ON I–DEFERRED STATISTICAL CONVERGENCE IN TOPOLOGICAL GROUPS

HACER ŞENGÜL KANDEMIR

FACULTY OF EDUCATION, HARRAN UNIVERSITY, OSMANBEY CAMPUS 63190, SANLIURFA, TURKEY, ORCID: 0000-0003-4453-0786

Abstract. In this paper, the concepts of I–deferred statistical convergence of order α and I–deferred statistical convergence of order (α, β) in topological groups were defined. Also some inclusion relations between I–statistical convergence of order α, I–deferred statistical convergence of order α, I–statistical convergence of order (α, β) and I–deferred statistical convergence of order (α, β) in topological groups are given.

1. INTRODUCTION

The idea of statistical convergence was given by Zygmund [38] in the first edition of his monograph published in Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus [30] and Fast [13] and later reintroduced by Schoenberg [28] independently. Later on it was further investigated from the sequence space point of view and linked with summability theory by Çakallı ([2], [3], [4], [5], [6]), Çınar et al. [7], Et et al. ([9], [10], [11], [12], [24]), Fridy [14], Fridy and Orhan [15], Işık and Akbaş [17], Salat [22], Savas [23], Sengul et. al. ([31], [32], [33], [34]), Srivastava and Et [29], Yıldız [37] and many others.

Let X be a non-empty set. Then a family of sets $I \subseteq 2^X$ (power sets of X) is said to be an ideal if I is additive i.e. $A, B \in I$ implies $A \cup B \in I$ and hereditary, i.e. $A \in I, B \subset A$ implies $B \in I$.

A non-empty family of sets $F \subseteq 2^X$ is said to be a filter of X if and only if (i) $\phi \notin F$, (ii) $A, B \in F$ implies $A \cap B \in F$ and (iii) $A \in F, A \subset B$ implies $B \in F$.

An ideal $I \subseteq 2^X$ is called non-trivial if $I \neq 2^X$.

A non-trivial ideal I is said to be admissible if $I \supset \{\{x\} : x \in X\}$. If I is a non-trivial ideal in $X(X \neq \phi)$ then the family of sets $F(I) = \{M \subset X : (\exists A \in I)(M = X \setminus A)\}$ is a filter of X, called the filter associated with I.

Throughout the paper I will stand for a non-trivial admissible ideal of \mathbb{N}.

2010 Mathematics Subject Classification. Primary: 40A05 ; Secondaries: 40C05, 46A45.

Key words and phrases. Topological groups; statistical convergence; deferred statistical convergence.

The idea of $I-$convergence of real sequences was introduced by Kostyrko et al. [19] and also independently by Nuray and Ruckle [21] (who called it generalized statistical convergence) as a generalization of statistical convergence. Later on $I-$convergence was studied in ([20], [26], [27], [25], [35], [36]).

The order of statistical convergence of a sequence of numbers was given by Gadjiev and Orhan in [16] and after then statistical convergence of order α and strong $p-$Cesàro summability of order α studied by Çolak [8].

In 1932, R.P. Agnew [1] defined the deferred Cesaro mean $D_{p,q}$ of the sequence $x = (x_k)$ by

$$\left(D_{p,q}x\right)_n = \frac{1}{q(n) - p(n)} \sum_{p(n)+1}^{q(n)} x_k$$

where $(p(n))$ and $(q(n))$ are sequences of non-negative integers satisfying $p(n) < q(n)$ and $\lim_{n \to \infty} q(n) = +\infty$. (1.1)

Let K be a subset of N, and denote the set \(\{k : p(n) < k \leq q(n), k \in K\} \) by $K_{p,q}(n)$. Deferred density of K is defined by

$$\delta_{p,q}(K) = \lim_{n \to \infty} \frac{1}{q(n) - p(n)} |K_{p,q}(n)|$$

whenever the limit exists (finite or infinite). The vertical bars in (1.2) indicate the cardinality of the set $K_{p,q}(n)$.

A real valued sequence $x = (x_k)$ is said to be deferred statistical convergent to l, if

$$\lim_{n \to \infty} \frac{1}{q(n) - p(n)} |\{p(n) < k \leq q(n) : |x_k - l| \geq \varepsilon\}| = 0$$

for every $\varepsilon > 0$. If $q(n) = n$, $p(n) = 0$ then deferred statistical convergence coincides statistical convergence [18].

2. $I-$DEFERRED STATISTICAL CONVERGENCE OF ORDER α IN TOPOLOGICAL GROUPS

In this section, some inclusion relations between $I-$statistical convergence, $I-$statistical convergence of order α and $I-$deferred statistical convergence of order α in topological groups are given.

Definition 2.1. Let $(p(n))$ and $(q(n))$ be two sequences of non-negative integers satisfying the conditions (1.1), X be an abelian topological Hausdorf group, $(x(k))$ be a sequence of real numbers and α be a positive real number such that $0 < \alpha \leq 1$. The sequence $x = (x(k))$ is said to be $DS_{p,q}^{\alpha}(X,I)$—statistically convergent in topological groups to l (or $I-$deferred statistically convergent sequences of order α in topological groups to l) if there is a real number l for each neighbourhood U of 0 such that

$$\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))^\alpha} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}| \geq \delta \right\} \in I.$$

In this case we write $DS_{p,q}^{\alpha}(X) - \lim x(k) = l$ or $x(k) \to l \left(DS_{p,q}^{\alpha}(I) \right)$. The set of all $DS_{p,q}^{\alpha}(X,I)$—statistically convergent sequences in topological groups will be denoted by $DS_{p,q}^{\alpha}(X,I)$.

If $\alpha = 1$, then $I-$deferred statistical convergence
of order \(\alpha \) coincides then \(I \)-deferred statistical convergence in topological groups \((DS_{p,q}^\alpha (X,I) \rightarrow \text{convergence}) \) and if \(q(n) = n \), \(p(n) = 0 \) then \(I \)-deferred statistical convergence of order \(\alpha \) coincides \(I \)-statistical convergence of order \(\alpha \) in topological groups \((S^\alpha (X,I) \rightarrow \text{convergence}) \). If \(q(n) = n \), \(p(n) = 0 \) and \(\alpha = 1 \), then \(I \)-deferred statistical convergence of order \(\alpha \) coincides \(I \)-statistical convergence in topological groups \((S(X,I) \rightarrow \text{convergence}) \).

Theorem 2.1. Let \((p(n))\) and \((q(n))\) be two sequences of non-negative integers satisfying the conditions (1.1) and \(\alpha, \beta \) be positive real numbers such that \(0 < \alpha \leq \beta \leq 1 \) then \(DS_{p,q}^\alpha (X,I) \subseteq DS_{p,q}^\beta (X,I) \) and the inclusion is strict.

Proof. Omitted. \(\square \)

Theorem 2.1 yields the following corollary.

Corollary 2.2. If a sequence is \(DS_{p,q}^\alpha (X,I) \)-statistically convergent of order \(\alpha \) to \(l \), then it is \(DS_{p,q}^\alpha (X,I) \)-statistically convergent to \(l \).

Theorem 2.3. Let \((p(n))\) and \((q(n))\) be two sequences of non-negative integers satisfying the conditions (1.1) and \(\alpha \) be a positive real number such that \(0 < \alpha \leq 1 \). If \(\lim \inf_n \frac{q(n)}{p(n)} > 1 \), then \(S^\alpha (X,I) \subseteq DS_{p,q}^\alpha (X,I) \).

Proof. Suppose that \(\lim \inf_n \frac{q(n)}{p(n)} > 1 \); then there exists an \(a > 0 \) such that \(\frac{q(n)}{p(n)} \geq 1 + a \) for sufficiently large \(n \), which implies that

\[
\frac{q(n) - p(n)}{q(n)} \geq \frac{a}{1 + a} \Rightarrow \left(\frac{q(n) - p(n)}{q(n)} \right)^\alpha \geq \left(\frac{a}{1 + a} \right)^\alpha \Rightarrow \frac{1}{q(n)^\alpha} \geq \frac{a^\alpha}{(1 + a)^\alpha} \frac{1}{(q(n) - p(n))}.
\]

If \(S^\alpha (I) \rightarrow \text{lim}_{k \to \infty} x(k) = l \), then for each neighbourhood \(U \) of \(0 \) and for sufficiently large \(n \), we have

\[
\frac{1}{q(n)^\alpha} \left| \{ k \leq q(n) : x(k) \not\in U \} \right| \geq \frac{1}{q(n)^\alpha} \left| \{ p(n) < k \leq q(n) : x(k) \not\in U \} \right|
\]

\[
\geq \frac{1}{(1 + a)^\alpha} \frac{\alpha^\alpha}{(q(n) - p(n))} \left| \{ p(n) < k \leq q(n) : x(k) \not\in U \} \right|.
\]

Therefore, we can write

\[
\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))^\alpha} \left| \{ p(n) < k \leq q(n) : x(k) \not\in U \} \right| \geq \delta \right\} \subseteq \left\{ n \in \mathbb{N} : \frac{1}{q(n)^\alpha} \left| \{ k \leq q(n) : x(k) \not\in U \} \right| \geq \delta \frac{\alpha^\alpha}{(1 + a)^\alpha} \right\} \subseteq I.
\]

This implies that \(S^\alpha (X,I) \subseteq DS_{p,q}^\alpha (X,I) \). \(\square \)

Theorem 2.4. Let \((p(n))\) and \((q(n))\) be two sequences of non-negative integers satisfying the conditions (1.1) and \(\alpha \) be a positive real number such that \(0 < \alpha \leq 1 \). If \(\lim \inf_n \frac{q(n)}{\alpha n} > 0 \) and \(q(n) < n \), then \(S(X,I) \subseteq DS_{p,q}^\alpha (X,I) \).

Proof. For each neighbourhood \(U \) of \(0 \), we have

\[
\{ k \leq n : x(k) \not\in U \} \supset \{ p(n) < k \leq q(n) : x(k) \not\in U \}.
\]
Therefore,
\[
\frac{1}{n} |\{k \leq n : x(k) - l \notin U\}| \geq \frac{1}{n} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}| = \frac{(q(n) - p(n))^\alpha}{n} \frac{1}{(q(n) - p(n))^\beta} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}|.
\]
Hence, we can write
\[
\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))^\alpha} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}| \geq \delta \right\}
\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} |\{k \leq n : x(k) - l \notin U\}| \geq \delta \frac{(q(n) - p(n))^\alpha}{n} \right\} \in I.
\]
Consequently, \(S(X,I) \subset DS^\alpha_{p,q}(X,I) \).

\[\square\]

Theorem 2.5. Let \((p(n)), (q(n)), (p'(n)), (q'(n))\) be four sequences of non-negative integers such that \(p(n) < q(n), p'(n) < q'(n)\) and \(q(n) - p(n) \leq q'(n) - p'(n)\) for all \(n \in \mathbb{N}\), let \(U\) be any neighbourhood of 0 and let \(\alpha\) and \(\beta\) be such that \(0 < \alpha \leq \beta \leq 1\).

(i) If
\[
\lim_{n \to \infty} \inf \frac{(q(n) - p(n))^{\alpha}}{(q'(n) - p'(n))^{\beta}} > 0
\]
then \(DS^\beta_{p',q'}(X,I) \subseteq DS^\alpha_{p,q}(X,I)\).

(ii) If
\[
\lim_{n \to \infty} \frac{q'(n) - p'(n)}{(q(n) - p(n))^{\beta}} = 1
\]
then \(DS^\alpha_{p,q}(X,I) \subseteq DS^\beta_{p',q'}(X,I)\).

Proof. (i) Let (2.1) be satisfied. For each \(\varepsilon > 0\) and each neighbourhood \(W\) of 0 such that \(W \subset U\), we have
\[
\{p'(n) < k \leq q'(n) : x(k) - l \notin W\} \supseteq \{p(n) < k \leq q(n) : x(k) - l \notin U\},
\]
and so
\[
\frac{1}{(q'(n) - p'(n))^{\beta}} |\{p'(n) < k \leq q'(n) : x(k) - l \notin W\}|
\geq \frac{1}{(q(n) - p(n))^{\beta}} \frac{(q(n) - p(n))^{\alpha}}{(q'(n) - p'(n))^{\beta}} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}|
\]
for all \(n \in \mathbb{N}\), where \(p(n) < q(n), p'(n) < q'(n)\) and \(q(n) - p(n) \leq q'(n) - p'(n)\).

Then we can write
\[
\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))^{\beta}} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}| \geq \delta \right\}
\subseteq \left\{ n \in \mathbb{N} : \frac{1}{(q'(n) - p'(n))^{\beta}} |\{p'(n) < k \leq q'(n) : x(k) - l \notin W\}| \geq \delta \frac{(q(n) - p(n))^{\alpha}}{(q'(n) - p'(n))^{\beta}} \right\} \in I.
\]
This completes the proof.
Let α, β be positive real numbers such that $0 < \alpha \leq \beta \leq 1$. The sequence $x = (x(k))$ is said to be $I-$deferred statistical convergent of order (α, β) in topological groups to l (or $DS_{p,q}^\alpha(X,I)$ statistically convergent to l), if there is a real number l, for each neighbourhood U of 0 such that

$$\left\{ n \in \mathbb{N} : \frac{1}{q(n) - p(n)} \left| \{ p(n) < k \leq q(n) : x(k) - l \notin U \} \right|^\beta \geq \delta \right\} \subseteq I.$$

In this case we write $DS_{p,q}^\alpha(X,I) - \lim x(k) = l$ or $x(k) \rightarrow l (DS_{p,q}^\alpha(X,I))$. The set of all $DS_{p,q}^\alpha(X,I)$-statistically convergent sequences in topological groups will be denoted by $DS_{p,q}^\alpha(X,I)$. If $q(n) = n$, $p(n) = 0$ and $\alpha = \beta = 1$, then $I-$deferred statistical convergence of order (α, β) coincides $I-$statistical convergence in topological groups $(S(X,I) - \text{convergence})$.

Theorem 3.1. Let $(p(n))$ and $(q(n))$ be two sequences of non-negative integers satisfying the conditions (1.1) and $\alpha_1, \alpha_2, \beta_1$ and β_2 be positive real numbers such that $0 < \alpha_1 \leq \alpha_2 \leq \beta_1 \leq \beta_2 \leq 1$, then $DS_{p,q}^{\alpha_1,\beta_1}(X,I) \subseteq DS_{p,q}^{\alpha_2,\beta_2}(X,I)$ and the inclusion is strict.

Proof. Omitted.

Theorem 3.2. Let $(p(n))$ and $(q(n))$ be two sequences of non-negative integers satisfying the conditions (1.1) and α, β be two positive real numbers such that $0 < \alpha \leq \beta \leq 1$. If $\liminf_{n} \frac{q(n)}{p(n)} > 1$, then $S_{p,q}^{\alpha,\beta}(X,I) \subset DS_{p,q}^{\alpha,\beta}(X,I)$.

Proof. The proof is similar to that of Theorem 2.3.
Theorem 3.3. Let \((p(n)), (q(n)), (p'(n))\) and \((q'(n))\) be four sequences of non-negative integers such that \(p(n) < q(n), p'(n) < q'(n)\) and \(q(n) - p(n) \leq q'(n) - p'(n)\) for all \(n \in \mathbb{N}\), let \(U\) be any neighborhood of 0 and let \(\alpha_1, \alpha_2, \beta_1\) and \(\beta_2\) be such that \(0 < \alpha_1 \leq \alpha_2 \leq \beta_1 \leq \beta_2 \leq 1\).

(i) If

\[
\lim_{n \to \infty} \inf \frac{(q(n) - p(n))^\alpha_1}{(q'(n) - p'(n))^\alpha_2} > 0
\]

then \(DS_{p',q'}^{\alpha_2,\beta_2}(X,I) \subseteq DS_{p,q}^{\alpha_1,\beta_1}(X,I),\)

(ii) If

\[
\lim_{n \to \infty} \frac{q'(n) - p'(n)}{(q(n) - p(n))^{\alpha_2}} = 1
\]

then \(DS_{p,q}^{\alpha_1,\beta_2}(X,I) \subseteq DS_{p',q'}^{\alpha_2,\beta_1}(X,I)\).

Proof. (i) Let \(\lim_{n \to \infty} \inf \frac{(q(n) - p(n))^\alpha_1}{(q'(n) - p'(n))^\alpha_2} > 0\). For given \(\varepsilon > 0\) and each neighborhood \(U, W\) of 0 such that \(W \subseteq U\), we have

\[
\frac{1}{(q'(n) - p'(n))^{\alpha_2}} |\{p'(n) < k \leq q'(n) : x(k) - l \notin W\}|^{\beta_2} \\
\geq \frac{(q(n) - p(n))^{\alpha_2}}{(q'(n) - p'(n))^{\alpha_2}} \frac{1}{(q(n) - p(n))^{\alpha_2}} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}|^{\beta_1}
\]

for all \(n \in \mathbb{N}\).

Therefore, we can write

\[
\left\{ n \in \mathbb{N} : \frac{1}{(q(n) - p(n))^{\alpha_2}} |\{p(n) < k \leq q(n) : x(k) - l \notin U\}|^{\beta_1} \geq \delta \right\} \\
\subseteq \left\{ n \in \mathbb{N} : \frac{1}{(q'(n) - p'(n))^{\alpha_2}} |\{p'(n) < k \leq q'(n) : x(k) - l \notin W\}|^{\beta_2} \geq \delta \frac{(q(n) - p(n))^{\alpha_1}}{(q'(n) - p'(n))^{\alpha_2}} \right\} \in I.
\]

This completes the proof.

(ii) Omitted.

\(\square\)

Corollary 3.4. Let \((p(n)), (q(n)), (p'(n))\) and \((q'(n))\) be four sequences of non-negative integers such that \(p(n) < q(n), p'(n) < q'(n)\) and \(q(n) - p(n) \leq q'(n) - p'(n)\) for all \(n \in \mathbb{N}\) and 0 \(<\alpha_1 \leq \alpha_2 \leq \beta_1 \leq \beta_2 \leq 1\).

If (3.1) holds then,

(i) \(DS_{p',q'}^{\alpha_2}(X,I) \subseteq DS_{p,q}^{\alpha_1}(X,I)\) for \(\beta_1 = \beta_2 = 1\),

(ii) \(DS_{p',q'}(X,I) \subseteq DS_{p,q}^{\alpha_1}(X,I)\) for \(\alpha_2 = \beta_1 = \beta_2 = 1\),

(iii) \(DS_{p',q'}(X,I) \subseteq DS_{p,q}(X,I)\) for \(\alpha_1 = \alpha_2 = \beta_1 = \beta_2 = 1\).

If (3.2) holds then,

(i) \(DS_{p,q}(X,I) \subseteq DS_{p',q'}^{\alpha_2}(X,I)\) for \(\beta_1 = \beta_2 = 1\),

(ii) \(DS_{p,q}(X,I) \subseteq DS_{p',q'}(X,I)\) for \(\alpha_2 = \beta_1 = \beta_2 = 1\),

(iii) \(DS_{p,q}(X,I) \subseteq DS_{p',q'}(X,I)\) for \(\alpha_1 = \alpha_2 = \beta_1 = \beta_2 = 1\).
References

HACER ŞENGÜL KANDEMİR,
FACULTY OF EDUCATION, HARRAN UNIVERSITY, OSMANBEY CAMPUS 63190, ŞANLIURFA, TURKEY
E-mail address: hacersengul@hotmail.com