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Abstract: In this research, we establish some properties for the generalized Sister Celine’s polynomials. We derive various fami-
lies of multilinear and multilateral generating functions for a family of generalized Sister Celine’s polynomials.
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1 Introduction

Sister Celine [1] has introduced the polynomial fn(x)

fn

 a1, ..., ap;
x

b1, ..., bq;

 =p+2 Fq+2

 −n, n+ 1, a1, ..., ap;
x

1, 12 , b1, ..., bq;

 , (1)

which is defined by the following generating function (see [2], p.290)

∞∑
n=0

fn

 a1, ..., ap;
x

b1, ..., bq;

 tn = (1− t)−1 p+2Fq+2

 a1, ..., ap;
−4xt
(1−t)2

b1, ..., bq;

 |t| < 1, (2)

where pFq denotes the generalized hypergeometric function [2].
For p = 1, q = 1, a1 = 1

2 , b1 = 1 the following integral representation of Sister Celine polynomials is given by

fn(
1

2
; 1;x) =

1√
π

∞∫
0

y−1/2e−yfn(−; 1;xy)dy.

Equation (1) with no a’s and no b’s denotes simply

fn(x) =2 F2

[
−n, n+ 1; 1;

1

2
;x

]
=

n∑
r=0

(−1)n(n)!xr

(r!)2( 12 )r(n− r)!
.

For the fn(x) the generating function (2) becomes

∞∑
n=0

fn(x)tn = (1− t)−1 exp

(
−4xt

(1− t)2

)
, |t| < 1. (3)

In the view of above results, we define the generalized Sister Celine polynomial in following manner [3]

f
(α,β)
n

 a1, ..., ap;
x

b1, ..., bq;

 (4)

=
(1 + α+ β)n

n!
p+2Fq+2

 −n, n+ α+ β + 1, a1, ..., ap;
x

1 + α, 12 , b1, ..., bq;

 .
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Equation (4) with no a’s and no b’s denotes simply [3]

f
(α,β)
n (x) =

(1 + α+ β)n
n!

2F2

 −n, n+ α+ β + 1;
x

1 + α, 12 ;

 (5)

=
(1 + α+ β)n

n!

n∑
r=0

(−n)r(n+ α+ β + 1)rx
r

(1 + α)r(
1
2 )rr!

.

Indeed [3]

f
(0,0)
n (x) = fn(x).

The following generating function can be easily obtained [3]

∞∑
n=0

f
(α,β)
n (x)tn = (1− t)−1−α−β 2F2

 1+α+β
2 , 2+α+β2 ;

−4xt
(1−t)2

1 + α, 12 ;



∞∑
n=0

(C)nf
(α,β)
n (x)tn = (1− t)−C−α−β 3F3

 C, 1+α+β2 , 2+α+β2 ;
−4xt
(1−t)2

1 + α, 1 + α+ β, 12 ;

 . (6)

Obviously for C = 1, α = β = 0, equation (6) reduces to the generating function (3), and (see, [3])

∞∑
n=0

f
(α,β)
n

 a1, ..., ap;
x

b1, ..., bq;

 tn = (1− t)−1−α−β

× p+2Fq+2

 a1, ..., ap,
1+α+β

2 , 2+α+β2 ;
−4xt
(1−t)2

b1, ..., bq, 1 + α, 12 ,

 .
The main object of this paper to study several properties of the Sister Celine polynomials fn(x) and the generalized Sister Celine’s poly-

nomials f (α,β)n (x). Various families of multilinear and multilateral generating functions, miscellaneous properties and also some special cases
for these polynomials are given.

2 Generating and Special Functions

In this section, we derive several families of bilinear and bilateral generating functions for the Sister Celine polynomials fn(x) and the
generalized Sister Celine’s polynomials f (α,β)n (x) generated by using the similar method considered in (see, [4] - [10]).

We begin by stating the following theorem.

Theorem 1. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables y1, ..., yr (r ∈ N) and of complex
order µ, let

Λµ,ψ(y1, ..., yr; ζ) :=

∞∑
k=0

akΩµ+ψk(y1, ..., yr)ζ
k, (ak 6= 0 , µ, ψ ∈ C)

and

Θµ,ψn,p (x; y1, ..., yr; ξ) :=

[n/p]∑
k=0

akfn−pk(x)Ωµ+ψk(y1, ..., yr)ξ
k.

Then, for p ∈ N, we have

∞∑
n=0

Θµ,ψn,p (x; y1, ..., yr; η) tn = (1− t)−1 exp

(
−4xt

(1− t)2

)
Λµ,ψ(y1, ..., yr; ηt

p), (7)

provided that each member of (7) exists.
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Proof: For convenience, let H denote the first member of the assertion (7). Then,

H =

∞∑
n=0

[n/p]∑
k=0

akfn−pk(x)Ωµ+ψk(y1, ..., yr)η
ktn.

Replacing n by n+ pk, we may write that

H =

∞∑
n=0

∞∑
k=0

ak fn(x)Ωµ+ψk(y1, ..., yr)η
ktn+pk

=

∞∑
n=0

fn(x)tn
∞∑
k=0

akΩµ+ψk(y1, ..., yr)(ηt
p)k

= (1− t)−1 exp

(
−4xt

(1− t)2

)
Λµ,ψ(y1, ..., yr; ηt

p),

which completes the proof. �

If we set r = 1 and

Ωµ+ψk(y1 ) = fµ+ψk(y1)

in Theorem 1 , where the Sister Celine’s polynomials fn(x), generated by [3]

∞∑
n=0

fn(x)tn = (1− t)−1 exp
(
−4xt
(1−t)2

)
, |t| < 1.

Thus, we have the following result which provides a class of bilinear generating functions for the Sister Celine’s polynomials fn(x), as follows:

Corollary 1. If

Λµ,ψ(y1;w) :=

∞∑
k=0

akfµ+ψk(y1)wk (ak 6= 0 , µ, ψ ∈ C) ,

then, we have

∞∑
n=0

[n/p]∑
k=0

akfn(x)fµ+ψk(y1)wktn (8)

= (1− t)−1 exp

(
−4xt

(1− t)2

)
Λµ,ψ(y1, ..., yr;w),

provided that each member of (8) exists.

Theorem 2. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables y1, ..., yr (r ∈ N) and of complex
order µ, let

Λµ,ψ(y1, ..., yr; ζ) :=

∞∑
k=0

akΩµ+ψk(y1, ..., yr)ζ
k (ak 6= 0 µ, ψ ∈ C),

and

Θµ,ψn,p (x; y1, ..., yr; ξ) :=

[n/p]∑
k=0

akf
(α,β)
n−pk(x)Ωµ+ψk(y1, ..., yr)ξ

k.

Then, for p ∈ N, we have

∞∑
n=0

Θµ,ψn,p (x; y1, ..., yr; η) tn (9)

= (1− t)−1−α−β2 F2

 1+α+β
2 , 2+α+β2 ;

−4xt
(1−t)2

1 + α, 12 ;

 Λµ,ψ(y1, ..., yr; ηt
p),

provided that each member of (9) exists.
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Proof: For convenience, let S denote the first member of the assertion (9). Then,

S =

∞∑
n=0

[n/p]∑
k=0

akf
(α,β)
n−pk(x)Ωµ+ψk(y1, ..., yr)η

ktn.

Replacing n by n+ pk, we may write that

S =

∞∑
n=0

∞∑
k=0

ak f
(α,β)
n (x)Ωµ+ψk(y1, ..., yr)η

ktn+pk

=

∞∑
n=0

f
(α,β)
n (x)tn

∞∑
k=0

akΩµ+ψk(y1, ..., yr)(ηt
p)k

= (1− t)−1−α−β 2F2

 1+α+β
2 , 2+α+β2 ;

−4xt
(1−t)2

1 + α, 12 ;

Λµ,ψ(y1, ..., yr; ηt
p),

which completes the proof. �

If we set

Ωµ+ψk(y1, ..., yr ) = Φ
(α)
µ+ψk(y1, ..., yr)

in Theorem 2 , where the multivariable polynomials Φ
(α)
µ+ψk(x1, ..., xr) , generated by [9]

∞∑
n=0

Φ
(α)
n (x1, ..., xr) t

n = (1− x1t)−αe(x2+...+xr) t,(
α ∈ C ; |t| <

{
|x1|−1

})
.

(10)

Thus, we have the following result which provides a class of bilateral generating functions for the multivariable polynomials Φ
(α)
µ+ψk(x1, ..., xr)

and the generalized Sister Celine’s polynomials as follows:

Corollary 2. If

Λµ,ψ(y1, ..., yr;w) :=

∞∑
k=0

akΦ
(α)
µ+ψk(y1, ..., yr)w

k (ak 6= 0 , µ, ψ ∈ C),

then, we have

∞∑
n=0

[n/p]∑
k=0

akf
(α,β)
n (x)Φ

(α)
µ+ψk(y1, ..., yr)w

ktn

= (1− t)−1−α−β 2F2

 1+α+β
2 , 2+α+β2 ;

−4xt
(1−t)2

1 + α, 12 ;

Λµ,ψ(y1, ..., yr;w), (11)

provided that each member of (11) exists.

Remark 1. Using the generating relation (10) for the multivariable polynomials Φ
(α)
n (x1, ..., xr) and getting ak = 1, µ = 0, ψ = 1 in

Corollary 2, we find that

∞∑
n=0

[n/p]∑
k=0

f
(α,β)
n (x)Φ

(α)
k (x1, ..., xr)w

ktn

= (1− t)−1−α−β 2F2

 1+α+β
2 , 2+α+β2 ;

−4xt
(1−t)2

1 + α, 12 ;

 (1− x1w)−αe(x2+...+xr)w,

(
αj ∈ C, |w| <

{
|x1|−1

}
, |t| < 1

)
.
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Theorem 3. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables y1, ..., yr (r ∈ N) and of complex
order µ, let

Λµ,ψ(y1, ..., yr; ζ) :=

∞∑
k=0

akΩµ+ψk(y1, ..., yr)ζ
k (ak 6= 0 , µ, ψ ∈ C),

and

Θµ,ψn,p (x; y1, ..., yr; ξ) :=

[n/p]∑
k=0

ak(C)n−pkf
(α,β)
n−pk(x)Ωµ+ψk(y1, ..., yr)ξ

k.

Then, for p ∈ N, we have

∞∑
n=0

Θµ,ψn,p (x; y1, ..., yr; η) tn (12)

= (1− t)−C−α−β 3F3

 C, 1+α+β2 , 2+α+β2 ;
−4xt
(1−t)2

1 + α, 1 + α+ β, 12 ;

 Λµ,ψ(y1, ..., yr; ηt
p),

provided that each member of (12) exists.

Proof: For convenience, let K denote the first member of the assertion (12). Then,

K =

∞∑
n=0

[n/p]∑
k=0

ak(C)n−pkf
(α,β)
n−pk(x)Ωµ+ψk(y1, ..., yr)η

ktn.

Replacing n by n+ pk, we may write that

K =

∞∑
n=0

∞∑
k=0

ak (C)nf
(α,β)
n (x)Ωµ+ψk(y1, ..., yr)η

ktn+pk

=

∞∑
n=0

(C)nf
(α,β)
n (x)tn

∞∑
k=0

akΩµ+ψk(y1, ..., yr)(ηt
p)k

= (1− t)−C−α−β 3F3

 C, 1+α+β2 , 2+α+β2 ;
−4xt
(1−t)2

1 + α, 1 + α+ β, 12 ;

Λµ,ψ(y1, ..., yr; ηt
p),

which completes the proof. �

Furthermore, for every suitable choice of the coefficients ak (k ∈ N0), if the multivariable functions Ωµ+ψk(y1, ..., yr), r ∈ N, are
expressed as an appropriate product of several simpler functions, the assertions of Theorem 1, Theorem 2 and Theorem 3 can be applied
in order to derive various families of multilinear and multilateral generating functions for the family of the Sister Celine’s polynomials and the
generalized Sister Celine’s polynomials given explicitly by (1) and (5).

3 Conclusion

In this paper, we establish some properties for the generalized Sister Celine’s polynomials. Various families of multilinear and multilateral
generating functions and their miscellaneous properties are obtained. With the method used here, it is possible to obtain bilinear and bilateral
generating functions for other polynomials.
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