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Abstract: Recently, Fibonacci polynomials, Chebyshev polynomials, Lucas polynomials, Pell polynomials, LucasâĂŞLehmer poly-
nomials, orthogonal polynomials and other special polynomials became more and more important in the field of Geometric
Function Theory. The Theory of Geometric Functions and that of Special Functions are usually considered as very different
fields. In this study, by using Lucas polynomials of the second kind, subordination and Ruschewey differential operator,these dif-
ferent fields were connected and a new class of bi-univalent functions was introduced. Also coefficient estimates were obtained
for this new class.
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1 Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
m=2

amz
m, (1)

which are analytic in the open unit disk U = {z : |z| < 1}, and let S = {f ∈ A : f is univalent in U}.
The Koebe one-quarter theorem [11] states that the range of every function f ∈ S contains the disc of radius

{
w : |w| < 1

4

}
. Thus every

such function f ∈ S has an inverse f−1 which satisfies

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,

where
f−1 (w) = w − a2w

2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

Definition 1. If both f and f−1 are univalent in U , then a function f ∈ A is said to be bi-univalent in U . We say that f is in the class Σ for
such functions.

Some functions in the class Σ are given in [23]. In 1986, Brannan and Taha [9] introduced certain subclasses of the bi-univalent function
class similar to the familiar subclasses of starlike and convex functions of order. In 2012, Ali et al. [22] widen the result of Brannan and Taha
by using subordination. The estimates on the first two coefficients |a2| and |a3| in the Taylor Maclaurin series expansion (1) were found in
several recent studies (see [1]-[6], [17], [19]-[20]) and still an interest to many researchers.

Definition 2. For analytic functions f and g , f is said to be subordinate to g, denoted

f(z) ≺ g(z), (3)

if there is an analytic function w such that
w(0) = 0 , |w(z)| < 1 and f(z) = g (w(z))
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Definition 3. ([14, 15]) For q ∈ (0, 1), the q-derivative of function f ∈ A is defined by

∂qf(z) =
f(qz)− f(z)

(q − 1)z
, z 6= 0 (4)

and

∂qf(0) = f ′(0).

Thus we have

∂qf(z) = 1 +

∞∑
k=2

[k, q] akz
k−1 (5)

where [k, q] is given by

[k, q] =
1− qk

1− q , [0, q] = 0 (6)

and the q-fractional is defined by

[k, q]! =


k∏

m=1
[m, q] , k ∈ N

1, k = 0

. (7)

Also, the q−generalized Pochhammer symbol for p ≥ 0 is given by

[p, q]k =


k∏

m=1
[p +m− 1, q] , k ∈ N

1, k = 0

.

In addition, as q → 1, we have [k, q]→ k. If we choose the function g(z) = zk, then we have

∂qg(z) = ∂qz
k = [k, q] zk−1 = g′(z),

where g′ is the ordinary derivative.

Now, we point out the q-analogue of Ruscheweyh operator:

Definition 4. [10] Let f ∈ A. The q−analogue of Ruscheweyh operator is defined by

Rµq f(z) = z +

∞∑
k=2

[k + µ− 1, q]!

[k, q]! [k − 1, q]!
akz

k, (8)

where [k, q]! is given by equation (7).
From the definition we observe that if q → 1, we have

lim
q→1
Rµq f(z) = z + lim

q→1

∞∑
k=2

[k + µ− 1, q]!

[µ, q]! [k − 1, q]!
akz

k = z +

∞∑
k=2

[k + µ− 1]!

[µ]! [k − 1]!
akz

k = Rµf(z), (9)

whereRµq f(z) is Ruscheweyh differential operator defined in [29].
Some of special polynomials, for example Fibonacci polynomials, Lucas polynomials, Chebyshev polynomials, Pell polynomials, Lucas–

Lehmer polynomials, orthogonal polynomials and the other special polynomials, are of great importance in several papers from a theoretical
point of view (see, for example [7, 8, 12, 13, 18, 24–28]).

Definition 5. [16] Let calP(x) and calQ(x) are polynomials with real coefficients. The (calP,calQ) Lucas polynomialsLP,Q,m(x) are defined
by the reccurence relation

LP,Q,m(x) = P(x)LP,Q,m−1(x) +Q(x)LP,Q,m−2(x) (m ≥ 2), (10)

from which the first few Lucas polynomials can be found as

LP,Q,0(x) = 2,

LP,Q,1(x) = P(x),

LP,Q,2(x) = P2(x) + 2Q(x),

LP,Q,3(x) = P3(x) + 3P(x)Q(x) (11)
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In this article, we aim at introducing a new class of bi-univalent functions defined through the (P,Q)−Lucas polynomials of the second
kind.

Definition 6. [16] Let G{Lm(x)}(z) be the generating function of the (P,Q)−Lucas polynomial sequence LP,Q,m(x). Then

G{Lm(x)}(z) =

∞∑
m=0

LP,Q,m(x)zm =
2− P(x)z

1− P(x)z −Q(x)z2
. (12)

2 The class QΣ(q, µ;x)

We begin this section by defining the class calQΣ(q, µ;x) and by finding the estimates on the coefficients |a2| and |a3| for functions in this
class.

Definition 7. The function f is said to be in the class QΣ(q, µ;x) if the following conditions are satisfied:

z∂q(Rµq f(z))

Rµq f(z)
≺ G{LP,Q,m(x)}(z)− 1

and

w∂q(Rµq f(w))

Rµq f(w)
≺ G{LP,Q,m(x)}(w)− 1 (13)

whereRµq f(z) is Ruscheweyh differential operator defined in [29].

Theorem 1. Let f given by (1) be in the class QΣ(q, µ;x). Then,

|a2| ≤
|P(x)|

√
2 |P(x)|√

q [q + 1, q]
∣∣∣{2 [µ+ 2]q − [µ+ 1]q (3q + 1)

}
P2(x)− 4q [µ+ 1]q Q(x)

∣∣∣ (14)

and

|a3| ≤
P2(x)

(1 + δ)2m (1 + ζ)2
+

|P(x)|
(1 + 2δ)m (1 + 2ζ)

. (15)

Proof: Let f ∈ QΣ(q, µ;x). Then from Definition 7, for some analytic functions Ω,Λ such that Ω(0) = Λ(0) = 0 and |Ω(z)| < 1, |Λ(w)| <
1 for all z, w ∈ U, we can write

z∂q(Rµq f(z))

Rµq f(z)
= G{LP,Q,m(x)}(Ω(z))− 1 (16)

and
w∂q(Rµq f(w))

Rµq f(w)
= G{LP,Q,m(x)}(Λ(w))− 1 (17)

or equivalently

z∂q(Rµq f(z))

Rµq f(z)
= −1 + LP,Q,0(x) + LP,Q,1(x)Ω(z) + LP,Q,2(x)Ω2(z) + · · · (18)

and
w∂q(Rµq f(w))

Rµq f(w)
= −1 + LP,Q,0(x) + LP,Q,1(x)Λ(w) + LP,Q,2(x)Λ2(w) + · · · (19)

From the equalities (18)and (19), we obtain that

z∂q(Rµq f(z))

Rµq f(z)
= 1 + LP,Q,1(x)l1z +

[
LP,Q,1(x)l2 + LP,Q,2(x)l21

]
z2 + · · · (20)

and
w∂q(Rµq f(w))

Rµq f(w)
= 1 + LP,Q,1(x)r1w +

[
LP,Q,1(x)r2 + LP,Q,2(x)r2

1

]
w2 + · · · (21)

It is known before that if for z, w ∈ U,

Ω(z) =

∣∣∣∣∣
m∑
i=1

liz
i

∣∣∣∣∣ < 1

and
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Λ(w) =

∣∣∣∣∣
m∑
i=1

riw
i

∣∣∣∣∣ < 1

than

|li| < 1

and

Λ(w) = |ri| < 1

where i ∈ N. Also, we can write

z∂q(Rµq f(z))

Rµq f(z)
= 1 + q [µ+ 1]q a2z +

{
q [µ+ 1]q [µ+ 2]q a3 − q [µ+ 1]2q a

2
2

}
z2 + · · · ,

and
w∂q(Rµq f(w))

Rµq f(w)
= 1− q [µ+ 1]q a2w +

{
−q [µ+ 1]q [µ+ 2]q a3 + q [µ+ 1]q

(
2 [µ+ 2]q − [µ+ 1]q

)
a2

2

}
w2 + · · · .

Now, comparing the corresponding coefficients in (20)and (21), we get

q [µ+ 1]q a2 = LP,Q,1(x)l1, (22)

q [µ+ 1]q [µ+ 2]q a3 − q [µ+ 1]2q a
2
2 = LP,Q,1(x)l2 + LP,Q,2(x)l21, (23)

−q [µ+ 1]q a2 = LP,Q,1(x)r1, (24)

− q [µ+ 1]q [µ+ 2]q a3 + q [µ+ 1]q

(
2 [µ+ 2]q − [µ+ 1]q

)
a2

2

= LP,Q,1(x)r2 + LP,Q,2(x)r2
1. (25)

From (22)and (24)
l1 = −r1, (26)

2q2 [µ+ 1]2q a
2
2 = L2

P,Q,1(x)
(
l21 + r2

1

)
. (27)

Adding (23)and (25) we get

2qµ+2 [µ+ 1]q a
2
2 = LP,Q,1(x) (l2 + r2) + LP,Q,2(x)

(
l21 + r2

1

)
(28)

By using (27) in (28) we have[
2L2
P,Q,1(x)qµ+2 [µ+ 1]q − 2LP,Q,2(x)q2 [µ+ 1]2q

]
a2

2 = L3
P,Q,1(x) (l2 + r2) (29)

which gives

|a2| ≤
|P(x)|

√
|P(x)|√∣∣∣[qµ+2 [µ+ 1]q − q2 [µ+ 1]2q

]
P2(x)− q2 [µ+ 1]2q Q(x)

∣∣∣ .
Also, by subtructing (25) from (23) , we get(

2q [µ+ 1]q [µ+ 2]q

)(
a3 − a2

2

)
= LP,Q,1(x) (l2 − r2) . (30)

Then, by using (26) and (27) in (30), we have

a3 =
L2
P,Q,1(x)

(
l21 + r2

1

)
2q2 [µ+ 1]2q

+
LP,Q,1(x) (l2 − r2)

2q [µ+ 1]q [µ+ 2]q

and by the help of (9), we conclude that

|a3| ≤
P2(x)

q2 [µ+ 1]2q
+

|P(x)|
q [µ+ 1]q [µ+ 2]q

.

�

Remark 1. Choosing µ = 0 in Theorem 8, we obtain following corollary
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Corollary 1. Let f ∈ QΣ(q, 0;x) = QΣ(q;x). Then,

|a2| ≤
|P(x)|

√
|P(x)|√

q2 |−2Q(x)|
(31)

and

|a3| ≤
P2(x)

q2
+
|P(x)|
q(1 + q)

. (32)
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[8] Ş. Altinkaya, S. Yalçi n, On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class, Boletín de la Sociedad Matemática Mexicana, (2018), 1-9.
[9] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31 (1986), 70-77.
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