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1 Introduction

The theory of variable exponent Lebesgue spaces are started by Orlicz in 1931 and by Nakano in 1950 and 1951. However, the variable
exponent function space, due to the failure of translation invariance and related properties, is very difficult to analysis. Nowadays there is
an evident increase of investigations related to both the theory of the spaces Lq(.)(Rn) themselves and the operator theory in these spaces
(See[1-8]). This is caused by possible applications to models with non-standard local growth in elasticity theory, fluid mechanics, differential
equations and is based on recent breakthrough result on boundedness of the Hardy-Littlewood maximal operator in these spaces.

Let Sn−1 denote the unit sphere in Euclidean space Rn and Φ ∈ Lr(Sn−1)
(r ≥ 1) be homogeneous of degree zero on Rn. For 0 < β < n, the homogeneous fractional integral is defined by

TβΦf(x) =

∫
Rn

Φ(x− y)

|x− y|n−β
f(y)dy.

It is obvious that TβΦ just be the Riesz potential Iβ when Φ ≡ 1. Let E be a measurable set in Rn. We denote p−E = infx∈Ep(x) and
p+
E = supx∈Ep(x). Especially, we denote p− = p−(Rn) and p+ = p+(Rn). Let p(.) : Rn −→ (0,∞) be a measurable function with 0 <

p− ≤ p+ <∞ and ∆0(Rn) be the set of all these p(.). Let ∆(Rn) be the set of all measurable functions p(.) : Rn −→ [1,∞) such that
1 < p− ≤ p+ <∞.

The variable Lebesgue space Lp(.)(Rn) is defined as the set of all measurable function f for which the quantity
∫
Rn |δf(x)|p(x)dx is finite

for some δ > 0 and

‖f‖Lp(.)(Rn) = inf{λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)dx ≤ 1}.

As a special case of the theory of Nakano and Luxemburg, we see thatLp(.)(Rn) is a quasi-normed space. Especially, when p− ≥ 1,Lp(.)(Rn)
is a Banach space. We say that(Log-Holder condition) p(.) ∈ LH(Rn) if p(.) satisfies

|p(x)− p(y)| ≤ C

−log(|x− y|) , |x− y| ≤ 1

2

and

|p(x)− p(y)| ≤ C

log|x|+ e
, |y| ≤ |x|

LetBk = {x ∈ Rn : |x| ≤ 2k}, Ak = Bk\Bk−1, k ∈ Z Let f be a locally integrable function onRn. The n-dimensional Hardy operator
is defined by

Hf(x) =
1

|x|n

∫
|t|<|x|

f(t)dt, x ∈ Rn\{0}.

In 1995, Christ and Grafakos [2] obtained the result for the boundedness of H on Lp(Rn), (1 < p <∞) spaces, and they also found the
exact operator norms of H on this space. In 2007, Fu et al. [8] gave the central BMO estimates for commutators of n-dimensional fractional
and Hardy operators.

Now, we define the n-dimensional fractional Hardy-type operators of variable order β(x) as follows.
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Definition 1.1. Let f be a locally integrable function on Rn, 0 ≤ β(x) < n. The n-dimensional fractional Hardy-type operators of variable
order β(x) are defined by

Hβ(.)f(x) =
1

|x|n−β(x)

∫
|t|<|x|

f(t)dt

and

H∗β(.)f(x) =

∫
|t|≥|x|

f(t)

|t|n−β(x)
dt

where x ∈ Rn\{0}. Obviously, when β(x) = 0, Hβ(.) is just H and denote by H∗ = H∗β(.) = H∗0 . And when β(x) is constant, Hβ(.) and
H∗β(.) will become, Hβ and H∗β respectively.
We say that ω ∈ A(p, q) with 1 < p, q <∞, if there exists a constant C > 0, such that for any cube Q ∈ Rn,

(
1

|Q|

∫
Q
ω(x)qdx)

1
q (

1

|Q|

∫
Q
ω(x)−p

′
dx)

1
p′ ≤ C <∞.

Let ωr(ε) be the integral modulus of continuity of order r of Φ defined by

ωr(ε) = sup
|ρ|<ε

(

∫
Sn−1

|Φ(px′)− Φ(x′)|rdσ(x′))
1
r ,

where ρ is rotation in Rn and |ρ| = ‖ρ− I‖.

Lemma 1.2. [1] Υ denote a family of ordered pairs of non-negative measurable functions (f, g). Assume that for some p0 and q0 with
0 < p0 ≤ q0 <∞ and every weight ω ∈ A1,

(

∫
Rn

f(x)q0ω(x)dx)
1
q0 ≤ C0(

∫
Rn

g(x)p0ω(x)
p0
q0 dx)

1
p0 , (f, g) ∈ Υ

Given p(.) ∈ ∆0(Rn) such that p0 < p− ≤ p+ < p0q0\(q0 − p0), the function q(.) is defined by 1
p(x)
− 1
q(x)

= 1
p0
− 1
q0

for any x ∈ Rn.
If p(.) ∈ LH(Rn), then for any (f, g) ∈ Υ and f ∈ Lq(.)(Rn), we have

‖f‖Lq(.)(Rn) ≤ C‖g‖Lp(.)(Rn).

Lemma1.3.[7] Suppose that 0 < β < n, 1 ≤ r′ < p < n\β and 1
q = 1

p −
β
n . If Φ ∈ Lr(Sn−1) and ωr

′
∈ A( pr′ ,

q
r′ ), then there exists a

constant C independent of f such that

(

∫
Rn
|TβΦf(x)ω(x)|qdx)

1
q ≤ C(

∫
Rn
|f(x)ω(x)|pdx)

1
p .

2 Result and Discussion

Now let us declare and prove the theorem that gives boundedness of the fractional Hardy-Type integral.

Theorem 2.1. Let p(.), q(.) ∈ ∆(Rn), 0 < β < n, 1 < p− ≤ p+ < n
β and 1

q(x)
= 1

p(x)
− β
n for any x ∈ Rn. If p(.) ∈ LH(Rn), Φ ∈

Lr(Sn−1) and 1 ≤ r′ < p−, then

‖Hβ
Φ‖Lq(.)(Rn) ≤ C‖f‖Lp(.)(Rn)

Proof. Choose 0 < p0 ≤ q0 <∞ such that r′ < p0 < p− and 1
q0

= 1
p0
− β
n . For any weight functionW (x) = ω(x)q0 ∈ A1 and any cube

Q ∈ Rn we have
1

|Q|

∫
Q
ω(x)q0dx ≤ C inf

x∈Q
ω(x)q0

and

(
1

|Q|

∫
Q
ω(x)−r

′(
p0
r′ )′dx)

1

(
p0
r′ )
′ ≤ sup

x∈Q
ω(x)−r

′
= ( inf

x∈Q
ω(x))−r

′
.

These follow that

(
1

|Q|

∫
Q
ω(x)(r′(

q0
r′

))dx)
r′
q0 (

1

|Q|

∫
Q
ω(x)−r

′(
p0
r′ )′dx)

1

(
p0
r′ )
′ ≤ C.

Thus we see that ωr
′
∈ A(p0r′ ,

q0
r′ ). By Lemma 1.3, we obtain that

(

∫
Rn
|Hβ

Φf(x)ω(x|q0dx)
1
q0 ≤ C(

∫
Rn
|f(x)ω(x|p0dx)

1
p0 .

42 c© CPOST 2019



Finally, we choose the exponent function p(.) and q(.) such that p0 < p− ≤ p+ < p0q0
(q0−p0)

, p(.) ∈ LH(Rn) and for any x ∈ Rn

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0

By Lemma 1.2, we have

‖Hβ
Φ‖Lq(.)(Rn) ≤ C‖f‖Lp(.)(Rn).

This completes the proof of Theorem 2.1.

3 Conclusion

Under the given conditions, we obtained the boundary of the homogeneous fractional Hardy-type integral in variable exponential spaces. This
method can also be applied to different operators and integrals.

Acknowledgments

The author would like to thank the referee for careful reading of the paper and valuable suggestions.

4 References
[1] D. Cruz-Uribe, SFO, A. Fiorenza, J. Martell, C. Prez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31(2006), 239-264.
[2] F. Mamedov, Y. Zeren, L. Akin, Compactification of Weighted Hardy Operator in Variable Exponent Lebesgues Spaces, Asian Journal of Mathematics and Computer Research,

17(1) (2017), 38-47.
[3] L. Akin, A Characterization of Approximation of Hardy Operators in VLS , Celal Bayar University Journal of Science, 3(14)(2018), 333-336.
[4] L. Akin, Compactness of Fractional Maximal Operator in Weighted and Variable Exponent Spaces, Erzincan University, Journal of Science and Technology,12(1) (2019),

185-190.
[5] L. Akin,On Two Weight Criterions for The Hardy Littlewood Maximal Operator in BFS, Asian Journal of Science and Technology, 9(5) (2018), 8085-8089.
[6] M. Christ, L. Grafakos, Best constants for two non-convolution inequalities, Proc.Amer. Math. Soc. 123(6) (1995), 1687-1693.
[7] S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Scientific Press, 2011.
[8] Z. Fu, Z.Liu, S. Lu, M. Wang, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. 50(10) (2007), 1418-1426.

c© CPOST 2019 43


