Equivalence of Codes over Finite Chain Ring

Mustafa ÖZKAN ${ }^{1 *}$
${ }^{1}$ Trakya University, Faculty of Sciences, Mathematics Department, 22030, Edirne, Turkey

Abstract

Equivalence of Codes are constructed classification on finite rings according to odd codes, even codes and recurrent codes. It is determined that the codes are odd codes or even codes and the relationship with the Hadamard codes was studied. In this study, some matrices is written with the elements on the finite rings. Codes are generated with these matrices. The relationship between the generated codes and the perfect codes is revealed.

Keywords: Odd codes, Even codes, Gray map, Hadamard codes, Special matrices.

Sonlu Zincir Halkası üzerinde Kodların Denkliği

Mustafa ÖZKAN ${ }^{1 *}$
${ }^{1}$ Trakya University, Faculty of Sciences, Mathematics Department, 22030, Edirne, Turkey

Özet

Tek kodlar, çift kodlar ve tekrarlı oluşum kodlarına göre sonlu halkalarda kodların denkliğinin sınıflandırılması kurulmuştur. Kodların tek kod ya da çift kod olduğu ve çalışılan Hadamard kodları ile ilişkisi tespit edilmiştir. Bu çalışmada, bileşenleri sonlu halkalarda matrisler yazılmıştır. Kodlar bu matrisler ile üretilmiştir. Üretilen kodlar ve mükemmel kodlar arasında ilişki ortaya konulmuştur.

Anahtar Kelimeler : Tek kodlar, Çift kodlar, Gray dönüşümü, Hadamard kodlar, Özel matrisler.

[^0]
1. Introduction

Binary operations (+ and .) on the ring
$R_{2}=I F_{2}+u I F_{2}+u^{2} I F_{2}=\left\{0,1, u, u^{2}, 1+u, 1+u^{2}, u+u^{2}, 1+u+u^{2}\right\} \quad\left(\left|I F_{2}+u I F_{2}+u^{2} I F_{2}\right|=8\right) \quad$ are defined as below:

+	0	1	u	u^{2}	$1+u$	$1+u^{2}$	$u+u^{2}$	$1+u+u^{2}$
0	0	1	u	u^{2}	$1+u$	$1+u^{2}$	$u+u^{2}$	$1+u+u^{2}$
1	1	0	$1+u$	$1+u^{2}$	u	u^{2}	$1+u+u^{2}$	$u+u^{2}$
u	u	$1+u$	0	$u+u^{2}$	1	$1+u+u^{2}$	u^{2}	$1+u^{2}$
u^{2}	u^{2}	$1+u^{2}$	$u+u^{2}$	0	$1+u+u^{2}$	1	u	$1+u$
$1+u$	$1+u$	u	1	$1+u+u^{2}$	0	$u+u^{2}$	$1+u^{2}$	u^{2}
$1+u^{2}$	$1+u^{2}$	u^{2}	$1+u+u^{2}$	1	$u+u^{2}$	0	$1+u$	u
$u+u^{2}$	$u+u^{2}$	$1+u+u^{2}$	u^{2}	u	$1+u^{2}$	$1+u$	0	1
$1+u+u^{2}$	$1+u+u^{2}$	$u+u^{2}$	$1+u^{2}$	$1+u$	u^{2}	u	1	0

\cdot	0	1	u	u^{2}	$1+u$	$1+u^{2}$	$u+u^{2}$	$1+u+u^{2}$
0	0	0	0	0	0	0	0	0
1	0	1	u	u^{2}	$1+u$	$1+u^{2}$	$u+u^{2}$	$1+u+u^{2}$
u	0	u		0	$u+u^{2}$	u	u^{2}	$u+u^{2}$
u^{2}	0	u^{2}	0	0	u^{2}	u^{2}	0	u^{2}
$1+u$	0	$1+u$	$u+u^{2}$	u^{2}	$1+u^{2}$	$1+u+u^{2}$	u	1
$1+u^{2}$	0	$1+u^{2}$	u	u^{2}	$1+u+u^{2}$	1	$u+u^{2}$	$1+u$
$u+u^{2}$	0	$u+u^{2}$	u^{2}	0	u	$u+u^{2}$	u^{2}	u
$1+u+u^{2}$	0	$1+u+u^{2}$	$u+u^{2}$	u^{2}	1	$1+u$	u	$1+u^{2}$

The Lee weight $w_{L}(r)$ of $r \in R_{2}$ is given by

$$
w_{L}(r)= \begin{cases}0 & ; r=0 \tag{1}\\ 4 & ; r=u^{2} \\ 2 & ; \text { otherwise }\end{cases}
$$

This extends to Lee weight function in R_{2}^{n} such that $w_{L}(r)=\sum_{i=0}^{n-1} w_{L}\left(r_{i}\right)$ for $r=\left(r_{o}, r_{1}, \ldots, r_{n-1}\right) \in R_{2}^{n}$. The Lee distance $d_{L}(x, y)$ between any distinct vectors $x, y \in R_{2}^{n}$ is defined to be $w_{L}(x-y)$. The d_{L} minimum Lee distance of C is defined as $d_{L}(C)=\min \left\{d_{L}(x, y)\right\}$ for any The Hamming weight of C is defined as $w_{H}(c)=\sum_{i=0}^{n-1} w_{H}\left(c_{i}\right)$
where $w_{H}\left(c_{i}\right)=0$ if $c_{i}=0$ and $w_{H}\left(c_{i}\right)=1$ if $c_{i}=1$. The minimum Hamming distance of C is called as $d_{H}(C)=\min \left\{d_{H}\left(c, c^{\prime}\right)\right\}$ for any $c, c^{\prime} \in C, c \neq c^{\prime}$.

Generally the Gray map is defined as :

$$
\begin{gather*}
\Phi: R_{2}^{n} \longrightarrow I F_{2}^{4 n} \\
\left(r_{1}, r_{2}, \ldots, r_{n}\right) \text { a } \Phi\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\left(c_{1}, c_{2}, \ldots, c_{n}, a_{1}+c_{1}\right. \\
a_{2}+c_{2}, \ldots, a_{n}+c_{n}, b_{1}+c_{1}, b_{2}+c_{2}, \ldots, b_{n}+c_{n}, \tag{2}\\
\left.a_{1}+b_{1}+c_{1}, a_{2}+b_{2}+c_{2}, \ldots, a_{n}+b_{n}+c_{n}\right)
\end{gather*}
$$

where $r_{i}=a_{i}+b_{i} \cdot u+c_{i} \cdot u^{2} \in R_{2}$ for $1 \leq i \leq n$.

2. Materials and Methods

Certain examples for the matrix $M^{\alpha_{1}, \alpha_{2}}$ constructed above are given below :
$M^{0,0}=[1]_{1 x 1}, M^{0,1}=\left[\begin{array}{cc}1 & 1 \\ 0 & u^{2}\end{array}\right]_{2 x 2}, M^{0,2}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 0 & u^{2} & u^{2} \\ 0 & u^{2} & 0 & u^{2}\end{array}\right]_{3 x 4}$,
$M^{1,0}=\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & u & u^{2} & 1+u & 1+u^{2} & u+u^{2} & 1+u+u^{2}\end{array}\right]_{2 \times 8}$. . This matrix constructed is a
special matrix which has $\alpha_{1}+\alpha_{2}+1$ rows.

Define the code $C^{\alpha_{1}, \alpha_{2}}=\left\{\left(c_{1}, c_{2}\right) \cdot M^{\alpha_{1}, \alpha_{2}} \mid c_{1} \in R_{2}^{\alpha_{1}+1}, c_{2} \in I F_{2}^{\alpha_{2}}\right\}$ which has a generator matrix $M^{\alpha_{1}, \alpha_{2}}$ where α_{1}, α_{2} are inregers such that $\alpha_{1}, \alpha_{2} \geq 0$.

Definition 2.1 : Let $C^{\alpha_{1}, \alpha_{2}} \subseteq R_{2}{ }^{n}$ be a code. $\operatorname{even}\left(C^{\alpha_{1}, \alpha_{2}}\right)=\left\{\left.\left(c_{1}, c_{3}, \ldots, c_{n-1}\right) \in R_{2}^{\frac{n}{2}} \right\rvert\,\left(c_{1}, c_{3}, \ldots, c_{n-1}\right) \in C^{\alpha_{1}, \alpha_{2}}\right\}$ is called an even code over $R_{2}^{\frac{n}{2}} \cdot \operatorname{odd}\left(C^{\alpha_{1}, \alpha_{2}}\right)=\left\{\left.\left(c_{2}, c_{4}, \ldots, c_{n}\right) \in R_{2}^{\frac{n}{2}} \right\rvert\,\left(c_{2}, c_{4}, \ldots, c_{n}\right) \in C^{\alpha_{1}, \alpha_{2}}\right\}$ is called an odd code over $R_{2}{ }^{\frac{n}{2}}$. Even codes and odd codes are defined over the field F_{2} writing F_{2} instead of R_{2}.

3. Results

Preposition 3.1: Let $C^{\alpha_{1}, \alpha_{2}}$ be a code.
i) $\operatorname{even}\left(C^{\alpha_{1}, \alpha_{2}}\right)=\operatorname{odd}\left(C^{\alpha_{1}, \alpha_{2}}\right)=C^{\alpha_{1}-1,2}$ is satisfied if $\alpha_{1} \geq 1, \alpha_{2}=0$.
ii) $\operatorname{even}\left(C^{\alpha_{1}, \alpha_{2}}\right) \approx \operatorname{odd}\left(C^{\alpha_{1}, \alpha_{2}}\right)=C^{\alpha_{1}, \alpha_{2}-1}$ is satisfied if $\alpha_{1} \geq 0, \alpha_{2} \geq 1$.

Preposition 3.2 : $\operatorname{even}\left(\Phi\left(C^{\alpha_{1}, \alpha_{2}}\right)\right)=\Phi\left(\operatorname{even}\left(C^{\alpha_{1}, \alpha_{2}}\right)\right)$ is satisfied.

Proof : Let $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in C^{\alpha_{1}, \alpha_{2}}$ where $r_{i}=a_{i}+b_{i} \cdot u+c_{i} \cdot u^{2} \in R_{2}$ for $1 \leq i \leq n$.
If $\Phi(r)=\Phi\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\Phi\left(a_{1}+b_{1} \cdot u+c_{1} \cdot u^{2}, a_{2}+b_{2} \cdot u+c_{2} \cdot u^{2}, \ldots, a_{n}+b_{n} \cdot u+c_{n} \cdot u^{2}\right)$
$=\left(c_{1}, c_{2}, \ldots, c_{n}, a_{1}+c_{1}, a_{2}+c_{2}, \ldots, a_{n}+c_{n}, b_{1}+c_{1}, b_{2}+c_{2}\right.$
$\left., \ldots, b_{n}+c_{n}, a_{1}+b_{1}+c_{1}, a_{2}+b_{2}+c_{2}, \ldots, a_{n}+b_{n}+c_{n}\right) \in \Phi\left(C^{\alpha_{1}, \alpha_{2}}\right)$

$$
\left(c_{1}, c_{3}, \ldots, c_{n-1}, a_{1}+c_{1}, a_{3}+c_{3}, \ldots, a_{n-1}+c_{n-1}, b_{1}+c_{1}, b_{3}+c_{3}, \ldots, b_{n-1}+c_{n-1},\right.
$$

then

$$
\left.a_{1}+b_{1}+c_{1}, a_{3}+b_{3}+c_{3}, \ldots, a_{n-1}+b_{n-1}+c_{n-1}\right) \in \operatorname{even}\left(\Phi\left(C^{\alpha_{1}, \alpha_{2}}\right)\right)
$$

On the other hand,

$$
\begin{aligned}
& r^{\prime}=\left(r_{1}, r_{3}, \ldots, r_{n-1}\right)=\left(a_{1}+b_{1} \cdot u+c_{1} \cdot u^{2}, a_{3}+b_{3} \cdot u+c_{3} \cdot u^{2}, \ldots, a_{n-1}+b_{n-1} \cdot u+c_{n-1} \cdot u^{2}\right) \in \operatorname{even}\left(C^{\alpha_{1}, \alpha_{2}}\right) \text {. Then } \\
& \Phi\left(r^{\prime}\right)=\begin{array}{c}
\left(c_{1}, c_{3}, \ldots, c_{n-1}, a_{1}+c_{1}, a_{3}+c_{3}, \ldots, a_{n-1}+c_{n-1}, b_{1}+c_{1}, b_{3}+c_{3}, \ldots, b_{n-1}+c_{n-1},\right. \\
\left.a_{1}+b_{1}+c_{1}, a_{3}+b_{3}+c_{3}, \ldots, a_{n-1}+b_{n-1}+c_{n-1}\right) \in \Phi\left(\operatorname{even}\left(C^{\alpha_{1}, \alpha_{2}}\right)\right)
\end{array}
\end{aligned}
$$

This Preposition can be written for the odd codes.

Example 3.3: Write the matrix $M^{0,1}$ to define the code $C^{0,1}$.
$M^{0,1}=\left[\begin{array}{cc}1 & 1 \\ 0 & u^{2}\end{array}\right]_{2 \times 2}$. Then the elements of the code $C^{0,1}$ are of the form $c=\left(c_{1}, c_{2}\right) \cdot M^{0,1}$,where $c_{1} \in R_{2}, c_{2} \in I F_{2}$.
$C^{0,1}=\left\{00,0 u^{2}, 11,11+u^{2}, u u, u u+u^{2}, u^{2} u^{2}\right.$,
$u^{2} 0,1+u 1+u, 1+u 1+u+u^{2}, 1+u^{2} 1+u^{2}$,
$1+u^{2} 1, u+u^{2} u+u^{2}, u+u^{2} u, 1+u+u^{2} 1+u+u^{2}$,
$\left.1+u+u^{2} 1+u\right\} \subseteq R_{2}^{2}$
It is seen that $d_{L}\left(C^{0,1}\right)=4$ and $\left|C^{0,1}\right|=16$ and then this is a $(2,16,4) _$code.Therefore $\Phi\left(C^{0,1}\right)=\{00000000,01010101,00110011$, 01100110,11111111, 10101010, 11001100,10011001, 00001111, 01011010,00111100,01101001, $11110000,10100101,11000011$, $10010110\} \subseteq I F_{2}^{8}$
is a $(8,16,4) _$Hadamard code. Let $A_{4}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & -1 & 1\end{array}\right]_{4 \times 4}$ be a normalized Hadamard matrix.
Writing 0 instead of 1 and 1 instead of -1 , the vectors $0000,1010,1100$ and 0110 are obtained.
Adding the complements of these vectors to these vectors the new vectors
$0000,1010,1100,0110,1111,0101,0011$ and 1001 are obtained. Then using the method given above, the new codewords 00000000,01010101,00110011,01100110, 11111111, 10101010,11001100,10011001, 00001111,01011010,00111100,01101001,11110000,10100101,11000011,10010110
are obtained. The code formed by these codewords is $\Phi\left(C^{0,2}\right)$ which is a $(8,16,4) _$Hadamard code. Moreover $\quad\left(C^{0,1}\right)^{\perp}=\left\{00, u u, u^{2} u^{2}, u+u^{2} u+u^{2}\right\} \subseteq I F_{2}^{2} \quad$ and $\Phi\left(\left(C^{0,1}\right)^{\perp}\right)=\{00000000,00001111$,
$11111111,11110000\} \subseteq I F_{2}^{8}$
$C^{0,1}$ is a cyclic code such that the equation $\tau\left(C^{0,1}\right)=C^{0,1}$ is provided. Similarly $\Phi\left(C^{0,1}\right)$ is quasicyclic code of index 4 such that the equation $\sigma^{\otimes 4}\left(\Phi\left(C^{0,1}\right)\right)=\Phi\left(C^{0,1}\right)$ is satisfied. For the code $C^{0,1} ; \operatorname{even}\left(C^{0,1}\right)=\left\{0,1, u, u^{2}, 1+u, 1+u^{2}, u+u^{2}, 1+u+u^{2}\right\}=C^{0,0}=R_{2}$ is obtained. $\Phi\left(\operatorname{even}\left(C^{0,1}\right)\right)=\left\{\begin{array}{l}0000,0011,1111,1100, \\ 0101,0110,1010,1001\end{array}\right\}$. Hence $\operatorname{even}\left(\Phi\left(C^{0,2}\right)\right)=\Phi\left(\operatorname{even}\left(C^{0,2}\right)\right)$ is obtained.

4. Conclusions

In this paper the codes over the a finite chain $I F_{2}+u I F_{2}+u^{2} I F_{2}$ where $u^{3}=0$ defining by matrices given in section 2 are Classified. The codes over the ring defining by matrices given lexicographically feature are described. These codes over the ring are obtained images of codes in the Galois field. Moreover even codes, odd codes and recurrent formsa are obtained.

Acknowledgements

The author is grateful to the anonymous referee for a careful checking of the details and ISMSIT2017.

5. References

[1] Qian J, Zhang L, Zhu S (2006), "Constacyclic and cyclic codes over $\mathrm{F}_{2}+u \mathrm{~F}_{2}+u^{2} \mathrm{~F}_{2}$ ",IEICE Trans.Fundamentals, E89-a, no 6,1863-1865.
[2] Özkan M, Öke F(2016), Some Special Codes Over $\mathrm{F}_{3}+\nu \mathrm{F}_{3}+u \mathrm{~F}_{3}+u^{2} \mathrm{~F}_{3}$, Mathematical Sciences and Applications E-Notes .Vol. 4 No 1,pp 40-44.
[3] Roman S (1992), Coding and Information Theory, Graduate Texts in Mathematics, Springer Verlag.
[4] Udomkavanich P, Jitman S (2009) , On the Gray Image of ($1-u^{m}$)-Cyclic Codes $\mathrm{F}_{p^{k}}+u \mathrm{~F}_{p^{k}}+\ldots+u^{m} \mathrm{~F}_{p^{k}}$ Int.J.Contemp. Math. Sciences,Vol.4, No.26, 1265-1272.
[5] Özkan M, Öke F(2016),A relation between Hadamard codes and some special codes over F2+uF2, App.Mathematics and Inf. Sci. Vol.10, No: 2, pp : 701-704.
[6] Özkan M, Öke F (2017) ,Repeat codes, Even codes, Odd codes and Their equivalence, General Letters in Mathematics, Vol. 2, No :1, pp : 110-118.
[7] Özkan M, Öke F (2017),Codes defined via especial matrices over the ring and Hadamard codes, Mathematical Sciences and Applications E-Notes, Volume 5, No :1, pp : 93-98.
[8] Özkan M, Öke F (2017), Gray images of $(1+v)$-constacyclic codes over a particular ring, Palestine Journal of Mathematics. Vol. 6(S.I.2), 241-245.
[9] Krotov, D. S(2000), Z4-linear perfect codes ,Diskretn. Anal. Issled. Oper. Ser.1.Vol. 7, 4. , 78-90.
[10] Krotov, D. S(2001), Z4-linear Hadamard and extended perfect codes, Procs. of the International Workshop on Coding and Cryptography,Paris,329-334.

[^0]: *Corresponding Author, e- mail: mustafaozkan@trakya.edu.tr, mustafaozkan22@icloud.com

