Available online: October 28, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 69, Number 1, Pages 336-346 (2020) DOI: 10.31801/cfsuasmas.473923 ISSN 1303-5991 E-ISSN 2618-6470 http://communications.science.ankara.edu.tr/index.php?series=A1

LIGHTLIKE HYPERSURFACES WITH PLANAR NORMAL SECTIONS IN \mathbb{R}^4_1

FEYZA ESRA ERDOĞAN AND SELCEN YÜKSEL PERKTAŞ

ABSTRACT. In the present paper our aim is to investigate lightlike hypersurfaces of \mathbb{R}^4_1 having degenerate or non-degenerate planar normal sections. Firstly, we prove that lightlike hypersurfaces in \mathbb{R}^4_1 always have degenerate planar normal sections. Then we examine the conditions for lightlike hypersurfaces in \mathbb{R}^4_1 to have non-degenerate planar normal sections and obtain some characterizations for such lightlike hypersurfaces.

1. INTRODUCTION

In Euclidean spaces, B.Y. Chen [2] initiated the study of surfaces with planar normal sections. After this, an important literature has been created on such surfaces and submanifolds (for example, see [2], [6], [7], [9],[8]). The semi-Riemannian adaptation of such surfaces was done by Y. H. Kim [7]. Recently, the authors ([12], [11]) introduced lightlike surfaces with planar normal sections in Minkowski 3-space and halflightlike submanifolds of \mathbb{R}_2^4 having degenerate and non-degenerate planar normal sections (see also [13]).

By a similar manner in [12] and [11] we define the normal section of a lightlike hypersurface \hat{N} in \mathbb{R}^4_1 and non-degenerate planar normal sections as follows:

For a point p in a lightlike hypersurface \hat{N} of \mathbb{R}_1^4 and a lightlike vector ξ such that the radical space $Rad(T\hat{N}) = Span\{\xi\}$, the vector ξ and transversal space $tr(T\hat{N})$ to \hat{N} at p determine a 2-dimensional subspace $E(p,\xi)$ in \mathbb{R}_1^4 through p. The intersection $\hat{N} \cap E(p,\xi)$ gives rise to a lightlike curve α in a neighborhood of p, which we call normal section of \hat{N} at the point p in the direction of ξ . If each normal section α at p in the direction of ξ satisfies $\alpha' \wedge \alpha'' \wedge \alpha''' = 0$, for each $p \in \hat{N}$, then we say that \hat{N} has degenerate pointwise planar normal sections.

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

336

Received by the editors: October 23, 2018; Accepted: October 07, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C42; Secondary 53C50.

 $Key\ words\ and\ phrases.$ Lightlike hypersurface, non-degenerate planar normal section, degenerate normal section.

^{©2020} Ankara University

On the other hand, let w be a non-degenerate vector tangent to \hat{N} at p such that $w \in S(T\hat{N}) = Sp\{u, v\}$, where $S(T\hat{N})$ is the screen distribution of \hat{N} . Then the vector w and transversal space $tr(T\hat{N})$ to \hat{N} at p determine a 2- dimensional subspace E(p, w) in \mathbb{R}^4_1 through p. From the intersection of \hat{N} and E(p, w), we have a non-degenerate curve α in a neighborhood of p which is called the normal section of \hat{N} at p in the direction of w. In this case, if $\alpha' \wedge \alpha'' \wedge \alpha''' = 0$ is satisfied, for each point p in \hat{N} , where α is a normal section of \hat{N} at p in the direction of w, then \hat{N} is said to have non-degenerate pointwise planar normal sections.

In this paper, we study lightlike hypersurfaces in \mathbb{R}^4_1 having degenerate and nondegenerate planar normal sections. We prove that every lightlike hypersurfaces of \mathbb{R}^4_1 has degenerate planar normal sections. Also we obtain some results for a lightlike hypersurface with non-degenerate planar normal sections. We prove that a lightlike hypersurface \hat{N} in \mathbb{R}^4_1 has non-degenerate planar normal sections if and only if it is either screen conformal and totally umbilical or totally geodesic. We also obtain a characterization for non-umbilical screen conformal lightlike hypersurface with non-degenerate planar normal sections.

2. Preliminaries

Let (\check{N}, \check{g}) be an (n+2)-dimensional semi-Riemannian manifold with the indefinite metric \check{g} of index $q \in \{1, ..., n+1\}$ and \check{N} be a hypersurface of \check{N} . We denote the tangent space at $x \in \check{N}$ by $T_x \check{N}$. Then

$$T_x \dot{N}^{\perp} = \{ V_x \in T_x \breve{N} \mid \breve{g}_x (V_x, W_x) = 0, \forall W_x \in T_x \acute{N} \}$$

and

$$Rad T_x \acute{N} = T_x \acute{N} \cap T_x \acute{N}^{\perp}.$$

Then, \hat{N} is called a lightlike hypersurface of \check{N} if $Rad T_x \acute{N} \neq \{0\}$, for any $x \in \acute{N}$. Thus $T \acute{N}^{\perp} = \bigcap_{x \in \acute{N}} T_x \acute{N}^{\perp}$ becomes a 1- dimensional distribution $Rad T \acute{N}$ on \acute{N} . Then there exists a vector field $\xi \neq 0$ on \acute{N} such that

$$g(\xi, X) = 0, \quad \forall X \in \Gamma(T\hat{N}),$$

where g is the induced degenerate metric tensor on \hat{N} . We denote the algebra of differential functions on \hat{N} by $F(\hat{N})$ and the $F(\hat{N})$ -module of differentiable sections of a vector bundle E over \hat{N} by $\Gamma(E)$.

A complementary vector bundle
$$S(T\hat{N})$$
 of $T\hat{N}^{\perp} = RadT\hat{N}$ in $T\hat{N}$ defined by
 $T\hat{N} = RadT\hat{N} \oplus_{orth} S(T\hat{N}),$ (1)

is called a screen distribution on \hat{N} . It follows from the equation above that $S(T\hat{N})$ is a non-degenerate distribution. Moreover, since we assume that \hat{N} is para-compact, there always exists a screen $S(T\hat{N})$. Thus, along \hat{N} we have

$$T\check{N}_{|\check{N}} = S(T\acute{N}) \oplus_{orth} S(T\acute{N})^{\perp}, \quad S(T\acute{N}) \cap S(T\acute{N})^{\perp} \neq \{0\},$$
(2)

that is, $S(T\hat{N})^{\perp}$ is the orthogonal complement to $S(T\hat{N})$ in $T\tilde{N}|_{\hat{N}}$. Note that $S(T\hat{N})^{\perp}$ is also a non-degenerate vector bundle of rank 2. However, it includes $T\hat{N}^{\perp} = RadT\hat{N}$ as its sub-bundle.

Let $(\hat{N}, g, S(T\hat{N}))$ be a lightlike hypersurface of a semi-Riemannian manifold (\check{N}, \check{g}) . Then there exists a unique vector bundle $tr(T\hat{N})$ of rank 1 over \check{N} , such that for any non-zero section ξ of $T\hat{N}^{\perp}$ on a coordinate neighborhood $U \subset \hat{N}$, there exists a unique section N of $tr(T\hat{N})$ on U satisfying: $T\hat{N}^{\perp}$ in $S(T\hat{N})^{\perp}$ and take $V \in \Gamma(F|_U), V \neq 0$. Then $\check{g}(\xi, V) \neq 0$ on U, otherwise $S(T\hat{N})^{\perp}$ would be degenerate at a point of U [5]. Define a vector field

$$N = \frac{1}{\breve{g}(V,\xi)} \left\{ V - \frac{\breve{g}(V,V)}{2\breve{g}(V,\xi)} \xi \right\},\,$$

on U where $V \in \Gamma(F|_U)$ such that $\check{g}(\xi, V) \neq 0$. Then we have

$$\breve{g}(N,\xi) = 1, \ \breve{g}(N,N) = 0, \ \breve{g}(N,W) = 0, \ \forall W \in \Gamma(S(T\acute{N})|_U).$$
(3)

Moreover, from (1) and (2) we have the following decomposition:

$$T\check{N}\mid_{\acute{N}} = S(T\acute{N}) \oplus_{orth} (T\acute{N}^{\perp} \oplus tr(T\acute{N})) = T\acute{N} \oplus tr(T\acute{N}).$$
(4)

Locally, suppose $\{\xi, N\}$ is a pair of sections on $U \subset \hat{N}$ satisfying (3). Define a symmetric F(U)-bi-linear form B and a 1-form τ on U. Hence on U, for $X, Y \in \Gamma(T\hat{N}|_U)$, we write

$$\check{\nabla}_X Y = \check{\nabla}_X Y + B(X, Y) N, \tag{5}$$

$$\breve{\nabla}_X N = -A_N X + \tau \left(X \right) N, \tag{6}$$

which are called local Gauss and Weingarten formula, respectively. Since $\check{\nabla}$ is a metric connection on \check{N} , it is easy to see that

$$B(X,\xi) = 0, \forall X \in \Gamma(T\hat{N}|_U).$$
(7)

Consequently, the second fundamental form of \hat{N} is degenerate [5]. Define a local 1-from η by

$$\eta(X) = \breve{g}(X, N), \forall \in \Gamma(T\acute{N}|_U).$$
(8)

Let P denote the projection morphism of $\Gamma(T\hat{N})$ on $\Gamma(S(T\hat{N}))$ with respect to the decomposition (1). We obtain

$$\breve{\nabla}_X PY = \breve{\nabla}_X^* PY + C(X, PY)\xi, \tag{9}$$

$$\breve{\nabla}_X \xi = -A_{\xi}^* X + \varepsilon \left(X \right) \xi = -A_{\xi}^* X - \tau \left(X \right) \xi, \tag{10}$$

where $\breve{\nabla}^*_X PY$ and $A^*_{\xi}X$ belong to $\Gamma(S(T\acute{N})), \breve{\nabla}$ and $\breve{\nabla}^*$ are linear connections on $\Gamma(S(T\acute{N}))$ and $T\acute{N}^{\perp}$, respectively, h^* is a $\Gamma(T\acute{N}^{\perp})$ -valued $F(\acute{N})$ -bi-linear form on $\Gamma(T\acute{N}) \times \Gamma(S(T\acute{N}))$ and A^*_{ξ} is $\Gamma(S(T\acute{N}))$ -valued $F(\acute{N})$ -linear operator on $\Gamma(T\acute{N})$.

We call them the screen fundamental form and screen shape operator of $S(T\dot{N})$, respectively. Define

$$C(X, PY) = \breve{g}(h^*(X, PY), N), \qquad (11)$$

$$\varepsilon(X) = \check{g}(\check{\nabla}_X^{*t}\xi, N), \forall X, Y \in \Gamma(T\acute{N}).$$
(12)

One can easily show that $\varepsilon(X) = -\tau(X)$. Here, C(X, PY) is called the local screen fundamental form of $S(T\dot{N})$. Precisely, the two local second fundamental forms of \dot{N} and $S(T\dot{N})$ are related to their shape operators by

$$B(X,Y) = \breve{g}(Y,A_{\xi}^*X), \qquad (13)$$

$$A_{\xi}^* \xi = 0, \tag{14}$$

$$\left(A_{\xi}^* PY, N\right) = 0, \tag{15}$$

$$C(X, PY) = \breve{g}(PY, A_N X), \qquad (16)$$

$$\breve{g}(N, A_N X) = 0. \tag{17}$$

A lightlike hypersurface (N, g, S(TN)) of a semi-Riemannian manifold is called totally umbilical[5] if there is a smooth function ρ , such that

$$B(X,Y) = \varrho g(X,Y), \forall X,Y \in \Gamma(TN),$$
(18)

where ρ is non-vanishing smooth function on a neighborhood U in N.

 \breve{g}

A lightlike hypersurface $(\hat{N}, g, S(T\hat{N}))$ of a semi-Riemannian manifold is called screen locally conformal if the shape operators A_N and A_{ξ}^* of \hat{N} and $S(T\hat{N})$, respectively, are related by

$$A_N = \varphi A_{\xi}^*,\tag{19}$$

where φ is non-vanishing smooth function on a neighborhood U in \hat{N} . Therefore, it follows that for any $X, Y \in \Gamma(S(T\hat{N}))$ and $\xi \in RadT\hat{N}$ we have

$$C\left(X,\xi\right) = 0. \tag{20}$$

For details about screen conformal lightlike hypersurfaces, we refer [1] and [5].

3. Planar Normal Sections of Lightlike Hypersurfaces in \mathbb{R}^4_1

Let \hat{N} be a lightlike hypersurface of \mathbb{R}^4_1 . Now we shall investigate lightlike hypersurfaces with degenerate planar normal sections. If α is a null curve, for a point p in \hat{N} , we have

$$\alpha'(s) = \xi, \tag{21}$$

$$\alpha''(s) = \breve{\nabla}_{\xi}\xi = -\tau(\xi)\xi, \qquad (22)$$

$$\alpha'''(s) = -\left[\xi(\tau(\xi)) + \tau^2(\xi)\right]\xi.$$
(23)

Then, α''' is a linear combination of α' and α'' . Thus from (21), (22) and (23), we conclude $\alpha''' \wedge \alpha'' \wedge \alpha' = 0$.

Hence we give

Corollary 1. Every lightlike hypersurface of \mathbb{R}^4_1 has degenerate planar normal sections.

Let \hat{N} be a lightlike hypersurface of \mathbb{R}_1^4 . For a point p in \hat{N} and a spacelike vector $w \in S(T\hat{N}) = Sp\{u, v\}$, where u, v are unit spacelike vectors tangent to \hat{N} at p, the vector w and transversal space $tr(T\hat{N})$ to \hat{N} at p determine a 2-dimensional subspace E(p, w) in \mathbb{R}_1^4 through p. The intersection of \hat{N} and E(p, w) gives a spacelike curve α in a neighborhood of p, which is called the normal section of \hat{N} at p in the direction of w.

Now, we shall research the conditions for a lightlike hypersurface of \mathbb{R}^4_1 to have non-degenerate planar normal sections.

Let $(\dot{N}, g, S(T\dot{N}))$ be a totally umbilical and screen conformal lightlike hypersurface of $(\mathbb{R}^4_1, \breve{g})$. In this case $S(T\dot{N})$ is integrable [1]. We denote integral hypersurface of $S(T\dot{N})$ by \dot{N}' . Then, using (6), (11) and (19) we find

$$C(w,w)\xi + B(w,w)N = \breve{g}(w,w)\{\rho\xi + \beta N\}$$
(24)
$$= \lambda\{\rho\xi + \beta N\}, \lambda = a^2 + b^2,$$

where $\lambda, \rho, \beta \in \mathbb{R}$. In this case, we obtain

$$\alpha'(s) = w, \tag{25}$$

$$\alpha''(s) = \widetilde{\nabla}_{w}^{*} w + C(w, w) \xi + B(w, w) N, \qquad (26)$$

$$\alpha''(s) = \breve{\nabla}_w^* w + \rho \xi + \beta N, \qquad (27)$$

and

$$\alpha^{\prime\prime\prime}(s) = \breve{\nabla}_{w}^{*}\breve{\nabla}_{w}^{*}w + C(w,\breve{\nabla}_{w}^{*}w)\xi + w\left(C\left(w,w\right)\right)\xi$$

$$-C\left(w,w\right)A_{\xi}^{*}w + w\left(B\left(w,w\right)\right)N$$

$$-B\left(w,w\right)A_{N}w + B(w,\breve{\nabla}_{w}^{*}w)N,$$

$$(28)$$

which implies

$$\alpha^{\prime\prime\prime}(s) = \breve{\nabla}_{w}^{*}\breve{\nabla}_{w}^{*}w + C(w,\breve{\nabla}_{w}^{*}w)\xi$$

$$+B(w,\breve{\nabla}_{w}^{*}w)N - \rho A_{\xi}^{*}w - \beta A_{N}w.$$
(29)

Here $\breve{\nabla}^*$ and $\breve{\nabla}$ are linear connections on $S(T\acute{N})$ and $\Gamma(T\acute{N})$, respectively and $\alpha'(s) = w = au + bv$, $a, b \in \mathbb{R}$. Since \acute{N} is a totally umbilical screen conformal lightlike hypersurface, we find

$$C(w, \breve{\nabla}^*_w w)\xi + B(w, \breve{\nabla}^*_w w)N = g(w, \breve{\nabla}^*_w w) \left\{ \rho_1 \xi + \beta_1 N \right\},$$
(30)

where $\rho_1, \beta_1 \in \mathbb{R}$. On the other hand we write

$$\breve{\nabla}_w^* w = a^2 \breve{\nabla}_u^* u + ab \breve{\nabla}_u^* v + ab \breve{\nabla}_v^* u + b^2 \breve{\nabla}_v^* v \tag{31}$$

and

$$g(w,\breve{\boldsymbol{\nabla}}_w^*w) \quad = \quad a^3g(u,\breve{\boldsymbol{\nabla}}_u^*u) + a^2bg(u,\breve{\boldsymbol{\nabla}}_u^*v) + a^2bg(u,\breve{\boldsymbol{\nabla}}_v^*u) + ab^2g(u,\breve{\boldsymbol{\nabla}}_v^*v)$$

$$+a^2bg(v,\breve{\nabla}^*_uv)+ab^2g(v,\breve{\nabla}^*_uv)+ab^2g(v,\breve{\nabla}^*_vu)+b^3g(v,\breve{\nabla}^*_vv).$$

Since $\check{g}(u, u) = \check{g}(v, v) = 1$ and $\check{g}(u, v) = 0$, then by a direct computation, we obtain

$$\check{\nabla}_{u}^{*}u = \lambda_{1}v, \,\check{\nabla}_{v}^{*}u = \lambda_{2}v, \tag{32}$$

$$\lambda_1 = -\lambda_3,\tag{33}$$

$$\lambda_2 = -\lambda_4, \tag{34}$$

$$\breve{\nabla}_{u}^{*}v = \lambda_{3}u, \, \breve{\nabla}_{v}^{*}v = \lambda_{4}u, \tag{35}$$

where $\lambda_1,\lambda_2,\lambda_3,\lambda_4\in\mathbb{R}$. Hence, from (32)-(35) we get

$$g(w, \check{\nabla}_w^r w) = 0$$

and

$$C(w, \breve{\nabla}_w^* w)\xi + B(w, \breve{\nabla}_w^* w)N = 0.$$

Therefore, we obtain

$$\begin{array}{rcl} C(w, \breve{\nabla}^*_w w) &=& 0, \\ B(w, \breve{\nabla}^*_w w) &=& 0. \end{array}$$

Since \hat{N} is screen conformal, we find

$$\begin{aligned} \alpha'(s) &= w, \\ \alpha''(s) &= \lambda \left(\rho \xi + \beta N\right), \\ \alpha'''(s) &= -\lambda \rho A_{\xi}^* w - \lambda \beta A_N w \end{aligned}$$

where $\rho, \beta \neq 0$. Then, we have

$$\alpha^{\prime\prime\prime\prime}(s) = tA_{\xi}^*w, t = -2\lambda\rho.$$

Hence, we obtain

$$B\left(w,w
ight)=g\left(A_{\xi}^{*}w,w
ight)=eta g\left(w,w
ight)=g\left(eta w,w
ight),$$

which implies $A_{\xi}^* w = \beta w$, that is, α' and α''' are linearly dependent and so \hat{N} has non-degenerate planar normal sections.

Assume that \hat{N} is a totally geodesic lightlike hypersurface of \mathbb{R}^4_1 . Then, we have $B = 0, \ A^*_{\xi} = 0$. Hence, from (25)-(28), we write

$$\alpha'(s) = w, \tag{36}$$

$$\alpha''(s) = \nabla_w^* w, \tag{37}$$

$$\alpha^{\prime\prime\prime}(s) = \breve{\nabla}_w^* \breve{\nabla}_w^* w. \tag{38}$$

Since $\alpha', \alpha'', \alpha''' \in \Gamma(S(T\acute{N}))$ and $\dim(S(T\acute{N})) = 2$, we have $\alpha'''(s) \wedge \alpha''(s) \wedge \alpha''(s) = 0$.

Conversely, we assume that \hat{N} has non-degenerate planar normal sections. Then, from (25), (26) and (28) we obtain

$$w \wedge \left(\begin{array}{c} \breve{\nabla}_{w}^{*}w + C\left(w,w\right)\xi\\ +B\left(w,w\right)N \end{array}\right) \wedge \left(\begin{array}{c} \breve{\nabla}_{w}^{*}\breve{\nabla}_{w}^{*}w + C\left(w,\breve{\nabla}_{w}^{*}w\right)\xi + w\left(C\left(w,w\right)\right)\xi\\ -C\left(w,w\right)A_{\xi}^{*}w + w\left(B\left(w,w\right)\right)N\\ -B\left(w,w\right)A_{N}w + B\left(w,\breve{\nabla}_{w}^{*}w\right)N \end{array}\right) = 0.$$

Since w = au + bv, $a, b \in \mathbb{R}$, for the sake of simplicity, we choose u = (0, 1, 0, 0) and v = (0, 0, 1, 0), which give

$$\breve{\nabla}_w^* w = \left(0, ab\lambda_3 + b^2\lambda_4, a^2\lambda_1 + ab\lambda_2, 0\right).$$
(39)

If we take a = b = 1, from (32)-(34), we obtain

$$\breve{\nabla}_w^* w = \left(0, -(\lambda_1 + \lambda_2), \lambda_1 + \lambda_2, 0\right),$$

which yields that w and $\check{\nabla}^*_w w$ are linearly dependent. Thus we find

$$w \wedge \breve{\nabla}_w^* w = 0 \tag{40}$$

for any $a, b \in \mathbb{R}$. Moreover, if we take $a, b \in \{-1, 1\}$, we have

$$\tilde{\nabla}_{w}^{*}w = \left(0, b\left(a\lambda_{1}+b\lambda_{2}\right), a\left(a\lambda_{1}+b\lambda_{2}\right), 0\right),$$

namely, in any case w and $\breve{\nabla}^*_w w$ are linearly dependent.

From (31), we find

$$\breve{\nabla}^*_w \,\breve{\nabla}^*_w w = a^3 \lambda_1 \lambda_3 u + a^2 b \lambda_1 \lambda_3 v + a^2 b \lambda_2 \lambda_3 u + a b^2 \lambda_4 \lambda_1 v + a^2 b \lambda_1 \lambda_4 u + a^2 b \lambda_2 \lambda_3 v + a b^2 \lambda_4 \lambda_2 u + b^3 \lambda_4 \lambda_2 v.$$

Here, for simplicity, if we take a = b = 1 then we obtain

$$\breve{\nabla}_{w}^{*}\breve{\nabla}_{w}^{*}w = \left(0,\lambda_{1}^{2} + \lambda_{2}\lambda_{3} + \lambda_{1}\lambda_{4} + \lambda_{2}^{2},\lambda_{1}^{2} + \lambda_{2}\lambda_{3} + \lambda_{1}\lambda_{4} + \lambda_{2}^{2},0\right),$$

which yields

$$w \wedge \breve{\nabla}_w^* \breve{\nabla}_w^* w = 0. \tag{41}$$

Then we have

$$w \wedge (C(w,w)\xi + B(w,w)N) \wedge \left(\breve{\nabla}_{w}(C(w,w)\xi + B(w,w)N)\right) = 0.$$
(42)

Thus $C(w, w) \xi + B(w, w) N = 0$ or $\check{\nabla}_w (C(w, w) \xi + B(w, w) N) = 0$. If $C(w, w) \xi + B(w, w) N = 0$, then C = B = 0, at $p \in \check{N}$, which implies that \check{N} is totally geodesic and totally umbilical. If $\check{\nabla}_w (C(w, w) \xi + B(w, w) N) = 0$, then we have

$$w(C(w,w))\xi + w(B(w,w))N - C(w,w)A_{\xi}^{*}w - B(w,w)A_{N}w = 0.$$
(43)

Hence $C(w, w) A_{\xi}^* w + B(w, w) A_N w = 0$, we find

$$A_{\xi}^* w = -\frac{B(w,w)}{C(w,w)} A_N w, \qquad (44)$$

at $p \in \hat{N}$, which shows that \hat{N} is a screen conformal lightlike hypersurface.

342

Consequently, we have the following.

Theorem 2. Let \hat{N} be a lightlike hypersurface of \mathbb{R}^4_1 . Then \hat{N} has non-degenerate planar normal sections if and only if either \hat{N} is totally umbilical and screen conformal or \hat{N} is totally geodesic.

Proof. Assume that \hat{N} is a totally umbilical and screen conformal lightlike hypersurface of \mathbb{R}^4_1 . Then we have $A^*_{\xi}w = \beta w, \beta \in \mathbb{R}$. By using (25), (27) and (29), we obtain

$$\alpha^{\prime\prime\prime\prime}(s) \wedge \alpha^{\prime\prime}(s) \wedge \alpha^{\prime}(s) = 0.$$

If we consider that \hat{N} is totally geodesic, then, we have C = B = 0 and from (36)–(38), we see that $w, \, \breve{\nabla}^*_w w$ and $\,\breve{\nabla}^*_w \breve{\nabla}^*_w w$ belong to $S(T\hat{N})$. Since $\dim(S(T\hat{N})) = 2$, we conclude that $\alpha', \alpha'', \alpha'''$ are linearly dependent.

Conversely, we assume that \hat{N} has non-degenerate planar normal sections. Then, from (42)–(44) we complete the proof.

Theorem 3. Let $(\hat{N}, g, S(T\hat{N}))$ be a screen conformal non-umbilical lightlike hypersurface of \mathbb{R}^4_1 . Then, for $T(w, w) = C(w, w)\xi + B(w, w)N$, the following statements are equivalent:

- (1) $(\check{\nabla}_w T)(w, w) = 0$, for every spacelike vector $w \in S(T\acute{N})$,
- (2) $\check{\nabla}T = 0$,
- (3) N has non-degenerate planar normal sections and each normal section at p has one of its vertices at p.

Note that, by the vertex of curve $\alpha(s)$ we mean a point p on α such that its curvature κ satisfies $\frac{d\kappa^2(p)}{ds} = 0$, where $\kappa^2 = \langle \alpha''(s), \alpha''(s) \rangle$.

Proof. From (25), (26), we have

$$\left(\breve{\nabla}_{w}T\right)\left(w,w\right) = \breve{\nabla}_{w}T\left(w,w\right),$$

which shows $(\breve{\nabla}_w T)(w, w) = 0$ if and only if $\breve{\nabla} T = 0$.

Assume that $\nabla T = 0$. Then \hat{N} is totally geodesic and Theorem 2 implies that \hat{N} has (pointwise) planar normal sections. Let the $\alpha(s)$ be a normal section of \hat{N} at p in a given direction $w \in S(T\hat{N})$. Then (25) shows that the curvature $\kappa(s)$ of $\alpha(s)$ satisfies

$$\kappa^{2}(s) = \langle \alpha''(s), \alpha''(s) \rangle$$

= $2C(w, w)B(w, w)$
= $\langle T(w, w), T(w, w) \rangle$, (45)

where $w = \alpha'(s)$. Therefore we find

$$\frac{d\kappa^{2}\left(p\right)}{ds} = \left\langle \breve{\nabla}_{w}T\left(w,w\right), T\left(w,w\right) \right\rangle = \left\langle \left(\breve{\nabla}_{w}T\right)\left(w,w\right), T\left(w,w\right) \right\rangle.$$
(46)

Since $\breve{\nabla}_w T(w, w) = 0$, this implies

$$\frac{d\kappa^2\left(0\right)}{ds} = 0$$

at $p = \alpha(0)$. Thus p is a vertex of the normal section $\alpha(s)$.

If \hat{N} has planar normal sections, then by using Theorem 2 we have

$$T(w,w) \wedge (\nabla_w T)(w,w) = 0. \tag{47}$$

If p is a vertex of $\alpha(s)$, then we have

$$\frac{d\kappa^2\left(0\right)}{ds} = 0$$

Thus, since \hat{N} has planar normal sections, using (46) we find

$$\alpha'(s) \wedge \alpha''(s) \wedge \alpha'''(s) = w \wedge (\breve{\nabla}_w^* w + T(w, w)) \wedge (\breve{\nabla}_w^* \breve{\nabla}_w^* w + tT(w, w) + (\breve{\nabla}_w T)(w, w)) = 0,$$

which yields

$$T(w,w) \wedge (\breve{\nabla}_w T)(w,w) = 0$$

and

$$\left\langle \left(\breve{\nabla}_{w}T\right)\left(w,w\right),T\left(w,w\right)\right\rangle =0.$$
 (48)

Combining (47) and (48) we obtain either $(\breve{\nabla}_w T)(w, w) = 0$ or T(w, w) = 0. Let us define $U = \left\{ w \in S(T\dot{N}) \mid T(w, w) = 0 \right\}$. If $int(U) \neq \emptyset$, we obtain $(\breve{\nabla}_w T)(w, w) = 0$ on int(U). Thus, by continuity we have $\breve{\nabla}T = 0$.

Considering those obtained results above with [12], we give the following example.

Example 4. Let \mathbb{R}^4_1 be the space \mathbb{R}^4 endowed with the semi-Euclidean metric

$$\breve{g}(x,y) = -u_0 v_0 + \sum_{a=1}^3 u_a v_a, \qquad u = \sum_{a=0}^3 u_a \frac{\partial}{\partial u_a}.$$

Consider the null cone of \mathbb{R}^4_1 given by

$$\wedge_0^3 = \left\{ (u_0, u_1, u_2, u_3) \mid -u_0^2 + u_1^2 + u_2^2 + u_3^2 = 0, u_0, u_1, u_2, u_3 \in \mathbb{R} \right\}.$$

The radical bundle of null cone is

$$\xi = u_0 \frac{\partial}{\partial u_0} + u_1 \frac{\partial}{\partial u_1} + u_2 \frac{\partial}{\partial u_2} + u_3 \frac{\partial}{\partial u_3}$$

and screen distribution is spanned by

$$w = -u_2 \frac{\partial}{\partial u_1} + u_1 \frac{\partial}{\partial u_2} - u_3 \frac{\partial}{\partial u_3}$$

Then the lightlike transversal vector bundle is given by

$$Itr(T\wedge_0^3) = Span\left\{N = \frac{1}{2(u_0)^2} \left(-u_0\frac{\partial}{\partial u_0} + u_1\frac{\partial}{\partial u_1} + u_2\frac{\partial}{\partial u_2} + u_3\frac{\partial}{\partial u_3}\right)\right\}.$$

Let \wedge_0^3 be a lightlike hypersurfaces of \mathbb{R}^4_1 . For a point p in \wedge_0^3 and a lightlike vector ξ which spans the radical distribution of a lightlike hypersurface, the vector ξ and transversal space $tr(T \wedge_0^3)$ to \wedge_0^3 at p determine a 2- dimensional subspace $E(p,\xi)$ in \mathbb{R}^4_1 through p. The intersection of \wedge^3_0 and $E(p,\xi)$ gives a lightlike curve α in a neighborhood of p, which is called the normal section of \wedge_0^3 at the point p in the direction of ξ . Therefore, we have

$$\begin{split} \check{\nabla}_{\xi}\xi &= u_0\frac{\partial}{\partial u_0} + u_1\frac{\partial}{\partial u_1} + u_2\frac{\partial}{\partial u_2} + u_3\frac{\partial}{\partial u_3}\\ \check{\nabla}_{\xi}\check{\nabla}_{\xi}\xi &= u_0\frac{\partial}{\partial u_0} + u_1\frac{\partial}{\partial u_1} + u_2\frac{\partial}{\partial u_2} + u_3\frac{\partial}{\partial u_3}. \end{split}$$

Then, we obtain

$$\alpha^{\prime\prime\prime\prime}\left(s\right) \wedge \alpha^{\prime\prime}\left(s\right) \wedge \alpha^{\prime}\left(s\right) = 0$$

which shows that null cone has degenerate planar normal sections. On the other hand, by direct computations, we find

$$\breve{\nabla}_{\breve{\xi}} w = \breve{\nabla}_{\xi} w = w$$

and

$$A_N w = \frac{1}{2(u_0)^2} A^*_{\xi} w.$$

Namely, \wedge_0^3 is a screen conformal lightlike hypersurface of \mathbb{R}^4_1 [5]. Now, for a point p in \wedge_0^3 and a non-degenerate vector w tangent to \wedge_0^3 at p $(w \in S(T \wedge_0^3))$, the vector w and transversal space $tr(T \wedge_0^3)$ to \hat{N} at p determine a 2- dimensional subspace E(p,w) in \mathbb{R}^4_1 through p. The intersection of \wedge^3_0 and E(p, w) gives a non-degenerate curve α in a neighborhood of p. Therefore, we have

$$\begin{aligned} \alpha' &= w = -u_2 \frac{\partial}{\partial u_1} + u_1 \frac{\partial}{\partial u_2} - u_3 \frac{\partial}{\partial u_3}, \\ \alpha'' &= \breve{\nabla}_w w + B\left(w, w\right) N \\ &= \frac{1}{2} u_0 \frac{\partial}{\partial u_0} - \frac{3}{2} u_1 \frac{\partial}{\partial u_1} - \frac{3}{2} u_2 \frac{\partial}{\partial u_2} - \frac{3}{2} u_3 \frac{\partial}{\partial u_3}, \\ \alpha''' &= \breve{\nabla}_w \breve{\nabla}_w w + w \left(B\left(w, w\right)\right) N + B\left(w, w\right) \breve{\nabla}_w N \\ &= \breve{\nabla}_w \breve{\nabla}_w w + B(w, \breve{\nabla}_w w) N + w \left(B\left(w, w\right)\right) N - B\left(w, w\right) A_N w \end{aligned}$$

Using $A_N w$ in α''' we find

$$\alpha^{\prime\prime\prime} = -\frac{1}{2} \left(-u_2 \frac{\partial}{\partial u_1} + u_1 \frac{\partial}{\partial u_2} - u_3 \frac{\partial}{\partial u_3} \right).$$

Therefore α''' and α' are linearly dependent at $p \in \wedge_0^3$ and we have

$$\alpha' \wedge \alpha'' \wedge \alpha''' = 0.$$

Namely, \wedge_0^3 has non-degenerate planar normal sections.

References

- Atindogbe, C. and Duggal, K. L., Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11(4), (2004), 421-442.
- [2] Chen, B. Y., Classification of hypersurfaces with Planar Normal Sections, Journal of Geometry, Vol.20 (1983), 122-127.
- [3] Duggal, K. L. and Bejancu, A., Lightlike hypersurfaces of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publisher, 1996.
- [4] Duggal, K. L. and Jin, D. H., Null Curves and hypersurfaces of Semi Riemannian Manifolds, World Scientific, 2007.
- [5] Duggal, K. L. and Şahin B., Differential Geometry of Lightlike hypersurfaces, Springer Birkhauser, 2010.
- [6] Kim, Y. H., Minimal hypersurfaces of pseudo-Euclidean spaces with geodesic normal sections, Differential Geometry and its Applications, 5 (1995), 321-329.
- [7] Kim, Y. H., Pseudo-Riemannian hypersurfaces with pointwise planar normal sections, Math. J. Okayama Univ., 34 (1992), 249-257.
- [8] Kim, Y. H., Hypersurfaces in a pseudo-Euclidean space with planar normal sections, *Journal of Geometry*, vol.35 (1989), 120-131.
- [9] Li. S. J., Hypersurfaces with Pointwise Planar Normal Sections in a sphere, Journal of Geometry, 70 (2001), 101-107.
- [10] O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
- [11] Erdoğan, F. E., Güneş, R. and Şahin, B., Half-lightlike hypersurface with planar normal sections in R⁴₂, Turk. J. Math. Vol.38 (2014), 764-777.
- [12] Erdoğan, F. E., Şahin, B. and Güneş, R., Lightlike hypersurfaces with planar normal section in Minkowski 3-space, Int. Electron. J. Geom., Vol.7, no.1, 2014.
- [13] Erdoğan, F. E., Yüksel Perktaş, S. and Güneş, R., Half Lightlike hypersurfaces with degenerate and non-degenerate planar normal sections in pseudo-Euclidean spaces, *International Journal of Geometry*, Vol. 7, No.1 (2018), 37-53.

Current address: Faculty of Science, Department of Mathematics, Ege University, İzmir, TURKEY

E-mail address: feyza.esra.erdogan@ege.edu.tr

Current address: Faculty of Art and Science, Department of Mathematics, Adıyaman University Adıyaman, TURKEY

E-mail address: sperktas@adiyaman.edu.tr

ORCID Address: http://orcid.org/0000-0002-8848-0621