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ABSTRACT. In this paper, the concepts of I—deferred statistical convergence
of order o and I—deferred statistical convergence of order («, 3) in topological
groups were defined. Also some inclusion relations between I—statistical con-
vergence of order «, [ —deferred statistical convergence of order «a, I —statistical
convergence of order («,3) and I—deferred statistical convergence of order
(a, B) in topological groups are given.

1. INTRODUCTION

The idea of statistical convergence was given by Zygmund [38] in the first edi-
tion of his monograph puplished in Warsaw in 1935. The consept of statistical
convergence was introduced by Steinhaus [30] and Fast [I3] and later reintro-
duced by Schoenberg [28] independently. Later on it was further investigated
from the sequence space point of view and linked with summability theory by
Cakalli ([2],[3],[4],[5],[6]), Cmar et al. [7], Et et al. ([9],[TI0],[11],[12],[24]), Fridy
[14], Fridy and Orhan [15], Isik and Akbag [I7], Salat [22], Savag [23], Sengul et.
al. ([310,[32],[33],[34)), Srivastava and Et [29], Yildiz [37] and many others.

Let X be a non-empty set. Then a family of sets I C 2% (power sets of X) is
said to be an ideal if I is additive i.e. A, B € I implies AU B € [ and hereditary,
i.e. A€ I, BC Aimplies B € 1.

A non-empty family of sets F' C 2% is said to be a filter of X if and only if
(1) ¢ ¢ F, (ii) A, B € F implies AN B € F and (iii) A € F, A C B implies B € F.

An ideal I C 2% is called non-trivial if I # 2%.
A non-trivial ideal I is said to be admissible if I > {{z} : 2z € X}.

If T is a non-trivial ideal in X (X # ¢) then the family of sets
FI)={McX:(3Aecl)(M=X\A)}isafilter of X, called the filter associated
with I.

Throughout the paper I will stand for a non-trivial admissible ideal of N.
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The idea of I—convergence of real sequences was introduced by Kostyrko et al.
[19] and also independently by Nuray and Ruckle [21] (who called it generalized
statistical convergence) as a generalization of statistical convergence. Later on
IT—convergence was studied in ([20],[26], [27],[25],[35],[36] ).

The order of statistical convergence of a sequence of numbers was given by Gad-
jiev and Orhan in [I6] and after then statistical convergence of order « and strong
p—Cesaro summability of order « studied by Colak [§].

In 1932, R.P. Agnew [I] defined the deferred Cesaro mean D, , of the sequence
x = (zr) by

(Dp,qm)n =

1
q(n) —p(n)

q(n)
> @
p(n)+1
where (p(n)) and (¢ (n)) are sequences of non-negative integers satisfying
p(n) < g(n) and le q(n) = +o0. (1.1)
Let K be a subset of N, and denote the set {k:p(n) <k <gq(n),ke€ K} by
K, 4 (n). Deferred density of K is defined by
1
Opq(K) = lim —— |K, ,(n 1.2
P7<Z( ) n_)()oq(n)_p(n)| p,q( )‘ ( )
whenever the limit exists (finite or infinite). The vertical bars in (1.2) indicate the
cardinality of the set K, 4 (n).

A real valued sequence x = (xy) is said to be deferred statistical convergent to
I, if

1
Iim ———H{p(n) <k<qgn) :|xx -1 >} =0
Jim s i ) () o — 1] > ¢}
for every ¢ > 0. If ¢(n) = n, p(n) = 0 then deferred statistical convergence

coincides statistical convergence [I§].

2. I-DEFERRED STATISTICAL CONVERGENCE or ORDER «a IN
TOPOLOGICAL GROUPS

In this section, some inclusion relations between I —statistical convergence, I —statistical
convergence of order o and I—deferred statistical convergence of order « in topo-
logical groups are given.

Definition 2.1. Let (p(n)) and (g (n)) be two sequences of non-negative integers
satisfying the conditions (1.1), X be an abelian topological Hausdorf group, (z (k))
be a sequence of real numbers and a be a positive real number such that 0 < o < 1.
The sequence x = (x (k)) is said to be DSy (X, I)—statistically convergent in
topological groups to | (or I—deferred statistically convergent sequences of order «
in topological groups to l) if there is a real number | for each neighbourhood U of 0
such that

1
{nGN.(q(n)_p(n))a|{p(n)<k:§q(n).x(k‘)—l§éU}|25}EI.

In this case we write DSS (I) —limax (k) = 1 or (k) — 1 (DSy,(I)). The set
of all DSy, (X, I)— statistically convergent sequences in topological groups will
be denoted by DSy (X,I). If a = 1, then I—deferred statistical convergence
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of order a coincides then I—deferred statistical convergence in topological groups
(DSp.q (X,I)— convergence) and if g(n) =n, p(n) =0 then I—deferred statistical
convergence of order « coincides I—statistical convergence of order o in topolog-
ical groups (S (X,I)—convergence). If g(n) = n, p(n) = 0 and a = 1, then
I—deferred statistical convergence of order a coincides I—statistical convergence in
topological groups (S (X, I) —convergence).

Theorem 2.1. Let (p(n)) and (g(n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and «,B be positive real numbers such that 0 < a <
B <1 then DSy (X,1I) C DSqu (X,I) and the inclusion is strict.

Proof. Omitted. ([l

Theorem 2.1 yields the following corollary.

Corollary 2.2. If a sequence is DSy (X, I) —statistically convergent of order a
to 1, then it is DSy 4 (X, I) —statistically convergent to l.

Theorem 2.3. Let (p(n)) and (q(n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and « be a positive real number such that 0 < a < 1.

Iflimint, &% > 1, then % (X, 1) C DSg, (X, 1).

N2

Proof. Suppose that liminf, % > 1; then there exists an a > 0 such that % >

1 + a for sufficiently large n, which implies that
_ _ « [e3% e}
T e (S () e
q(n) l+a q(n) l+a q(n)” ~ (L+a)” (¢(n) —p(n))

If S (I)—limg_ 00 « (k) = I, then for each neighbourhood U of 0 and for sufficiently
large n, we have

a%ﬂ%éq@%x%%%¢m¢z Eéfumm<k§qmyx@%4¢UH

a® 1
(1+a)" (g(n) —p

oy ) <k <a(m) 2 (k) 1 VY.

Therefore, we can write

1
{nEN.(q(n)_p(n))a|{p(n)<kz§q(n).x(k‘)—l§éU}| 26}
1 a®
- {nEN.W|{k§q(n).x(l§)—l¢U}zéma)a}el.
This implies that S (X, I) C DSy (X,I). O

Theorem 2.4. Let (p(n)) and (g(n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and « be a positive real number such that 0 < o < 1.

If liminf,, M >0 and q(n) <n, then S(X,I) C DSy, (X, I).
Proof. For each neighbourhood U of 0, we have
{k<n:z(k)-1¢U}D{pn)<k<qgn):xz(k)—1¢U}.
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Therefore,

Lk <nie®) -14UY >

V
S|
—_
bS]
z
N
ol
IN
A
g
\
R
-
-~

Hence, we can write

1
fnen: el <k <a) o) -1¢U) 2

C {HEN:i|{k‘§n:m(k)—l§éU}|25(Q(n)_np(n))a}EI.

Consequently, S (X, 1) C DSy (X, ). O

Theorem 2.5. Let (p(n)),(q(n)), (p' (n)), (¢’ (n)) be four sequences of non-negative
integers such that p(n) < ¢(n), p'(n) < ¢ (n) and ¢(n) —p(n) < ¢'(n) —p'(n)
for all m € N, let U be any neighbourhood of 0 and let o and B be such that
O<a<p<l.

() If
(¢(n) —p(n)"

lim inf 5 >0 (2.1)
mee (¢ (n) —p' (n)
then DS5, (X, I) C DSS (X, 1),
(id) If
lim 4 () —p'(n) -1 (2.2)

"% (g (n) — p(n))”
then DSS (X, 1) € DSL, (X, 1).
Proof. (i) Let (2.1) be satisfied. For given € > 0 and each neighbourhood U, W of
0 such that W C U, we have
{p'(n)<k<qdn):ak)-1¢W}2{pn)<k<qn):a(k)-1¢U},

and so

(¢ (n) — : (n )B Hp( ) < k‘gq/(n)x(k)_l¢w}‘

P (n)
(g(n) —p(n))” 1 o
(¢’ (n) —p' ()’ (a(n) —p(n)" {p(n) <k <qn):z(k)—1¢U}
' (n

for all n € N, where p (n) < ¢(n), p'(n) < ¢ (n) and q(n) —p(n) < ¢ (n)—p' (n).

~

Then we can write

1
{neN:(q(n)_p(n))a|{p(n)<k§q(n):x(k)—l¢U}|25}

1 / / (q (’I”L) _p(n))a
- neN: ——M —— n k< n):zk)—leéeW}Y >f——+—"— 2 I.
C { € (q/(n)—p’(n))5|{p()< <q (n):x(k)-1g W} > (¢ (n) }6

This completes the proof.
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(#4) Omitted. O
Corollary 2.6. Let (p(n)),(q(n)), (@ (n)), (¢ (n)) be four sequences of non-negative

integers such that p (n) < g (n), p'(n) < ¢ (n) and ¢(n) —p(n) < ¢ (n)—p' (n) for
allneNand 0 < a < 1.

If (2.1) holds then,

(i) DS (X, 1) C DS (X, 1),
(i) DSy (X, I) C DSy (X, ),
(iii) DSy o (X, 1) C DS, 4(X, I).
If (2.2) holds then,

(7) DSKQ(X, I C DS;‘,TQ,(X,I),
(12) Dsgq(X» I) € DSy (X, 1),
(iii) DSyq(X,I) € DSy (X, I).

3. I-DEFERRED STATISTICAL CONVERGENCE or ORDER(«, 8) IN
TOPOLOGICAL GROUPS

In this section, the results which were given in the previous section are general-
ized. Some inclusion relations between I —statistical convergence of order (o, ) and
I—deferred statistical convergence of order («, 3) in topological groups are given.

Definition 3.1. Let (p(n)) and (g (n)) be two sequences of non-negative integers
satisfying the conditions (1.1), X be an abelian topological Hausdorf group, (z (k))
be a sequence of real numbers and «, B be positive real numbers such that 0 < a <
B < 1. The sequence x = (x (k)) is said to be I—deferred statistical convergent of
order (a, B) in topological groups tol ( or DS&’f (X, I) —statistically convergent to
[ ), if there is a real number 1, for each neighbourhood U of 0 such that

{nem: ol <k <a() o)~ 1£ V) 2} e

In this case we write DSS‘f (I) —limz (k) =1 or z (k) — 1 (DSI?,;JB (I)). The set
of all DS&;}B (X, I) —statistically convergent sequences in topological groups will be
denoted by DS;"’qB (X,I). If q(n) =n,p(n) =0 and a = B = 1, then I—deferred
statistical convergence of order («, ) coincides I—statistical convergence in topo-
logical groups (S (X, I) —convergence).

Theorem 3.1. Let (p(n)) and (¢(n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and a1, a9, 81 and B2 be positive real numbers such
that 0 < a1 < ag < B < By < 1, then DSgb7ﬂ2 (X,I) C DS]‘j‘fq’ﬂ1 (X,I) and the
inclusion is strict.

Proof. Omitted. O

Theorem 3.2. Let (p(n)) and (g(n)) be two sequences of non-negative integers
satisfying the conditions (1.1) and «, 8 be two positive real numbers such that 0

<a<B <1 Ifliming, &9 > 1, then S (X, 1) C DSSP (X, 1).
Proof. The proof is similar to that of Theorem 2.3. (]
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Theorem 3.3. Let (p(n)),(¢g(n)),® (n)) and (¢’ (n)) be four sequences of non-
negative integers such that p(n) < q(n),p’ (n) < ¢ (n) and g(n) —p(n) < ¢ (n) —
p' (n) for allm € N, let U be any neighbourhood of 0 and let ay, g, 31 and Ba be
such that 0 < a; < as < 1 < [y < 1.

(1) If ( -
lim inf A2 — P ‘
2 = e 7 .
then DS/ (X, 1) € DSoy# (X, 1),
(i2) If
lim L =P M) (3.2)

n—oe (¢ (n) —p(n))™
then DSG4P2 (X, 1) C DSS*M (X, 1).

Proof. (i) Let lim,,_, o inf % > 0. For given ¢ > 0 and each neighbour-

hood U, W of 0 such that W C U, we have

! / ! sz _ B2
@ =y WO <ksd@:e®-1gwl
(q (n) _p(n))al ! n n):x — B1
> (q/(n)_p/(n))az (q(n)_p(n))m |{p( )<k§q( ) (k;) Z¢U}|
for all n € N.

Therefore, we can write

; n n):z _ B1
{neN.(q(n)p(n))a1|{p()<k§q()- (k) =1 ¢ U} 25}

o) b))

. 1 / n /TL X - &
< {HEN'(q’(n)—p’(n))” ' (m) <k < g (n): (k) —1¢ W 2(S(q’(n)—p’(n))a‘z

This completes the proof.
(#4) Omitted. O

Corollary 3.4. Let (p(n)),(g(n)), (' (n)) and (¢’ (n)) be four sequences of non-
negative integers such that p(n) < q(n), p'(n) <q ( )Yand g(n)—p(n) <q (n)—
()forallneNcmd0<a1<a2<Bl By <1

If (3.1) holds then,

(i) DS (X, 1) C DS (X, 1) for B = Bz = 1,

(”) DSp’,q’(Xa I) - DS,?‘}I(X I) forag =1 =p5=1,

(#4i) DSy g (X,I) C DSpo(X,I) for ar =z = p1 =P =1.
If (3.2) holds then,

(i) DSy (X, 1) € DS)? (X, 1) for B1 = P2 =1,

(ii) DSCL(X,T) C DSy (X, ) for ag = By = B = 1,

(Z’LZ) DSp,q(X7 I) g DSp/ﬂ/(X, I) fOT a1 = (g = 51 = /82 =1.
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