Further Phenylethanoid Glycosides from *Phlomis physocalyx* Hub.-Mor.

Received	:	09.02.2006
Revised	:	08.05.2006
Accepted	:	16.05.2006

Funda Nuray Yalçın* / Tayfun Ersöz* / İclal Saracoğlu* / Ali A. Dönmez** / İhsan Çalış*

Introduction

The genus *Phlomis* (Lamiaceae) is represented by 34 species in Turkeyl. Previous investigations on Turkish *Phlomis* species by our research group led to the isolation and characterization of a number of secondary metabolites such as iridoids, phenylethanoid glycosides, lignans and flavonoids, and monoterpene glucosides²⁻⁹. In a previous paper, we reported a new phenylethanoid tetraglycoside, physocalycoside from the aerial parts of *Phlomis physocalyx* together with five known phenylethanoid glycosides, wiedemannioside C, verbascoside, leucosceptoside A, martynoside and forsythoside B as well as an iridoid glucoside, lamiide¹⁰. Further study on the *n*-BuOH fraction of the methanolic extract of the title plant was resulted in the isolation of two additional phenylethanoid glycosides, phlinosides C **(1)** and E **(2)**. In this paper we describe the isolation and structure elucidation of **1** and **2** by means of comprehensive 1D- and 2D-NMR datasets.

^{*} Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-06100, Ankara, TURKEY.

^{**} Hacettepe University, Faculty of Science, Department of Biology, TR-06532, Ankara, TURKEY.

Material and Methods

General Experimental Procedures

UV (MeOH) spectra were recorded on a Shimadzu UV-160A spectrophotometer. FT-IR spectra (KBr) were determined on a Perkin-Elmer 2000 FT-IR spectrophotometer. NMR measurements in CD_3OD were performed on a JEOL JNM-A500 FT-NMR spectrometer (¹H: 500 and ¹³C: 125 MHz). Chemical shifts were given in ppm with tetramethylsilane (TMS) as an internal standart. HRFABMS was recorded in positive mode on a JEOL JMS-DX 300 mass spectrometer with glycerol as matrix substance. For open column chromatography Sephadex LH-20 (Fluka) were used. TLC were carried out on pre-coated Kieselgel 60 F_{254} aluminium sheets (Merck). The compounds were detected by UV fluorescence and spraying 1% vanillin/H₂SO₄, followed by heating at 100 °C for 1-2 min.

Plant Material

Phlomis physocalyx Hub.-Mor. (Lamiaceae) was collected in July 2001 at Sivas near Gürün-Kangal-Kocakurt crossing at 1550 m. Voucher specimens have been deposited at the Herbarium of the Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey (AAD 9555)¹⁰.

Extraction and Isolation

Dried and powdered aerial parts of *P. physocalyx* (600 g) were extracted with MeOH (3 x 2500 mL) at 40 °C and combined MeOH extracts were concentrated under reduced pressure (51.6 g). The resultant residue was then dissolved in H_2O (250 mL) and the water-soluble portion was partitioned between CHCl₃ (4 x 250 mL) and *n*-BuOH (4 x 250 mL). An aliquot of the *n*-BuOH extract (10 g) was chromatographed over polyamide (100 g) eluting with H_2O , followed by increasing concentrations of MeOH in H_2O (25%, 50%, 75% and 100%, each 250 ml) to yield nine main fractions (Frs. E1-E9). Frs. E9 (50 mg) and E7 (64.4 mg) were subjected to column chromatography (CC) on Sephadex LH-20 (MeOH) individually to give **1** (22.8 mg) and **2** (23.4 mg), respectively. However, fractionation of fr. E7 over Sephadex LH-20 also yielded a subfraction rich in **2** (fr. E7e, 10 mg). Frs. E7e and E6 (39.5 mg)¹⁰ were then combined and applied to CC over Sephadex-LH 20 (MeOH) to afford an additional amount of **2** (10.8 mg).

Phlinoside C (1): Amorphous powder. UV λ_{max} (MeOH) 203, 218, 246 (sh), 292, and 332 nm. IR ϑ max (KBr) 3398 (OH), 1700 (C=O), 1630 (C=C), 1595 and 1510 (aromatic rings) cm⁻¹. ¹H NMR (CD₃OD, 500 MHz): Table I. ¹³C NMR (CD₃OD, 125 MHz): Table I. Positive-ion HRFABMS m/z 793.2558 [M+Na]⁺ (calcd. for C₃₅H₄₆O₁₉Na: 793.2531).

Phlinoside E (2): Amorphous powder. UV λ_{max} (MeOH) 203, 218, 248 (sh), 290, and 330 nm. IR ϑ max (KBr) 3400 (OH), 1690 (C=O), 1630 (C=C), 1595 and 1510 (arom. rings) cm-1. 1H NMR (CD₃OD, 500 MHz): Table II. ¹³C NMR (CD3OD, 125 MHz): Table II. Positive-ion HRFABMS m/z 785.2894 [M+H]⁺ (calcd. for C₃₆H₄₈O₁₉: 785.2868).

Results and Discussion

Compounds **1** and **2** were obtained as amorphous substances. The UV spectra of both **1** and **2** indicated their polyphenolic nature and their IR spectra showed similar absorption bands for hydroxyl groups, α , β -unsaturated esters, and aromatic rings.

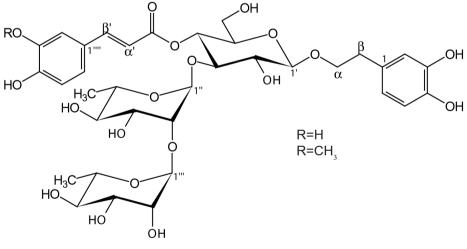


Figure 1

Phenylethanoid triglycosides isolated from P. physocalyx.

Molecular formula of compound 1 was determined as $C_{35}H_{46}O_{19}$ by the ¹³C NMR spectrum and HRFABMS. The ¹H NMR spectrum of **1** (Table I) showed six aromatic protons as two ABX systems ($\delta_{\rm H}$ 7.04-6.56 region) and two *trans*-olefinic protons as an AB system ($\delta_{\rm H}$ 7.59 and 6.25; each,

d, J = 15.9 Hz) consistent with (E)-caffeic acid and 3,4-dihydroxyphenylethanol moieties⁷. Three anomeric proton signals appeared at $\delta_{_{\rm H}}\,4.37$ (d, J = 8.0 Hz), 5.34 (d, J = 1.7 Hz) and 4.90 (d, J = 1.7 Hz) were assignedto the anomeric protons of a β -glucose and two α -rhamnose units, respectively. The secondary methyl resonances appeared at $\delta_{\!_{\rm H}}$ 1.06 and 1.26 (each, d, J = 6.1 Hz) revealed the presence of two rhamnose units within **1.** The 13 C NMR data (Table I) confirmed the triglycosidic chain in 1, exhibiting three anomeric carbon resonances at δ_c 104.3, 101.7, and 103.8, which showed correlations with the anomeric protons of the glucose and two rhamnose units, respectively. The ¹H NMR data suggested that the caffeoyl moiety occupied the C-4¹ position of the glucopyranose unit due to the downfield shift of H-4^I signal (δ_{H} 4.92, t, *J* = 9.6 Hz). An HMBC correlation observed between the carbonyl carbon (δ_c 168.3) of the caffeoyl moiety and the H-4¹ confirmed that the caffeoyl group attached to the C-4^I position. Likewise, an HMBC cross-peak observed from C- α carbon (δ_c 72.3) of the phenylethyl alcohol unit to the anomeric proton of glucose (δ_{H} 4.37) showed that glucose was attached to the C- α position of the phenylethyl alcohol unit. The carbon signals arising from the glucose and first rhamnose units indicated that the glucose unit to be glycosylated at C-31 ($\delta_{\rm c}$ 81.7) and the first rhamnose unit at C-211 ($\delta_{\rm c}$ 80.1). Prominent heteronuclear long range couplings from C-1 $^{\rm II}$ ($\delta_{\rm c}$ 101.7) of first rhamnose to H-3¹ (δ_{H} 3.79) of glucose as well as C-1^{III} (δ_{C} 103.8) of second rhamnose to H-2^{II} (δ_{H} 3.92) of first rhamnose supported this proposal. Consequently, the structure of compound 1 was established as 3,4-dihydroxy- β -phenylethoxy-O- α -rhamnopyranosyl-(1 \rightarrow 2)- α -rhamnopyranosyl- $(1\rightarrow 3)$ -4-O-caffeoyl- β -glucopyranoside. Comparing its NMR data with those given in the literature, compound 1 was identified as phlinoside C, previously isolated from *Phlomis linearis*¹¹.

The HRFABMS data of compound **2** showed that the molecular formula of 2 to be $C_{36}H_{48}O_{19}$, which was in good agreement with the observation of 36 resonances in the ¹³C NMR spectrum. The ¹H and ¹³C NMR resonances attributed to the aglycon and sugar moieties were almost identical to those of phlinoside C (**1**) (Table II), indicating also the same aglycon and sugar units in **2**. Moreover, an HMBC experiment revealed the glycosidation pattern in **2** was identical to that of **1**. However, the NMR data of the acyl part of compound **2** were slightly different from that of **1**, exhibiting resonances attributed to a methoxy function ($\delta_{\rm H}$ 3.88, s; $\delta_{\rm C}$ 56.5, CH₃ q). A relevant HMBC coupling observed between C-3^{IIII} ($\delta_{\rm C}$ 149.4) of the acyl moiety and the methoxy group unumbiguously

	¹³ C NMR		¹ H NMR	
C/H Atom	$\delta_c \text{ ppm}^{**}$	DEPT	$\delta_{_{ m H}}$ ppm, J (Hz)	HMBC (C→H)
Aglycon				
1	131.5	С	-	H-2, H ₂ -α, H ₂ -β
2	117.1	CH	6.68 d (2.0)	H-6, H ₂ -β
3	146.1	С	-	H-5
4	144.7	С	-	H-2, H-6
5	116.3	CH	6.67 d (8.0)	
6	121.3	CH	6.56 dd (8.0/2.0)	H-2, H ₂ -β
α	72.3	CH_2	4.04 m / 3.72 m	H-1 ¹ , H ₂ - β
β	36.6	CH_2	2.79 t (7.9)	-
Glucose		-		
11	104.3	CH	4.37 d (8.0)	H-2 ^I , H ₂ - α
2^{I}	76.0	CH	3.37 dd (8.0/9.0)	-
3 ¹	81.7	CH	3.79^{\dagger}	H-1 ^{II} , H-4'
4^{I}	70.6	CH	4.92 t (9.6)	
5 ¹	76.1	CH	3.30^{+}	
6 ¹	62.4	CH_{2}	$3.64^{+}/3.48^{+}$	
Rhamnose		2		
1 п	101.7	CH	5.34 d (1.7)	H-3 ¹
2 ¹¹	80.1	CH	3.92 dd (1.7/3.4)	
3 ¹¹	71.8	CH	3.65^{\dagger}	
4 ¹¹	74.0	CH	3.25^{\dagger}	
5 ¹¹	70.4	CH	3.52^{\dagger}	H_3-6^{II}
6 ^{II}	17.9	CH_{3}	1.06 d (6.1)	3
Rhamnose (→C-2 ^{II})		5		
1.111	103.8	CH	4.90 d (1.7)	$H-2^{II}$
2 ^{III}	72.0	CH	3.92 dd (1.7/3.4)	
3 ^{III}	72.2	CH	3.62^{\dagger}	
4 ¹¹¹	72.4	CH	3.25^{\dagger}	
5 ¹¹¹	70.3	CH	3.68^{\dagger}	H ₃ -6 ^{III}
6 ¹¹¹	18.6	CH ₃	1.26 d (6.1)	5
Caffeoyl		з		
1""	127.7	С	-	H- α^{I} , H- β^{I} , H- 5^{III}
21111	115.2	CH	7.04 d (2.0)	H- β^{I} , H- 6^{IIII}
31111	146.8	С	-	H-2 ^{IIII} , H-5 ^{IIII}
4 ¹¹¹¹	149.8	С	-	H-2 ^{IIII} , H-5 ^{IIII} , H-6 ^{IIII}
5	116.6	CH	6.77 d (8.3)	
6 ^{IIII}	123.2	CH	6.95 dd (8.3/2.0)	H- β^{I} , H- 2^{IIII}
αı	114.7	CH	6.25 d (15.9)	$H-\beta^{I}$
βι	148.0	CH	7.59 d (15.9)	H-2 ^{IIII} , H-6 ^{IIII}
C=O	168.3	C	-	$H-\alpha^{I}, H-\beta^{I}, H-4^{I}$

TABLE I ^{13}C and ^{1}H NMR (CD_3OD, ^{13}C : 125 MHz and ^{1}H : 500 MHz) data and HMBC correlations for $\mathbf{1^{*}}$

*All $^1\!\mathrm{H}$ and $^{13}\!\mathrm{C}$ assignments are based on 2D NMR (COSY, HMQC and HMBC) experiments.

**Multiplicites are based on DEPT-135 experiment

†Signal patterns are unclear due to overlapping.

confirmed the attachment of the methoxyl grou p at C-3^{IIII}, indicating the presence of (*E*)-ferulic acid within 2 (Fig. 2).

Therefore, on the basis of its NMR data, the structure of **2** was determined as 3,4-dihydroxy- β -phenylethoxy-O- α -rhamnopyranosyl- $(1\rightarrow 2)$ - α -rhamnopyranosyl- $(1\rightarrow 3)$ -4-O-feruloyl- β -glucopyranoside. The structure of **2** was identical to that of the phenylethanoid trisaccharide, phlinoside E, previously isolated from *Phlomis linearis*¹².

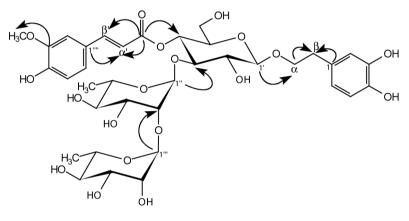


Figure 2

Selected HMBC for phlinoside E (2) (arrows point from C to H).

In a previous communication *P. physocalyx* was reported to contain two more phenylethanoid trisaccharides, wiedemannioside C and forsythoside B^{10} . However, both the sugar units and the glycosidation pattern in phlinosides C **(1)** and E **(2)** were different from those of the former triglycosidic phenylethanoids. In phlinosides C **(1)** and E **(2)** the third sugar unit, which was rhamnose for both glycosides, linked to the C-2" position of the first rhamnose moiety, however, the third sugar unit in wiedemannioside C and forsythoside B (glucose and apiose, resp.) were attached to the C-6' position of the core sugar, glucose.

Previously, phenylethanoid triglycosides, named as phlinosides A-E from *Phlomis linearis*^{11,12}, and phlinoside F from *P. angustissima*¹³ have been reported. Up to date, this is the second report for the isolation of two of these rare triglycosidic phenylethanoids from a member of the genus *Phlomis* and also nature. On the other hand, the structure elucidation of both **1** and **2** were performed and confirmed based on detailed

	¹³ C NMR		¹ H NMR	
C/H Atom	$\delta_{\rm C}~{\rm ppm}^{**}$	DEPT	$\delta_{_{ m H}}$ ppm, J (Hz)	HMBC (C→H)
Aglycon				
1	131.5	С	-	H-2, H ₂ -α, H ₂ -β
2	117.1	CH	6.70 d (2.2)	H-6, H ₂ -β
3	146.1	С	-	H-5
4	144.7	С	-	H-2, H-6
5	116.5	CH	6.69 d (8.2)	
6	121.3	CH	6.66 dd (8.2/2.2)	H-2, H ₂ -β
α	72.3	CH ₂	4.03 m / 3.72 m	H-1 ¹ , $H_2^{-\beta}$
β	36.6	CH_2	2.79 t (7.9)	H-2, H-6, H ₂ -α
Glucose		-		-
1 ¹	104.3	CH	4.37 d (7.7)	H-2 ¹ , H ₂ - α
2^{I}	76.0	CH	3.38 dd (8.0/9.0)	2
3 ¹	81.6	CH	3.79^{\dagger}	H-1 ^{II} , H-3 ^I , H-4 ^I
4^{I}	70.6	CH	4.92 t (9.6)	
5 ¹	76.2	CH	3.30^{+}	
6 ¹	62.4	CH_{2}	$3.65^{\dagger}/3.50^{\dagger}$	
Rhamnose		2		
1п	101.7	CH	5.35 d (1.7)	H-3 ¹
2 ¹¹	80.1	CH	3.92 dd (1.7/3.4)	
3 ^{II}	72.0	CH	3.65^{+}	
4 ¹¹	74.1	CH	3.25^{\dagger}	
5 ¹¹	70.4	CH	3.52^{\dagger}	$H_{3}-6^{II}$
6 ^{II}	18.5	CH ₃	1.07 d (6.1)	5
Rhamnose (C-2 ¹	⁽¹⁾	5		
1.111	103.8	CH	4.90 d (1.7)	$H-2^{II}$
2 ¹¹¹	71.8	CH	3.92 dd (1.7/3.4)	
3111	72.2	CH	3.62^{\dagger}	
4^{III}	74.1	CH	3.25^{\dagger}	
5 ^{III}	70.3	CH	3.68^{+}	H ₃ -6 ^{III}
6 ¹¹¹	17.9	CH ₃	1.25 d (6.1)	5
Feruloyl		5		
1111	127.7	С	-	H- α^{I} , H- β^{I} , H-5 ^{IIII}
2 ¹¹¹¹	111.8	CH	7.19 d (2.0)	H- β^{I} , H- 6^{IIII}
3	149.4	С	-	H-2 ¹¹¹¹ , H-5 ¹¹¹¹ , OCH
4 ¹¹¹¹	150.9	С	-	H-2 ¹¹¹¹ , H-5 ¹¹¹¹ , H-6 ¹¹¹
5	116.3	CH	6.80 d (8.2)	
6''''	124.4	CH	7.07 dd (8.2/2.0)	$H-\beta^{I}, H-2^{IIII}$
α΄	115.1	CH	6.36 d (15.9)	$H-\beta^{i}$
β′	147.9	CH	7.66 d (15.9)	H-2 ¹¹¹¹ , H-6 ¹¹¹¹
C=O	168.3	С	-	H- α^{I} , H- β^{I} , H- 4^{I}
3 ^{IIII} -OCH	56.5	CH	3.88 s	

TABLE II
¹³ C and ¹ H NMR (CD ₃ OD, ¹³ C: 125 MHz and ¹ H: 500 MHz) data and
HMBC correlations for 2 *

*All $^1\mathrm{H}$ and $^{13}\mathrm{C}$ assignments are based on 2D NMR (COSY, HMQC and HMBC) experiments.

**Multiplicites are based on DEPT-135 experiment

†Signal patterns are unclear due to overlapping.

1D- and 2D-NMR experiments and the NMR data were given in full assignments in Tables I and II.

Acknowledgement

This work was financially supported by the Scientific and Technical Research Council of Turkey (TUBİTAK Project No. SBAG-2304).

Summary

Two phenylethanoid triglycosides, phlinosides C (1) and E (2) were isolated from the methanolic extract of the overground parts of *Phlomis physocalyx*. On the basis of spectroscopic evidence the structures of the isolated compounds were determined as 3,4-dihydroxy- β -phenylethoxy-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 3)-4-*O*-caffeoyl- β -D-glucopyranoside and 3,4-dihydroxy- β -phenylethoxy-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 3)-4-*O*-feruloyl- β -D-glucopyranoside, respectively. The structure elucidation of the phenylethanoid glycosides **1** and **2** are explained in detail. This is the second report for the isolation of these phenylethanoids from a member of the genus *Phlomis*.

Key Words: Phlomis physocalyx, Lamiaceae, phenylethanoid glycosides, phlinoside C, phlinoside E.

Özet

Phlomis physocalyx'den Elde Edilen Diğer Feniletanoit Glikozitleri

Phlomis physocalyx'in toprak üstü kısımlarının MeOH ekstresinden iki feniletanoit triglikoziti olan filinozit C (1) ve filinozit E (2) izole edilmiştir. Bileşiklerin yapıları spektroskopik bulgulara dayanarak sırasıyla 3,4-dihidroksi- β -feniletoksi-O- α -L-ramnopiranozil- $(1\rightarrow 2)$ - α -Lramnopiranozil- $(1\rightarrow 3)$ -4-O-kafeoil- β -D-glukopiranozit ve 3,4-dihidroksi- β -feniletoksi-O- α -L-ramnopiranozil- $(1\rightarrow 2)$ - α -La)-4-O-feruloil- β -D-glukopiranozit olarak tayin edilmiştir. Feniletanoit glikozitleri 1 ve 2 nin yapı tayinleri ayrıntılı olarak açıklanmıştır. Bu çalışma, bu feniletanoit bileşiklerinin *Phlomis* cinsine mensup bir bitkiden elde edilmeleri konusunda ikinci yayın olmaktadır.

Anahtar Kelimeler: Phlomis physocalyx, Lamiaceae, feniletanoit glikozitleri, filinozit C, filinozit E.

REFERENCES

- 1. Huber-Morath, A.: Phlomis, in "Flora of Turkey and the East Aegean Islands" (ed. P. H. Davis), Vol. 7, p. 102, University Press, Edinburgh (1982).
- 2. Ersöz, T., Saracoğlu, İ., Kırmızıbekmez, H., Yalçın, F.N., Harput, Ü.Ş., Dönmez, A.A. and Çalış, İ.: Iridoid, Phenylethanoid and Phenol Glycosides from *Phlomis chimerae* Hacettepe University, Journal of Faculty of Pharmacy, 21, 23-33 (2001).
- 3. Ersöz, T., Sticher, O. and Çalış, İ.: An Iridoid Glucoside from *Phlomis longifolia* var. *longifolia* Hacettepe University, Journal of Faculty of Pharmacy, 21, 35-40 (2001).
- 4. Ersöz, T., Harput, Ü.Ş., Çalış, İ. and Dönmez, A.A.: Iridoid, Phenylethanoid and Monoterpene Glycosides from *Phlomis sieheana* Turk. J. Chem., 26, 1-8 (2002).
- Ersöz, T., Saracoğlu, İ., Harput, Ü.Ş., Çalış İ. and Dönmez, A.A.: Iridoid and Phenylpropanoid Glycosides from *Phlomis grandiflora* var. *fimbrilligera* and *Phlomis fruticosa* Turk. J. Chem., 26, 171-178 (2002).
- Ersöz, T., Saracoğlu, İ., Taşdemir, D., Kırmızıbekmez, H., Dönmez, A.A. Ireland, C.M. and Çalış, İ. Neolignan Glucosides from *Phlomis chimerae* Boiss. Z. Naturforsch., 57c, 221-225 (2002).
- Yalçın, F.N., Ersöz, T., Akbay, P., Çalış, İ., Dönmez, A.A. and Sticher, O.: Iridoid and Phenylpropanoid Glycosides from *Phlomis samia*, *P. monocephala* and *P. carica*, Turk. J. Chem., 27, 295-305 (2003).
- Yalçın, F.N., Ersöz,T. Akbay, P. Çalış, İ. Dönmez A.A. and Sticher,O.: Phenolic, Megastigmane, Nucleotide, Acetophenon and Monoterpene Glycosides from *P. samia* and *P. carica*, Turk. J. Chem., 27, 703-711 (2003).
- Çalış, İ., Kırmızıbekmez, H., Ersöz, T., Saracoğlu, İ. Dönmez, A.A., Mitova, M., Handjieva N. and Popov, S.: Iridoid, Phenylethanoid and Flavonoid Glycosides from *Phlomis sintenisii* Acta Pharmaceutica Turcica, 44, 195-203 (2002).
- Ersöz, T., Alipieva, K. Iv., Yalçın, F.N., Akbay, P., Handjieva, N., Dönmez, A.A., Popov, S. and Çalış, İ.: Physocalycoside, A New Phenylethanoid Glycoside from *Phlomis physocalyx* Hub.-Mor., Z. Naturforsch. 58c 471-476 (2003).
- 11. Çalış, İ., Başaran, A.A., Saracoğlu, İ., Sticher O. and Rüedi, P.: Phlinosides A, B and C, Three Phenylpropanoid Glycosides from *Phlomis linearis*, Phytochemistry, 29, 1253-1257 (1990).
- Çalış, İ., Başaran, A.A., Saracoğlu, İ., Sticher, O. and Rüedi, P.: Phlinosides D and E, Phenylpropanoid Glycosides and Iridoids from *Phlomis linearis*, Phytochemistry, 30, 3073-3075 (1991).
- Yalçın, F.N., Ersöz, T., Bedir, E., Şahpaz, S., Bailleul, F., Khan, I.A., Dönmez, A.A. and Çalış, İ.: Phlinoside F, a New Phenylethanoid Glycoside from *Phlomis angustissima*, Turk. J. Chem., 29, 417-423 (2005).