 

 

 

 

 



344 GU J Sci, 28(2):331-347 (2015)/ Filiz KARDİYEN, Hilal GÜNEY 

 

Table 2. Measure of discrepancy for the set [ )1(AR , )1,1(ARMA , )1(MA , )2(MA  ] 

  Correlation =0 Correlation =0.5 Correlation =0.75 Correlation =0.9 

 h 1 2 5 1 2 5 1 2 5 1 2 5 

M
ah

ar
aj

  

0 - 0.2 0.2 0.2 0.6 0.6 14 16 14.6 56.4 50.2 59.6 

1 31.8 39.8 36.8 61 60.2 61.2 77.6 76.6 77 42 48 39.4 

2 67.6 59.2 62.6 38.4 38.4 37.6 7.8 7.4 8.2 1.6 1.6 1 

3 0.6 0.8 0.4 0.4 0.8 0.6 0.6 - 0.2 - 0.2 - 

4 - - - - - - - - - - - - 

A
C

F
 

0 - - - - - - - - - - 0.2 - 

1 0.2 0.2 0.2 0.2 0.8 0.6 1.2 1.2 1 2.8 1.4 2.2 

2 54.4 52 58.4 86.8 85.8 84.2 98.6 96.6 97.6 97.2 98.4 97.8 

3 45.4 47.8 41.4 13 13.4 15.2 2 2.2 1.4 - - - 

4 - - - - - - - - - - - - 

A
u

to
re

g
re

ss
iv

e 

0 0.4 0.6 - 2.4 2.2 2 12.2 10.6 12.8 48.4 42.8 48.2 

1 2.4 3.6 3.6 6.2 5 5.2 12.8 12.2 12.2 7.6 14.2 9.4 

2 25.2 25.4 25 37.6 37 35.4 54.2 53.8 52 43 41.8 41.6 

3 72 70.4 71.4 53.8 55.8 57.4 20.8 23.4 23 1 1.2 0.8 

4 - - - - - - - - - - - - 

C
h

o
u

ak
ri

a 
D

o
u

za
l 

0 - - - - - - - - 0.2 - 0.4 1.6 

1 - - - - 0.6 - 0.8 3.2 7.8 1.4 2.4 11 

2 - 0.2 0.4 49 41.4 32.6 88.2 78.2 63.2 98.6 97.2 87 

3 96 92.4 87.6 51 58 67.2 11 18.6 28.8 - - 0.4 

4 4 7.4 12 - - 0.2 - - - - - - 

M
in

k
o

w
sk

y
  

0 - - - - - - - - - - - - 

1 - - - - - 0.2 - - 0.4 0.6 0.4 1 

2 - 99.8 - 64.4 66 64.6 93.2 92.8 93 99.4 99.4 98.8 

3 100 0.2 100 35.6 34 35.2 6.8 7.2 6.6 - 0.2 0.2 

4 - - - - - - - - - - - - 

C
ep

st
ra

l 

0 - - - - - - - - - 1.4 3 1.4 

1 - 0.2 - 0.2 - - 0.8 0.4 1.2 1.4 2 1.4 

2 1 0.4 0.4 1.8 99 2 2.2 5.6 4.2 10.6 12.6 11.6 

3 99 99.4 99.6 98 - 98 97 94 94.6 86.6 82.4 85.6 

4 - - - - - - - - - - - - 
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Table 3. Measure of discrepancy for the set [ )1(AR , )2(AR , )1,1(ARMA , )1(MA ] 

 

  Correlation =0 Correlation =0.5 Correlation =0.75 Correlation =0.9 

 h 1 2 5 1 2 5 1 2 5 1 2 5 

M
ah

ar
aj

  

0 4.4 3.8 3.4 12.2 13.8 13 62.2 63.6 62.2 95.8 96.2 95.4 

1 39.4 40 41 63.2 66.4 63.4 36 34 36 3.4 3.8 4 

2 55.6 55.6 54.8 24.4 19.2 23 1.8 2.4 1.8 0.8 - 0.6 

3 0.6 0.6 0.8 0.2 0.6 0.6 - - - - - - 

4 - - - - - - - - - - - - 

A
C

F
 

0 - - - - - - 0.2 0.8 0.2 16.8 17 15.4 

1 - - - 0.2 - - 1.4 - 1.4 3.4 5.4 5 

2 27.2 22.4 23.8 52.4 52.4 55.4 85.8 88.6 86 79.8 77.2 79.8 

3 72.8 77.6 76.2 47.4 47.6 44.6 12.6 10.6 12.4 - 0.4 - 

4 - - - - - - - - - - - - 

A
u

to
re

g
re

ss
iv

e 

0 3 4 2.2 9.4 8 10.2 33.4 36 33.4 88.8 86.4 87.4 

1 5.2 4.8 3.8 6 7.6 4.4 6.2 4.4 6.4 0.6 1.6 0.4 

2 88.8 86.2 90.2 83.6 83.2 83.4 60.2 59.6 60 10.6 12 12.2 

3 3 5 3.8 1 1.2 1.6 0.2 - 0.2 - - - 

4 - - - - - - - - - - - - 

C
h

o
u

ak
ri

a 
-D

o
u

za
l 

0 - - - - - - 5.8 7 9.4 83.6 86.6 89.6 

1 - - - 1 1.4 2.4 26 27.4 27.8 11 8.4 8.8 

2 - - 1.6 94.2 84.6 73.8 68 65.6 60 5.4 5 1.6 

3 99.8 97 83.2 4.8 14 23.6 0.2 - 2.8 - - - 

4 0.2 3 15.2 - - 0.2 - - - - - - 

M
in

k
o

w
sk

y
  

0 - - - - - - 2.8 1.4 2.8 75.6 74.4 76.2 

1 - - - - 0.2 0.4 15.8 15.4 15.8 13 12.2 13.6 

2 - - - 75.2 72.6 71.4 81 83.2 81 11.4 13.4 10.2 

3 100 100 99.8 24.8 27.2 28.2 0.4 - 0.4 - - - 

4 - - 0.2 - - - - - - - - - 

C
ep

st
ra

l 

0 - - - - - - 0.4 0.4 0.4 6 3.2 4.6 

1 - - - 0.2 - 0.2 0.2 0.4 0.2 0.2 0.8 0.4 

2 6.8 4.2 6.4 13.2 11.2 12.2 21.4 15.2 2.2 21.4 17.4 16.8 

3 93.2 95.8 93.6 86.6 88.8 87.6 78 84 78.2 72.4 78.6 78.2 

4 - - - - - - - - - - - - 
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8. CONCLUSION 

 

In time series clustering, the idea is to investigate 

similarities of the time series in the identified clusters. It is 

important to note that clusters that are identified when 

carrying out clustering methods are not unique since they 

depend on the distance measure used, the clustering 

technique and the analyst. A wide variety of algorithms 

have been developed to classify different types of time-

series data. In this study, some of the model-based and 

model free methods were compared in terms of their 

classification performance. For this purpose, several well-

known model-based methods, Maharaj’s p-value, 

Piccolo’s AR distance-based hierarchical clustering 

method and Cepstral-based hierarchical clustering 

method; and also, some model-free methods, 

autocorrelation-based hierarchical clustering method, 

Choukria-Dousal dissimilarity method and Minkowski 

distance were evaluated. The simulation study showed 

that  Maharaj’s p-value algorithm was found as a method 

having the highest clustering performance for all 

correlation structures and all set of processes. Choukaria-

Douzal dissimilarity method has displayed high 

performance when setting the experiment as  high value of 

correlation coefficients and big value of h. Cepstral-based 

and Minkowski methods are not affected much by the 

increase of correlation between series. Regarding the 

performance of these methods, they may not preferable to 

other methods. 

 

In order to examine the potantial influence of order that 

the series put into clustering processes, three different 

ordered sets of the processes were taken into consideration 

in the comparison of the methods. The results of the 

simulation study showed that all of the methods were 

affected by the change of the order of the processes.  It is 

observed that all clustering methods have difficulties in 

distinguishing ARMA(1,1) from AR(1) and MA(1) 

processes. All methods except for ACF are resulted in the 

highest performance for the set of [ )1(AR , )2(AR , 

)1,1(ARMA , )1(MA ].  It is also concluded that ACF 

method  has difficulty in distinguishing AR parameters. 

Cepstral-based method was the least affected one by the 

order of the processes. Finally, we obtained more 

homogeneous clusters with the p-value algorithm. 
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