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ABSTRACT  
 

This article considers the derivation of an implicit block method for the solution of initial value problems of ordinary 

differential equations directly. The method of interpolation and collocation is adopted in developing the method 

where approximated power series of the form 





2

0

)(
k

j

j

j
xaxy  is used as an interpolation polynomial and its 

second derivative is collocated at the selected grid points where k=5. The method developed is zero stable, consistent 
and convergent. The generated numerical results show that the new method is better when compared with the 

existing methods of the same step-length in terms of error. 

 

Keywords: Power series, Interpolation, Collocation, Block Method, Ordinary Differential Equations. 

 

 
1. INTRODUCTION 

The mathematical formulation of physical phenomena 

in the field of science and engineering in most cases 

lead to differential equations which are the building 

blocks of mathematical modeling (see[1]). This paper 

focuses on solving second order initial value problems 

of ordinary differential equations (ODEs) of the form 

bxabxyaxyyyxfy  ,)(,)(),,(
00

   (1) 

The solution of equation (1) can be achieved either by 

the use of direct method proposed in [2 – 6] or 

reduction to its equivalent system of first order 

equations and then suitable numerical for first order will 

be used to solve the resulting equations [6]. However, 

these methods compute numerical solution of ODEs at 

one point at a time which reduces the accuracy of a 

method. 

 

Block method for solving ODEs concurrently was 

introduced by Milne 1967 whereby it was previously 

used as a starting value for predictor-corrector 

algorithm and later adopted as full method. Some 

researchers such as Omar [1], Badmus and Yahaya [9], 

Mohammed [7] and Mohammed and Adeniyi [8] 

developed block methods for direct solution of second 

order ODEs. It is observed that the accuracy of the 

methods is not encouraging. 

In order to improve the accuracy of the existing 

methods, this paper presents new implicit block method 

for solving second order ODEs directly. Interpolation 

and collocation approach is adopted in developing the 
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method. The points of interpolation based on the order 

of differential equation are made at the two points prior 

to the last two points while collocation points are 

chosen at all grid points within the interval of 

integration. 

 

2. DERIVATION OF THE METHOD 

Power series of the form 



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k

j
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xaxy                                                     (2)

 

is considered as an approximate solution to equation 

(1). The first and second derivatives of (2) give 
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Equation (2) is interpolated at 3,2, 


ixx
in

and (4) is 

collocated at  5)1(0, 


cxx
cn

.

 
Therefore, interpolation and collocation equations at the 

selected grid points produce 
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Using Gaussian elimination method, the unknown 

coefficients sa
j


 in equations (5) and (6) can be 

obtained. Substituting the sa
j


 into (2), this gives a 

continuous implicit scheme of the form 
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where 
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Equations (8) and (9) are evaluated at the non-

interpolating points and this gives 
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The values of J and G are given as 
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The derivative of (8) and (9) are evaluated at all the grid 

points. This gives the derivative of (10). Therefore, 

combining equation (10) and its derivative in a matrix 

form, then multiply y and f functions by the inverse of 



  GU J Sci, 28(4):691-696 (2015)/ Zurni OMAR, John Olusola KUBOYE                                691 
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The derivative of block method (11) gives 
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3. PROPERTIES OF THE BLOCK METHOD 

3.1. Order of the Block Method 

The linear difference operator of the block (11) can be 

defined as 
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Definition: The block method (11) together with the 

associated linear difference operator (12) are said to 

have order p if

0 and 0
2110


 pp
cccc  . The value 
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c  is called the error constant and the truncation 

error is given as 
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Therefore, from our computation, the block method (11) 

has a uniform order T]6,6,6,6,6[ with error constants  
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3.2. Zero Stability 

The block method (11) is said to be zero-stable as 

0h if its first characteristic polynomial 

0]det[)(  bAzz  satisfy the condition that

1z  and those roots 1z have multiplicity not 

greater than the order of the differential equation.  

Therefore, for the new method we have 

0)1()( 4  zzz  

1,0,0,0,0z  

Hence, the block method (11) is zero stable and 

consistent since the order is greater than one. 

Furthermore, since the method is zero-stable and 

consistent, it implies that the method is convergent (see 

[5]). 

3.3. Interval of Absolute Stability 

Using the boundary locus method proposed by Lambert 

[6]. The new method (11) is absolutely stable within the 

interval of (-22.07, 0). This represented in the diagram 

below   

 
Figure 1: Region of absolute stability for the new block 

method. 

4.    NUMERICAL EXPERIMENTS 

In this section, the accuracy of the new method is tested 

with three second order initial value problems and the 

obtained results are compared with the existing 

methods. These are shown in Tables 1, 2 and 3 below. 

Problem 1: 1.0,1)0(,0)0(,  hyyyy  

                     Exact Solution: 
xexy 1)(  

The problem 1 above was solved by Mohammed [7] 

and Mohammed and Adeniyi [8]. We applied the 

new method to the same problem for the purpose of 

comparison. The results are shown in Table 1 below

          Table 1: Results of the new method compared with Mohammed [7] and Mohammed and Adeniyi [8]  

\ 

x Exact Solution  
Computed  

Solution  

Error in new  

Method, k=5 

Error in 

Mohammed&  

Adeniyi [8], k=5 

Error in  

Mohammed [7], 

k=5 

0.1 -0.105170918076 -0.105170918075 2.508826E-13 2.004000000E-07 2.198000000E-05 

0.2 -0.221402758160 -0.221402758095 6.493175E-11 5.386000000E-07 6.070400000E-06 

0.3 -0.349858807576 -0.349858805893 1.683146E-09 8.840000000E-07 1.005100000E-05 

0.4 -0.491824697641 -0.491824680635 1.700635E-08 1.229700000E-06 1.402530000E-05 

0.5 -0.648721270700 -0.648721168155 1.025454E-07 1.575200000E-06 1.799340000E-05 

0.6 -0.822118800391 -0.822116241680 2.558711E-06 1.920400000E-06 2.161620000E-05 

0.7 -1.013752707470 -1.013747434171 5.273300E-06 2.506000000E-06 2.799300000E-05 

0.8 -1.225540928492 -1.225532652558 8.275935E-06 3.106000000E-06 3.456100000E-05 

0.9 -1.459603111157 -1.459591494483 1.161667E-05 3.705000000E-06 4.111400000E-05 

0.1 -1.718281828459 -1.718266406589 1.542187E-05 4.304000000E-06 4.765600000E-05 

 

Problem2: 
   

10

,00,10,cos2





x

yyxyy
  

                    Exact Solution: xxxxy sincos)(   

This problem 2 was solved by Omar [1] in which 

maximum errors were selected. Our new method was 

applied to the same differential problem and selection 

of maximum errors was also considered. The results are 

shown in Table 2 below: 

The following notations are also used in Tables 2. 

S2PEB Sequential Implementation of the 2-point 

 Explicit Block Method 

P2PEB Parallel Implementation of the 2-point 

Explicit  Block Method 

S3PEB Sequential Implementation of the 3-point 

 Explicit Block Method 

P3PEB Parallel Implementation of the 3-point 

Explicit  Block Method 

10 10 20

20

15

10

5
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                             Table 2: Comparison of the new method with Omar [1] block method 

 

h-values 
New 

Method 
Omar [1]  

Number 

of  Steps 

Error in new  

Method, k=5 

Error in Omar 

 [1]  k=5 
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5-Step 

Method 

S2PEB      53 4.886702E-12 1.43153E-03 

P2PEB      53 4.886702E-12 1.43153E-03 

S3PEB      36 1.187872E-11 1.43153E-03 

P3PEB      36 1.187872E-11 1.43153E-03 

310  
5-Step 

Method 

S2PEB     503 4.518608E-14 1.43166E-04 

P2PEB     503 4.518608E-14 1.43166E-04 

S3PEB     336 2.220446E-16 1.43166E-04 

P3PEB     336 2.220446E-16 1.43166E-04 

 

410  
5-Step 

Method 

S2PEB    5003 2.101652E-13 1.43167E-05 

P2PEB    5003 2.101652E-13 1.43167E-05 

S3PEB    3336 3.197442E-14 1.43167E-05 

P3PEB    3336 3.197442E-14 1.43167E-05 

 

510  
5-Step 

Method 

S2PEB   50003 6.672440E-14 1.43167E-06 

P2PEB   50003 6.672440E-14 1.43167E-06 

S3PEB   33336 9.459100E-14 1.43167E-06 

P3PEB   33336 9.459100E-14 1.43167E-06 
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32
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46
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                     Exact Solution: 
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


 

Badmus and Yahaya [9] applied their developed method to the problem above. The same problem was also considered by 

the new method. The generated results are shown in Table 3 below. 

 

         Table 3: Results of the new block method compared with Yahaya and Badmus [9] 

x-values Exact Solution  Computed Solution  
Error in new  

Method, k=5 

Error in Badmus 

andYahaya [9] 

k =5 

0.003125 1.003076525857696400 1.003076525857696100 2.220446E-16 3.8354E-05 

0.00625 1.006057503083516400 1.006057503083515900 4.440892E-16 7.5004E-05 

0.009375 1.008944995088837600 1.008944995088838700 1.110223E-15 1.0592E-04 

0.0125 1.011741018167988400 1.011741018167986500 1.998401E-15 1.35476E-04 

0.015625 1.014447542686413900 1.014447542686407700 6.217249E-15 1.55567E-04 

0.01875 

 

1.017066494235672400 1.017066494235681100 8.659740E-15 1.86372E-04 

0.025 1.011741018167988400 1.011741018167981600 6.883383E-15 1.96055E-04 

0.028125 1.024416518738402700 1.024416518738479100 7.638334E-14 2.21045E-04 

0.03125 1.026703577500806200 1.026703577500870800 6.461498E-14 2.05628E-04 
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5. CONCLUSION 

We have proposed a five-step block method of order six 

for direct solution of second order initial value 

problems of ODEs. The new method was applied to 

some second initial value problems and the results 

generated are compared with the existing methods. It 

can be observed from the above Tables 1-3 that the new 

method gives better approximation than the existing 

methods of the same step-length k=5.  
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