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Abstract: In the present paper, the Bitsadze-Samarskii type nonlocal boundary value problem with the integral condition for an
abstract elliptic differential equation in a Hilbert space is studied. Theorem on well-posedness of this problem in Hölder spaces
with a weight is established. The nonlocal boundary value problem for multidimensional elliptic equations with the Dirichlet condi-
tion is studied. The first order of accuracy difference scheme for the approximate solution of the Bitsadze-Samarskii type nonlocal
boundary value problem is investigated. Theorem on well-posedness of this difference scheme in difference analogue of Hölder
spaces with a weight is established.
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1 Introduction

The simply nonlocal boundary value problem was presented and investigated for the first time by A.V. Bitsadze and A.A. Samarskii in the paper
[1] . Further in papers [2–13], the Bitsadze-Samarskii type nonlocal boundary value problem and its generalizations for various differential and
difference equations of elliptic equations were investigated by many scientists. Coercivity inequalities in Hölder norms with a weight for the
solutions of an abstract differential equation of elliptic type were established for the first Sobolevskii in the paper [12]. Further, in papers [14–
25] coercive inequalities in Hölder norms with a weight were obtained for the solutions of various local and nonlocal boundary-value problems
for differential and difference equations of elliptic type. In the present paper, we consider the Bitsadze-Samarskii type nonlocal boundary value
problem with the integral condition 

−d
2u(t)
dt2

+Au(t) = f(t), 0 < t < 1,

u(0) = ϕ, u(1) =
1∫
0

ρ(λ)u(λ)dλ+ ψ
(1)

for the differential equation of elliptic type in a Hilbert space H with the self-adjoint positive definite operator A with a closed domain
D (A) ⊂ H. Here, let f (t) be a given abstract continuous function defined on [0, 1] with values in H, ϕ, and ψ are elements of D (A) and
ρ (t) is a scalar continous function. A function u(t) is called a solution of problem (1) if the following conditions are satisfied:

i. u(t) is twice continuously differentiable on the segment [0, 1].
ii. The element u(t) belongs to D(A) for all t ∈ [0, 1] , and the function Au(t) is continuous on the segment [0, 1] .
iii. u(t) satisfies the equation and nonlocal boundary conditions (1).

A solution of problem (1) defined in this manner will from now on be referred to as a solution of problem (1) in the space C ([0, 1] , H) . Here,
C ([0, 1] , H) stands for the Banach space of all continuous functions ϕ(t) defined on [0, 1] with values in H with the norm

‖ϕ‖C([0,1],H) = max
0≤t≤1

‖ϕ(t)‖H .

We say that the problem (1) is well-posed in C ([0, 1] , H), if there exists the unique solution u(t) in C ([0, 1] , H) of problem (1) for any
f(t) ∈ C ([0, 1] , H) and the following coercivity inequality is satisfied:

∥∥u′′∥∥
C([0,1],H)

+ ‖Au‖C([0,1],H) ≤Mc

[
‖f‖

C([0,1],H)
+ ‖Aϕ‖

H
+ ‖Aψ‖

H

]
,

where Mc does not depend on f(t) and ϕ, ψ. Unfortunately, the problem (1) is ill-posed in the space C ([0, 1] , H).
In this paper, positive constants, which can differ in time (hence: not a subject of precision), will be indicated with M . On the other hand
M(α;β; ...) is used to focus on the fact that the constant depends only on α;β;....
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Let us denote by Cα01 ([0, 1] , H) , 0 < α < 1, the Banach spaces obtained by completion of the set of all smooth H−values functions ϕ(t)
on [0, 1] in the norms

‖ϕ‖Cα01([0,1],H) = ‖ϕ‖C([0,1],H) + sup
0≤t<t+τ≤1

(1− t)α (t+ τ)α ‖ϕ (t+ τ)− ϕ (t)‖H
τα

.

We say that the problem (1) is well-posed in Cα01 ([0, 1] , H), if there exists a unique solution u(t) in Cα01 ([0, 1] , H) of problem (1) for any
f(t) ∈ Cα01 ([0, 1] , H) and the following coercivity inequality is satisfied:∥∥u′′∥∥

Cα01([0,1],H)
+ ‖Au‖Cα01([0,1],H) ≤M(δ, α)

[
‖Aϕ‖H + ‖Aψ‖H + ‖ f ‖Cα01([0,1],H)

]
.

We will study the problem (1) under the assumption:

1∫
0

|ρ(λ)| dλ < 1. (2)

In the present paper, the well-posedness of the nonlocal boundary value problem (1) in Cα01 ([0, 1] , H) spaces is established. The first order
of accuracy difference scheme for the approximate solution of this problem (1) is presented. The coercive inequalities for the solution of this
difference scheme in difference analogue ofCα01 ([0, 1] , H) spaces are established. In applications, difference scheme for approximate nonlocal
boundary value problem for elliptic equation is investigated.

2 The Bitsadze-Samarskii type nonlocal boundary value problem

In this section, let B = A
1
2 . Then, it is clear that B is a self-adjoint positive definite operator and B ≥ δI. The following lemmas will be

needed below.

Lemma 1. [8] The following estimates hold: ∥∥Bα exp(−tB)
∥∥
H−→H ≤ t

−α, 0 ≤ α ≤ 1, (3)

∥∥∥(I − e−2B)−1
∥∥∥
H−→H

≤M. (4)

Lemma 2. [17] For any 0 ≤ t < t+ τ ≤ 1 and 0 ≤ α ≤ 1 one has the inequality

‖exp(−tB)− exp (−(t+ τ)B)‖H→H ≤M
τα

(τ + t)α
. (5)

Lemma 3. Let

D =

1∫
0

ρ(λ)(I − e−2B)−1(e−(1−λ)B − e−(1+λ)B)dλ.

Then, under the assumption (1), the operator I −D has an inverse

P = (I −D)−1

and the following estimate is satisfied:

‖P‖H→H ≤M (δ) . (6)

It is clear that (see [17]) the boundary value problem for elliptic equation

−d
2u(t)

dt2
+Au(t) = f(t), 0 < t < 1, u(0) = u0, u(1) = u1 (7)

has a unique solution

u(t) = (I − e−2B)−1
{

(e−tB − e−(2−t)B)ϕ+ (e−(1−t)B − e−(1+t)B)u(1)− (e−(1−t)B − e−(1+t)B) (8)

×(2B)−1
∫1

0
(e−(1−s)B − e−(1+s)B)f(s)ds}+ (2B)−1

∫1

0
(e−|t−s|B − e−(t+s)B)f(s)ds,

u(1) = P

ψ +

1∫
0

ρ(λ)(I − e−2B)−1
{(
e−λB − e−(2−λ)B

)
ϕ (9)
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−(e−(1−λ)B − e−(1+λ)B) (2B)−1

1∫
0

(e−(1−s)B − e−(1+s)B)f(s)ds

 dλ

+

1∫
0

ρ(λ) (2B)−1

λ∫
0

e−(λ−s)Bf(s)ds+

1∫
λ

e−(s−λ)Bf(s)ds−
1∫
0

e−(λ+s)Bf(s)ds

 dλ

 ,
where

P =

I − 1∫
0

ρ(λ)
(
I − e−2B

)−1 (
e−(1−λ)B − e−(1+λ)B

)
dλ

−1

.

Theorem 1. Suppose ϕ,ψ ∈ D(A), f (t) ∈ Cα01 ([0, 1] , H) (0 < α < 1) . Then, for the solution u (t) of the boundary value problem (1) the
coercivity inequality

∥∥u′′∥∥
Cα01([0,1],H)

+ ‖Au‖Cα01([0,1],H) ≤M(δ)

[
‖Aϕ‖H + ‖Aψ‖H +

1

α (1− α)
‖ f ‖Cα01([0,1],H)

]
holds.

Proof: By [17], we had the following coercivity inequality

‖u′′‖Cα01([0,1],H) + ‖Au‖Cα01([0,1],H) ≤
M(δ)

α(1− α)
‖f‖Cα01([0,1],H) +M(δ)

{
‖Au(0)‖H + ‖Au(1)‖H

}
(10)

for the solution of boundary value problem (7). Then the proof of Theorem 1 is based on coercivity inequality (10) and on the following estimate

‖Au (1)‖H ≤
M(δ)

α(1− α)
‖f‖Cα01([0,1],H) +M(δ)

{
‖Aϕ‖H + ‖Aψ‖H

}
. (11)

Therefore, we will prove (11). First, applying formula (9), we can write

Au(1) = P

1∫
0

ρ(λ)(I − e−2B)−1
{(
e−λB − e−(2−λ)B

)
Aϕ+

(
I − e−λB

)(
I − e−(1−λ)B

)

×
(
I − e−B

)
f(λ) +

B

2

(
I − e−2(1−λ)B

) λ∫
0

(
e−(λ−s)B

(
I − e−2sB

))
(f(s)− f(λ))ds

+
B

2

(
I − e−2λB

) 1∫
λ

(
e−(s−λ)B

(
I − e−2(1−s)B

))
(f(s)− f(λ))ds

 dλ+Aψ


= J1 + J2 + J3 + J4,

where

J1 = P

1∫
0

ρ(λ)(I − e−2B)−1(e−λB − e−(2−λ)B)Aϕdλ+Aψ

 ,

J2 = P

1∫
0

ρ(λ)(I − e−2B)−1
(
I − e−λB

)(
I − e−(1−λ)B

)(
I − e−B

)
f(λ)dλ

 ,

J3 =
1

2
P

1∫
0

ρ(λ)(I − e−2B)−1

λ∫
0

(
Be−(λ−s)B

(
I − e−2(1−λ)B

)(
I − e−2sB

))
(f(s)− f(λ))dsdλ,

J4 =
1

2
P

1∫
0

ρ(λ)B
(
I − e−2B

)−1
1∫
λ

(
e−(s−λ)B

(
I − e−2(1−s)B

)(
I − e−2λB

))
(f(s)− f(λ))dsdλ.

Let us estimate Jk for k = 1, · · ·, 4, separately. First, we estimate J1. Using estimates (4), (5) and (6), we obtain

‖J1‖H ≤ ‖P‖H→H

1∫
0

|ρ(λ)|
∥∥∥∥(I − e−2B

)−1
∥∥∥∥
H→H

∥∥∥e−λB − e−(2−λ)B
∥∥∥
H→H

‖Aϕ‖H dλ+ ‖Aψ‖H
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≤M(δ)

1∫
0

|ρ(λ)| dλ ‖Aϕ‖H + ‖Aψ‖H

 .
Thus, from condition (2) it follows that

‖J1‖H ≤M1(δ)
[
‖Aϕ‖H + ‖Aψ‖H

]
.

Let us estimate J2.

‖J2‖H ≤ ‖P‖H→H

1∫
0

|ρ(λ)|
∥∥∥∥(I − e−2B

)−1
∥∥∥∥
H→H

∥∥∥I − e−λB∥∥∥
H→H

×
∥∥∥I − e−(1−λ)B

∥∥∥
H→H

∥∥∥I − e−B∥∥∥
H→H

‖f(λ)‖H dλ.

Further, using estimates (3), (5), (6) and the definition of the norm of the space Cα01([0, 1] , H), we get

‖J2‖H ≤M2(δ)

1∫
0

|ρ(λ)| dλ max
0≤t≤1

‖f(t)‖H .

Thus, from (2) it follows that
‖J2‖H ≤M2(δ) ‖f(t)‖C([0,1],H) ≤M2(δ) ‖f‖Cα01([0,1],H) .

To estimate J3, we will put J3 = J3,1 + J3,2, where

J3,1 = P

1
2∫
0

ρ(λ)(I − e−2B)−1 1

2

λ∫
0

(
Be−(λ−s)B

(
I − e−2(1−λ)B

)(
I − e−2sB

))
(f(s)− f(λ))dsdλ,

J3,2 = P

1∫
1
2

ρ(λ)(I − e−2B)−1 1

2

λ∫
0

(
Be−(λ−s)B

(
I − e−2(1−λ)B

)(
I − e−2sB

))
(f(s)− f(λ))dsdλ.

First, we will estimate J3,1. Applying estimates (3), (5), (6) and the definition of the norm of the space Cα01([0, 1] , H), we obtain

‖J3,1‖H ≤M(δ)

1
2∫
0

|ρ(λ)|
λ∫
0

ds

(λ− s)1−α λα (1− s)α
dλ ‖f‖Cα01([0,1],H) ≤

M(δ)

α (1− α)

1
2∫
0

|ρ(λ)| dλ ‖f‖Cα01([0,1],H) .

Second, we will estimate J3,2. For J3,2, using estimates (3), (5), (6) and the definition of the norm of the space Cα01([0, 1] , H), we get

‖J3,2‖H ≤M(δ)

1∫
1
2

|ρ(λ)|
λ∫
0

(2 (1− λ))α ds

(λ− s) (2− λ− s)α λα (1− s)α
dλ ‖f‖Cα01([0,1],H)

≤ M(δ)2α−1

α

1∫
1
2

|ρ(λ)|
(1− λ)α

dλ ‖f‖Cα01([0,1],H) ≤
M(δ)22α−2

α (1− α)

1∫
1
2

|ρ(λ)| dλ ‖f‖Cα01([0,1],H) .

Applying estimates for ‖J3,1‖H and ‖J3,2‖H , we get

‖J3‖H ≤
M3(δ)

α(1− α)

1∫
0

|ρ(λ)| dλ ‖f‖Cα01([0,1],H) .

Using condition (2), we get

‖J3‖H ≤
M4 (δ)

α(1− α)
‖f‖Cα01([0,1],H) .

Let us estimate J4. We will put J4 = J4,1 + J4,2, where

J4,1 = P

1
2∫
0

ρ(λ)
1

2

(
I − e−2B

)−1
1∫
λ

(
Be−(s−λ)B

(
I − e−2(1−s)B

)(
I − e−2λB

))
(f(s)− f(λ))dsdλ,

J4,2 = P

1∫
1
2

ρ(λ)
1

2

(
I − e−2B

)−1
1∫
λ

(
Be−(s−λ)B

(
I − e−2(1−s)B

)(
I − e−2λB

))
(f(s)− f(λ))dsdλ.
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The estimates (3), (5), (6) and the definition of the norm of the space Cα01([0, 1] , H) give

‖J4,1‖H ≤M(δ)

1
2∫
0

|ρ(λ)|
1∫
λ

(1− s)α ds
(1− λ)α sα (s− λ)1−α (2− s− λ)α

dλ ‖f‖Cα01([0,1],H)

≤M(δ)

1
2∫
0

|ρ(λ)|
λα (1− λ)α

1∫
λ

ds

(s− λ)1−α dλ ‖f‖Cα01([0,1],H) ≤
M5(δ)

α (1− α)

1
2∫
0

|ρ(λ)| dλ ‖f‖Cα01([0,1],H) .

Finally, we estimate J4,2. For J4,2, applying estimates (3), (5), (6) and the definition of the norm of the space Cα01([0, 1] , H), we obtain

‖J4,2‖H ≤M(δ)

1∫
1
2

|ρ(λ)|
λαα

dλ ‖f‖Cα01([0,1],H) ≤
M(δ)2α−2

α (1− α)

1∫
1
2

|ρ(λ)| dλ ‖f‖Cα01([0,1],H) .

Applying estimates for ‖J4,1‖H and ‖J4,2‖H , we get

‖J4‖H ≤
M6(δ)

α(1− α)

1∫
0

|ρ(λ)| dλ ‖f‖Cα01([0,1],H) .

So, from (2) it follows that

‖J4‖H ≤
M7(δ)

α(1− α)
‖f‖Cα01([0,1],H) .

Combining estimates for ‖Jk‖H , k = 1, · · ·, 4, we obtain estimate (11). Theorem 1 is proved. �

Now, we consider the application of Theorem 1.
Let Ω is the unit open cube in Rn {x = (x1, · · ·, xn) : 0 < xk < 1, 1 ≤ k ≤ n} with boundary S, Ω = Ω ∪ S. In [0, 1]× Ω, the Dirichlet-

Bitsadze-Samarskii type mixed boundary value problem for the multidimensional elliptic equation
−utt −

n∑
r=1

(ar(x)uxr )xr = f(t, x), 0 < t < 1, x = (x1, . . . , xn) ∈ Ω,

u(0, x) = ϕ(x), u(1, x) =
1∫
0

ρ(λ)u(λ, x)dλ+ ψ (x) , x ∈ Ω,

u(t, x) |xεS= 0, x ∈ Ω, 0 ≤ t ≤ 1

(12)

is considered. We will study the problem (12) under the assumption (2). The problem has an unique smooth solution u(t, x) for the smooth
f(t, x) (t ∈ (0, 1), x ∈ Ω), ϕ(x) and ψ(x) functions, and ar(x) ≥ a > 0 (x ∈ Ω) . We introduce the Hilbert space L2(Ω̄) of all square-
integrable functions f defined on Ω, equipped with the norm

‖ f ‖L2(Ω)=


∫
· · ·

∫
x∈Ω

|f(x)|2 dx1 · · · dxn


1
2

.

We can reduce the Dirichlet-Bitsadze-Samarskii type mixed boundary value problem (12) to the nonlocal boundary problem (1) in Hilbert
space H = L2(Ω̄) with a self -adjoint positive definite operator A defined by (12) .

Theorem 2. The solution of the nonlocal boundary value problem (12) satisfies the coercivity inequality

‖utt‖Cα01([0,1],L2(Ω)) + ‖u‖Cα01([0,1],W 2
2 (Ω))

≤ M (δ)

α(1− α)
‖ f ‖Cα01([0,1],L2(Ω)) +M (δ)

[
‖ ϕ ‖W 2

2 (Ω) + ‖ ψ ‖W 2
2 (Ω)

]
.

Here, the Sobolev space W 2
2 (Ω) is defined as the set of all functions f defined on Ω̄ such that f and all second order partial derivative

functions fxr ,xr , r = 1, ...n is both locally integrable in L2(Ω), equipped with the norm

‖ f ‖W 2
2 (Ω)=‖ f ‖L2(Ω) +

∫
· · ·

∫
x∈Ω

n∑
r=1

|fxr ,xr |
2 dx1 · · · dxn


1/2

.
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The proof of Theorem 2 is based on Theorem 1, on the symmetry properties of the space operator A generated by the problem (12), and the
following theorem on the coercivity inequality for the solution of the elliptic differential problem in L2(Ω).

Theorem 3. For the solution of the elliptic differential problem

n∑
r=1

(ar(x)uxr )xr = ω(x), x ∈ Ω,

u(x) = 0, x ∈ S,

the following coercivity inequality holds [22]:

‖u‖W 2
2 (Ω) ≤M ||ω||L2(Ω).

.

3 The first order of accuracy difference scheme

The nonlocal boundary value problem (1) is associated with the corresponding first order of accuracy difference scheme


− 1
τ2 [uk+1 − 2uk + uk−1] +Auk = ϕk,

ϕk = f(tk), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

u0 = ϕ, uN =
N∑
j=1

ρ
(
tj
)
ujτ + ψ.

(13)

A study of discreatization over time of the nonlocal boundary value problem also permits one to include general difference schemes in
applications, if the differential operator in space variables, A is replaced by the difference operators Ah that act in the Hilbert spaces Hh
and are uniformly self-adjoint positive definite in h for 0 ≤ h ≤ h0. It is known that for a self-adjoint positive definite operator A it follows
that B = 1

2 (τA+
√

4A+ τ2A2) is self-adjoint positive definite and R = (I + τB)−1 which defined on the whole space H is a bounded
operator. Here, I is the identity operator. We will study the problem (13) under the assumption:

N∑
j=1

∣∣ρ (tj)∣∣ τ < 1. (14)

Now, let us give some lemmas and theorem that will be needed below.

Lemma 4. The estimates hold [17]


∥∥∥∥(I −R2N

)−1
∥∥∥∥
H→H

≤M(δ),

‖Rk‖H→H ≤M(δ)(1 + δτ)−k, kτ‖BRk‖H→H ≤M(δ), k ≥ 1, δ > 0,

‖Bβ
(
Rk+r −Rk

)
‖H→H ≤M(δ)

(rτ)α

(kτ)α+β , 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1.

(15)

Lemma 5. Suppose A is the positive operator in Hilbert space H . Then, the following estimate holds [17]:

N−1∑
j=1

∥∥∥(I −R)Rj−1
∥∥∥
H→H

≤M min

(
ln(

1

τ
), 1 + τ

∣∣ln ‖B‖H→H ∣∣) . (16)

Lemma 3.3. The operator

I −
N∑
j=1

ρ
(
tj
)
τ
(
I −R2N

)−1 (
RN−j −RN+j

)
has an inverse

Kτ =

I − N∑
j=1

ρ
(
tj
)
τ
(
I −R2N

)−1 (
RN−j −RN+j

)−1

and the following estimate is satisfied under the assumption (14)

‖Kτ‖H−→H ≤M(δ)τ. (17)
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Theorem 4. For any ϕk, 1 ≤ k ≤ N − 1, the solution of the problem (13) exists and the following formula holds for k = 1, · · ·, N − 1,

uk = (I −R2N )−1
{(
Rk −R2N−k

)
ϕ+

(
RN−k −RN+k

)
uN

−
(
RN−k −RN+k

)
(I + τB)(2I + τB)−1B−1

N−1∑
i=1

(
RN−1−i −RN−1+i

)
ϕiτ

}
(18)

+(I + τB)(2I + τB)−1B−1
N−1∑
i=1

(
R|k−i|−1 −Rk+i−1

)
ϕiτ ,

uN = Kτ

 N∑
j=1

ρ
(
tj
)
τ
(
I −R2N

)−1 {(
Rj −R2N−j

)
ϕ−

(
RN−j −RN+j

)

×(I + τB)(2I + τB)−1
N−1∑
i=1

B−1
(
RN−1−i −RN−1+i

)
ϕiτ

}
+ (2I + τB)−1B−1

×(I + τB)

 j∑
i=1

Rj−i−1ϕiτ +

N−1∑
i=j+1

Ri−j−1ϕiτ −
N−1∑
i=1

Rj+i−1ϕiτ

+ ψ


for k = N.
Let F ([0, 1]τ , H) be the linear space of the mesh functions ϕτ = {ϕk}N−1

1 with values in the Hilbert space H . We denote by C([0, 1]τ , H)
and Cα01([0, 1]τ , H), 0 < α < 1, Banach spaces with the norms∥∥ϕτ∥∥

C([0,1]τ ,H)
= max

1≤k≤N−1
‖ϕk‖H ,

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

=
∥∥ϕτ∥∥

C([0,1]τ ,H)
+ sup

1≤k≤k+r≤N−1

((N − k)τ)α((k + r)τ)α

(rτ)α
‖ϕk+r − ϕk‖H .

Theorem 5. The solution of the difference problem (13) in C([0, 1]τ , H) under the assumption (14) obeys the almost coercive inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖C([0,1]τ ,H) + ‖ {Auk}N1 ‖C([0,1]τ ,H) (19)

≤M(δ)

[
min

{
ln

1

τ
, 1 +

∣∣ln ‖ B ‖H→H ∣∣} ‖ ϕτ ‖C([0,1]τ ,H) + ‖Aϕ‖H + ‖Aψ‖H

]
.

Proof: By [17],

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖C([0,1]τ ,H) + ‖ {Auk}N1 ‖C([0,1]τ ,H) (20)

≤M(δ)

[
min

{
ln

1

τ
, 1 +

∣∣ln ‖ B ‖H→H ∣∣} ‖ ϕτ ‖C([0,1]τ ,H) + ‖Aϕ‖H + ‖AuN‖H

]
was proved for the solution of the boundary value problem −

1
τ2 [uk+1 − 2uk + uk−1] +Auk = ϕk, 1 ≤ k ≤ N − 1, Nτ = 1,

u0 = ϕ, uN are given.
(21)

Using the estimates (15), (17), and the formula (18), we obtain

‖ AuN ‖H≤M(δ)

(
min

{
ln

1

τ
, 1 +

∣∣ln ‖ B ‖H→H ∣∣} ‖ ϕτ ‖C([0,1]τ ,H) + ‖Aϕ‖H + ||AuN ||H

)
(22)

for the solution of difference scheme (13). Applying formula (18) and A = B2R, we get

AuN = J1 + J2,

where

J1 = Kτ

 N∑
j=1

ρ
(
tj
)
τ(I −R2N )−1

(
Rj −R2N−j

)
Aϕ+Aψ

 , (23)
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J2 = Kτ

N∑
j=1

ρ
(
tj
)
τ
{

(I −R2N )−1
((
−RN−j +RN+j

)
(I + τB) (24)

×(2I + τB)−1B

N−1∑
i=1

(
RN−i −RN+i

)
ϕiτ

)
+ (I + τB)(2I + τB)−1B

×

j−1∑
i=1

Rj−iϕiτ +

N−1∑
i=j

Ri−jϕiτ −
N−1∑
i=1

Rj+iϕiτ

 .

To this end, it suffices to show that
‖J1‖H ≤M(δ)[‖Aϕ‖H + ‖Aψ‖H ] (25)

and

‖J2‖H ≤M(δ) min

{
ln

1

τ
, 1 +

∣∣ln ‖ B ‖H→H ∣∣} ‖ ϕτ ‖C([0,1]
τ
,H). (26)

The estimate (25) follows from formula (23) and estimates (15), (17). Using formula (24) and estimates (15), (16), and (17), we obtain

‖J2‖H ≤ ‖Kτ‖H→H

 N∑
j=1

∣∣ρ (tj)∣∣ τ (∥∥∥(I −R2N )−1
∥∥∥
H→H

{(∥∥∥RN−j∥∥∥
H→H

+
∥∥∥RN+j

∥∥∥
H→H

)

×
∥∥∥(I + τB)(2I + τB)−1

∥∥∥
H→H

N−1∑
i=1

(∥∥∥(I −R)RN−i−1
∥∥∥
H→H

+
∥∥∥(I −R)RN+i−1

∥∥∥
H→H

)
‖ϕi‖H

}

+
∥∥∥(I + τB)(2I + τB)−1

∥∥∥
H→H

 j∑
i=1

∥∥∥(I −R)Rj−i−1
∥∥∥
H→H

‖ϕi‖H

+

N−1∑
i=j+1

∥∥∥(I −R)Ri−j−1
∥∥∥
H→H

‖ϕi‖H +

N−1∑
i=1

∥∥∥(I −R)Rj+i−1
∥∥∥
H→H

‖ϕi‖H


≤M(δ) min

{
ln

1

τ
, 1 +

∣∣ln ‖ B ‖H→H ∣∣} ‖ ϕτ ‖C([0,1]
τ
,H).

So, from the last estimate and the estimate (16) it follows the estimate (26). Theorem 5 is proved. �

Theorem 6. The difference problem (13) is well posed in the Hölder spaces Cα01([0, 1]τ , H) under the assumption (14) and the following
coercivity inequality holds:

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα01([0,1]τ ,H) + ‖ {Auk}N1 ‖Cα01([0,1]τ ,H) (27)

≤M(δ)

[
1

α(1− α)

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

+ ||Aϕ||H+||Aψ||H

]
.

Proof: By [17],

‖ {τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα01([0,1]τ ,H) + ‖ {Auk}N−1

1 ‖Cα01([0,1]τ ,H) (28)

≤M(δ)
1

α(1− α)

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

+M(δ)[||Aϕ||H+||AuN ||H ]

was proved for the solution of difference scheme (21). Then the proof of (27) is based on (28) and on the estimate

‖ AuN ‖H≤M(δ)
1

α(1− α)
‖ ϕτ ‖Cα01([0,1]τ ,H) +M(δ)[||Aϕ||H+||Aψ||H ].

Applying the triangle inequality, formulas (23), (24), and estimate (25), we get

‖ AuN ‖H≤‖ J1 ‖H + ‖ J2 ‖H≤‖ J2 ‖H +M(δ)[||Aϕ||H+||Aψ||H ].

To this end, it suffices to show that

‖ J2 ‖H≤M(δ)
1

α(1− α)

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

. (29)

c© CPOST 2019 83



Applying formula (24), we get

J2 = Kτ

N∑
j=1

ρ
(
tj
)
τ(I −R2N )−1

−(RN−j −RN+j
)
τ−2(I −R)2

j−1∑
i=1

τ2
(
RN−i −RN+i

)

×
(
I −R2

)−1 (
ϕi − ϕj

)
+
(
−
(
RN−j −RN+j

))
τ−2(I −R)2

N−1∑
i=j+1

τ2
(
RN−i −RN+i

)

×
(
I −R2

)−1 (
ϕi − ϕj

)
+ (I −R2N )τ−2(I −R)2

j−1∑
i=1

τ2
(
Rj−i −Rj+i

)(
I −R2

)−1 (
ϕi − ϕj

)

+(I −R2N )τ−2(I −R)2
N−1∑
i=j+1

τ2
(
Ri−j −Rj+i

)(
I −R2

)−1 (
ϕi − ϕj

)
−
(
RN−j −RN+j

)
τ−2(I −R)2

×
j−1∑
i=1

τ2
(
RN−i −RN+i

)(
I −R2

)−1
ϕj −

(
RN−j −RN+j

)
τ−2(I −R)2

×
N−1∑
i=j+1

τ2
(
RN−i −RN+i

)(
I −R2

)−1
ϕj + (I −R2N )τ−2(I −R)2

j−1∑
i=1

τ2
(
Rj−i −Rj+i

)(
I −R2

)−1
ϕj

+(I −R2N )τ−2(I −R)2
N−1∑
i=j+1

τ2
(
Ri−j −Rj+i

)(
I −R2

)−1
ϕj

 =

4∑
z=2

Jz2 ,

where

J2
2 = Kτ

N∑
j=1

ρ
(
tj
)
τ(I −R2N )−1

(
R2N−j−1

(
I −R−R2 +R3

)
+R2N+j

(
I +R−Rj −R−1

))
ϕj ,

J3
2 = Kτ

N∑
j=1

ρ
(
tj
)
τ(I −R2N )−1 (I −R)

(
I −R2N−2j

)

×
j−1∑
i=1

Rj−i
(
I −R2i

)
(I +R)−1 (ϕi − ϕj) = J3,1

2 + J3,2
2 ,

J3,1
2 = Kτ

[N2 ]∑
j=1

ρ
(
tj
)
τ(I −R2N )−1 (I −R)

(
I −R2N−2j

) j−1∑
i=1

Rj−i
(
I −R2i

)
(I +R)−1 (ϕi − ϕj) ,

J3,2
2 = Kτ

N∑
j=[N2 ]+1

ρ
(
tj
)
τ(I −R2N )−1 (I −R)

(
I −R2N−2j

)

×
j−1∑
i=1

Rj−i
(
I −R2i

)
(I +R)−1 (ϕi − ϕj) ,

J4
2 = Kτ

N∑
j=1

ρ
(
tj
)
τ(I −R2N )−1 (I −R)

(
I −R2j

) N−1∑
i=j+1

Ri−j
(
I −R2N−2i

)
×(I +R)−1 (ϕi − ϕj) = J4,1

2 + J4,2
2 ,

J4,1
2 = Kτ

[N2 ]∑
j=1

ρ
(
tj
)
τ(I −R2N )−1 (I −R)

(
I −R2j

) N−1∑
i=j+1

Ri−j
(
I −R2N−2i

)
(I +R)−1 (ϕi − ϕj) ,

J4,2
2 = Kτ

N∑
j=[N2 ]+1

ρ
(
tj
)
τ(I −R2N )−1 (I −R)

(
I −R2j

) N−1∑
i=j+1

Ri−j
(
I −R2N−2i

)
(I +R)−1 (ϕi − ϕj) .

Second, let us estimate Jm2 for any m = 2, · · ·, 4, separately. We start with J2
2 , using estimates (15), (17), and the definition of the norm of the

space Cα01([0, 1]τ , H), we obtain
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∥∥∥J2
2

∥∥∥
H
≤M1(δ)

N∑
j=1

∣∣ρ (tj)∣∣ τ max
1≤j≤N

∥∥ϕj∥∥H ≤M1(δ)

N∑
j=1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

From (14) it follows that ∥∥∥J2
2

∥∥∥
H
≤M2(δ)

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

.

Now, let us estimate J3,1
2 . Using the estimates (15), (17), and the definition of the norm of the space Cα01([0, 1]τ , H), we obtain

∥∥∥J3,1
2

∥∥∥
H
≤ ‖Kτ‖H→H

[N2 ]∑
j=1

∣∣ρ (tj)∣∣ τ ∥∥∥(I −R2N )−1
∥∥∥
H→H

×
j−1∑
i=1

∥∥∥Rj−i (I −R2N−2j
)

(I −R)
∥∥∥
H→H

∥∥∥I −R2i
∥∥∥
H→H

∥∥∥(I +R)−1
∥∥∥
H→H

∥∥ϕi − ϕj∥∥H
≤M(δ)

[N2 ]∑
j=1

∣∣ρ (tj)∣∣
(jτ)α ((N − j) τ)α

j−1∑
i=1

τ

((j − i)τ)1−α
∥∥ϕτ∥∥

Cα01([0,1]τ ,H)
.

The sum
j−1∑
i=1

τ

((j − i)τ)1−α

is the lower Darboux integral sum for the integral
jτ∫
0

ds

(jτ − s)1−α .

It follows that ∥∥∥J3,1
2

∥∥∥
H
≤M(δ)

[N2 ]∑
j=1

∣∣ρ (tj)∣∣ τ
α ((N − j) τ)α

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

.

By the lower Darboux integral sum for the integral, it concludes that

∥∥∥J3,1
2

∥∥∥
H
≤M(δ)

2α−1

α (1− α)

[N2 ]∑
j=1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

For J3,2
2 , applying (15), (17), and the definition of the norm of the space Cα01([0, 1]τ , H), we get

∥∥∥J3,2
2

∥∥∥
H
≤M(δ)

N∑
j=[N2 ]+1

∣∣ρ (tj)∣∣ 2α((N − j) τ)α

((N − j) τ)α(jτ)α

×
j−1∑
i=1

τ

((j − i) τ)1−α ((N − j − i+N) τ)α
∥∥ϕτ∥∥

Cα01([0,1]τ ,H)
.

The sum

j−1∑
i=1

τ

((j − i) τ)1−α ((N − j − i+N) τ)α

is the lower Darboux integral sum for the integral

jτ∫
0

ds

(jτ − s)1−α (1− jτ − s+ 1)α
.

Since
jτ∫
0

ds

(jτ − s)1−α (Nτ − jτ − s+Nτ)α
≤ 1

(1− jτ)α

jτ∫
0

ds

(jτ − s)1−α ≤
M

α(jτ)α
,
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it follows that ∥∥∥J3,2
2

∥∥∥
H
≤M(δ)

N∑
j=[N2 ]+1

∣∣ρ (tj)∣∣ τ 2α

(jτ)α (Nτ − jτ)α α(jτ)−α
∥∥ϕτ∥∥

Cα01([0,1]τ ,H)
.

By the lower Darboux integral sum for the integral it follows that

∥∥∥J3,2
2

∥∥∥
H
≤ M(δ)22α−1

α (1− α)

N∑
j=[N2 ]+1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

Applying estimates for
∥∥∥J3,1

2

∥∥∥
H

and
∥∥∥J3,2

2

∥∥∥
H

, we get

∥∥∥J3
2

∥∥∥
H
≤ M3(δ)

α (1− α)

N∑
j=1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

From (14) it follows that ∥∥∥J3
2

∥∥∥
H
≤ M4(δ)

α (1− α)

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

.

Next, let us estimate J4,1
2 . Using estimates (15), (17), and the definition of the norm space Cα01([0, 1]τ , H), we obtain

∥∥∥J4,1
2

∥∥∥
H
≤M(δ)

[N2 ]∑
j=1

∣∣ρ (tj)∣∣ (N − j)α
((N − j) τ)α (jτ)α

N−1∑
i=j+1

τ

((i− j)τ)1−α ((N − j − i+N) τ)α
∥∥ϕτ∥∥

Cα01([0,1]τ ,H)
.

The sum

N−1∑
i=j+1

τ

((i− j)τ)1−α

is the lower Darboux integral sum for the integral
1∫
jτ

ds

(s− jτ)1−α .

Since
1∫
jτ

ds

(s− jτ)1−α (2N − jτ − s)α
≤ 1

(Nτ − jτ)α

1∫
jτ

ds

(s− jτ)1−α

≤ (Nτ − jτ)α

α (Nτ − jτ)α
,

we have that ∥∥∥J4,1
2

∥∥∥
H
≤M(δ)

[N2 ]∑
j=1

∣∣ρ (tj)∣∣ τ
(jτ)αα

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

.

By the lower Darboux integral sum for the integral, it follows that

∥∥∥J4,1
2

∥∥∥
H
≤ M(δ)22α

α (1− α)

[N2 ]∑
j=1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

Finally, let us estimate J4,2
2 . Using estimates (15), (17), and the definition of the norm space Cα01([0, 1]τ , H), we get

∥∥∥J4,2
2

∥∥∥
H
≤M(δ)

N∑
j=[N2 ]+1

∣∣ρ (tj)∣∣ τ
((N − j) τ)α (jτ)α

N−1∑
i=j+1

τ

((i− j)τ)1−α
∥∥ϕτ∥∥

Cα01([0,1]τ ,H)
.

The sum
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N−1∑
i=j+1

τ

((i− j)τ)1−α

is the lower Darboux integral sum for the integral
1∫
jτ

ds

(s− jτ)1−α .

Thus, we show that ∥∥∥J4,2
2

∥∥∥
H
≤M(δ)

N∑
j=[N2 ]+1

∣∣ρ (tj)∣∣ τ
(jτ)αα

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

.

By the lower Darboux integral sum for the integral, it follows that

∥∥∥J4,2
2

∥∥∥
H
≤M(δ)

2α−1

α (1− α)

N∑
j=[N2 ]+1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

Applying estimates for
∥∥∥J4,1

2

∥∥∥
H

and
∥∥∥J4,2

2

∥∥∥
H

, we get

∥∥∥J4
2

∥∥∥
H
≤M(δ)

(
2α−1

α (1− α)
+

22α

α (1− α)

) N∑
j=1

∣∣ρ (tj)∣∣ τ ∥∥ϕτ∥∥Cα01([0,1]τ ,H)
.

From (14) it follows that ∥∥∥J4
2

∥∥∥
H
≤ M5(δ)

α (1− α)

∥∥ϕτ∥∥
Cα01([0,1]τ ,H)

.

Combining the estimates for ‖Jm2 ‖H , m = 2, · · ·, 4 we get the estimate (29). Theorem 6 is proved. �

Now, we consider the applications of Theorems 3.2- 3.3.
The Bitsadze-Samarskii type nonlocal boundary value problem for the multidimensional elliptic equation (12) is considered. The

discretization of problem (12) is carried out in two steps. In the first step, let us define the grid sets

Ωh = {x = xm = (h1m1, · · ·, hnmn),m = (m1, · · ·,mn), 0 ≤ mr ≤ Nr,

hrNr = 1, r = 1, · · ·, n},Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S.
We introduce the Hilbert spaces L2h = L2(Ω̃h) and W 2

2h(Ω̃h)of the grid functions ϕh(x) = {ϕ(h1m1, · · ·, hnmn)} defined on Ω̃h,
equipped with the norms ∥∥∥ϕh∥∥∥

L2h(Ω̃h)
= (

∑
x∈Ωh

∣∣∣ϕh(x)
∣∣∣2 h1 · · · hn)1/2,

∥∥∥ϕh∥∥∥
W 2

2h(Ω̃h)
=
∥∥∥ϕh∥∥∥

L2h(Ω̃h)
+

 ∑
x∈Ω̃h

n∑
r=1

∣∣∣ϕhxrxr, mr ∣∣∣2 h1 · · ·hn

1/2

.

To the differential operator A generated by the problem (12), we assign the difference operator Axh by the formula

Axhu
h = −

n∑
r=1

(ar(x)uh−
xr

)xr,mr , (30)

acting in the space of the grid functions uh(x), satisfying the conditions uh = 0 for all x ∈ Sh. It is known that Axh is a self-adjoint positive
definite operator in L2h(Ω̃h). With the help of Axh, we arrive at the nonlocal boundary value problem for an infinite system of ordinary
differential equations 

−d
2uh(t,x)
dt2

+Axhu
h(t, x) = fh(t, x), 0 < t < 1, x ∈ Ωh,

uh(0, x) = ϕh(x); uh(1, x) =
1∫
0

ρ(t)uh(t, x)dt+ ψh(x), x ∈ Ω̃h.
(31)

In the second step, (31) is replaced by the difference scheme (13), and we get the following difference scheme:
−u

h
k+1(x)−2uhk(x)+uhk−1(x)

τ2 +Axhu
h
k (x) = ϕhk(x),

ϕhk(x) = fh(tk, x), x ∈ Ωh, tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

uh0 (x) = ϕh(x), x ∈ Ω̃h,

uhN (x) =
N∑
j=1

ρ
(
tj
)
τuhj (x) + ψh(x), x ∈ Ω̃h.

(32)
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Theorem 7. Let τ and |h| be sufficiently small positive numbers. Under the assumption (14), the solution of the difference scheme (32) satisfies
the following almost coercivity estimate:

max
1≤k≤N−1

∥∥∥τ−2
(
uhk+1 − 2uhk + uhk−1

)∥∥∥
L2h

+ max
1≤k≤N−1

∥∥∥uhk∥∥∥
W 2

2h

≤M(δ)

[
ln

1

τ + |h| max
1≤k≤N−1

∥∥∥ϕhk∥∥∥
L2h

+
∥∥∥ϕh∥∥∥

W 2
2h

+
∥∥∥ψh∥∥∥

W 2
2h

]
.

The proof of Theorem 3.4 is based on Theorem 3.2 on the estimate

min

{
ln

1

τ
, 1 +

∣∣∣ln ‖ Bxh‖L2h→L2h

∣∣∣} ≤M ln
1

τ + |h| ,

on the symmetry properties of the difference operator Axh defined by (30) in L2h, and on the following theorem on the coercivity inequality for
the solution of the elliptic difference problem in L2h.

Theorem 8. For the solution of the elliptic difference problem

Axhu
h(x) = ωh(x), x ∈ Ωh, (33)

uh(x) = 0, x ∈ Sh
the following coercivity inequality holds [22]: ∥∥∥uh∥∥∥

W 2
2h

≤M (δ) ||ωh||L2h
.

Theorem 9. τ and |h| be sufficiently small positive numbers. Then under the assumption (14) the solution of the difference scheme (32)
satisfies the following coercivity stability estimate

‖
{
τ−2

(
uhk+1 − 2uhk + uhk−1

)}N−1

1
‖Cα01([0,1]τ ,L2h) + ‖

{
uhk

}N−1

1
‖Cα01([0,1]τ ,W

2
2h)

≤M(δ)

[∥∥∥ϕh∥∥∥
W 2

2h

+
∥∥∥ψh∥∥∥

W 2
2h

+
1

α(1− α)

∥∥∥∥{ϕhk}N−1

1

∥∥∥∥
Cα01([0,1]τL2h)

]
.

The proof of Theorem 9 is based on Theorem 6, on the symmetry properties of the difference operator Axh defined by the formula (30), and
on Theorem 8 on the coercivity inequality for the solution of the elliptic difference equation (13) in L2h.

4 Conclusion

In this paper, the well-posedness of problem (1) in Hölder spaces with a weight is established. The coercivity inequality for the solution of the
nonlocal boundary value problem for elliptic equation is obtained. The first order of accuracy difference scheme for the approximate solution of
the Bitsadze-Samarskii type nonlocal boundary value problem with integral condition for elliptic equation is studied. Theorems on the almost
coercive stability estimates and coercive stability estimates for the solution of difference scheme for elliptic equations are proved.
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