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Abstract: In this research, we establish some properties for the Shively’s Pseudo-Laguerre polynomials. We derive various fami-
lies of multilinear and multilateral generating functions for a family of Shively’s Pseudo-Laguerre polynomials.
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1 Introduction

Shivley (see, for example, [1]; see also [[2], p. 298, Eq. 152 (1)];[[3], p. 127, Eq. (47)] and [[4], p. 1758, Eq. (3)]) has defined the polynomial
Rn(a, x) by

Rn(a, x) :=
(a+ n)n

n!
1F1(−n; a+ n;x) (1)

in which n is any non-negative integer, and a is independent of n.
The pseudo-Laguerre polynomial Rn(a, x) may also be written as

Rn(a, x) =
(a)2n
n!(a)n

1F1(−n; a+ n;x)

which are related to the proper simple Laguerre polynomial

Ln(x) = 1F1(−n; 1;x)

by

Rn(a, x) =
1

(a− 1)n

n∑
k=0

(a− 1)n−k
k!

Ln−k(x).

Toscano [5] had already shown that

∞∑
n=0

Rn(a, x)tn = (1− 4t)−1/2
(

2

1 +
√

1− 4t

)a−1
exp

(
−4xt(

1 +
√

1− 4t
)2
)
. (2)

Shively obtained Toscano’s other generating relation

∞∑
n=0

Rn(a, x)(
1
2 + 1

2a
)
n

tn = e2t 0F1(−;
1

2
+

1

2
a; t2 − xt),

and extended Toscano’s (2) to

∞∑
n=0

Sn(x)tn = (1− 4t)−1/2
(

2

1 +
√

1− 4t

)a−1
p

Fq

 α1, ..., αp;
−4xt

(1+
√
1−4t)2

β1, ..., βq;

 ,
in which

Sn(x) =
(a)2n
n!(a)n

p+1Fq+1

 −n, α1, ..., αp;
x

a+ n, β1, ..., βq;

 .
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For the particular choice p = 0, q = 1, b1 = 1, a = 1 the Sn(x) becomes

σn(x) =
(2n)!

(n!)2
1F2(−n; 1 + n, 1;x)

for which Shively has the additional generating relation [6]

∞∑
n=0

σn(x)

(2n)!
tn = 0F1

(
−; 1;

t−
√

4xt+ t2

2

)
0F1

(
−; 1;

t+
√

4xt− t2
2

)
.

The Rn(a, x) of (1) is of Sheffer A-type zero, as pointedout by Shively. He obtains many other properties of Rn(a, x). Here pFq denotes,
as usual, a generalized hypergeometric function with p numerator and q denominator parameters and as usual, (λ)ν denotes the Pochhammer
symbol or the shifted factorial, since

(1)n = n! (n ∈ N0),

which is defined (for λ, ν ∈ C and in terms of Gamma function) by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{
1, (ν = 0; λ ∈ C\{0})
λ(λ+ 1)...(λ+ n− 1), (ν = n ∈ N; λ ∈ C) ,

it getting understood conventionally that (0)0 := 1.
The main object of this paper is to study several properties of the pseudo-Laguerre polynomialRn(a, x). Various families of multilinear and

multilateral generating functions, miscellaneous properties and also some special cases for these polynomials are given.

2 Generating functions

In this section, we derive several families of bilinear and bilateral generating functions for the pseudo-Laguerre polynomialRn(a, x) generated
by using the similar method considered in (see, [7] - [12]).

We begin by stating the following theorem.

Theorem 1. Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables y1, ..., yr (r ∈ N) and of complex
order µ, let

Λµ,ψ(y1, ..., yr; ζ) :=

∞∑
k=0

akΩµ+ψk(y1, ..., yr)ζ
k (ak 6= 0 , µ, ψ ∈ C),

and

Θµ,ψn,p (a, x; y1, ..., yr; ξ) :=

[n/p]∑
k=0

akRn−pk(a, x)Ωµ+ψk(y1, ..., yr)ξ
k.

Then, for p ∈ N, we have

∞∑
n=0

Θµ,ψn,p (a, x; y1, ..., yr; η) tn = (1− 4t)−1/2
(

2

1 +
√

1− 4t

)a−1
exp

(
−4xt(

1 +
√

1− 4t
)2
)

Λµ,ψ(y1, ..., yr; η) (3)

provided that each member of (3) exists.

Proof: For convenience, let S denote the first member of the assertion (3). Then,

S =

∞∑
n=0

[n/p]∑
k=0

akRn−pk(a, x)Ωµ+ψk(y1, ..., yr)η
ktn.

Replacing n by n+ pk, we may write that

S =

∞∑
n=0

∞∑
k=0

ak Rn(a, x)yn(x, α− n, β)Ωµ+ψk(y1, ..., yr)η
ktn

=

∞∑
n=0

Rn(a, x)tn
∞∑
k=0

akΩµ+ψk(y1, ..., yr)η
k

= (1− 4t)−1/2
(

2

1 +
√

1− 4t

)a−1
exp

(
−4xt(

1 +
√

1− 4t
)2
)

Λµ,ψ(y1, ..., yr; η),

which completes the proof. �
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If we set
Ωµ+ψk(y1, ..., yr ) = Φ

(α)
µ+ψk(y1, ..., yr)

in Theorem 1 , where the multivariable polynomials Φ
(α)
µ+ψk(x1, ..., xr) , generated by [10]

∞∑
n=0

Φ
(α)
n (x1, ..., xr) t

n = (1− x1t)−αe(x2+...+xr) t,(
α ∈ C ; |t| <

{
|x1|−1

})
.

(4)

Thus, we have the following result which provides a class of bilateral generating functions for the multivariable polynomials Φ
(α)
µ+ψk(x1, ..., xr)

and the pseudo-Laguerre polynomial Rn(a, x) as follows:

Corollary 1. If

Λµ,ψ(y1, ..., yr;w) :=

∞∑
k=0

akΦ
(α)
µ+ψk(y1, ..., yr)w

k (ak 6= 0µ, ψ ∈ C),

then, we have

∞∑
n=0

[n/p]∑
k=0

akRn−pk (a, x) Φ
(α)
µ+ψk(y1, ..., yr)w

ktn (5)

= (1− 4t)−1/2
(

2

1 +
√

1− 4t

)a−1
exp

(
−4xt(

1 +
√

1− 4t
)2
)

Λµ,ψ(y1, ..., yr; η),

provided that each member of (5) exists.

Remark 1. Using the generating relation (4) for the multivariable polynomials Φ
(α)
n (x1, ..., xr) and getting ak = 1, µ = 0, ψ = 1 in

Corollary 1 , we find that

∞∑
n=0

[n/p]∑
k=0

Rn−pk (a, x) Φ
(α)
k (x1, ..., xr)w

ktn

= (1− 4t)−1/2
(

2

1 +
√

1− 4t

)a−1
exp

(
−4xt(

1 +
√

1− 4t
)2
)

× (1− x1w)−αe(x2+...+xr)w,(
αj ∈ C, |w| <

{
|x1|−1

}
, |t| < 1

4

)
.

3 Conclusion

In this paper, we esteblish some properties for the Shively’s Pseudo-Laguerre polynomials. Various families of multilinear and multilateral
generating functions and their miscellaneous properties are obtained. With the method used here, it is possible to obtain bilinear and bilateral
generating functions for other polynomials.
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